
J. Math. Computer Sci., 37 (2025), 20–31

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Unified approach to nonlinear Caputo fractional derivative
boundary value problems: extending the upper and lower
solutions method

Imran Taliba,∗, Asmat Batoolb, J. Vanterler da C. Sousac, Mbarki Lamined

aNonlinear Analysis Group, Department of Mathematics, Virtual University of Pakistan, Pakistan.
bDepartment of Mathematics, University of Management and Technology, Lahore, Pakistan.
cAerospace Engineering, PPGEA-UEMA, Department of Mathematics, DEMATI-UEMA, São Luis, MA 65054, Brazil.
dMathematics Department, Faculty of Sciences of Tunisia, University of Tunis El Manar, Tunisia.

Abstract

The upper and lower solutions approach has been extended in this research to address nonlinear Caputo fractional deriva-
tive boundary value problems (FDBVPs). This study proposes generalized findings that unify the existence criteria of specific
FDBVPs that have previously been handled separately in the literature. This includes both Dirichlet FDBVPs and Neumann
FDBVPs, which are treated as special cases. In addition, we extend the results presented in [A. Batool, I. Talib, M. B. Riaz, C.
Tunç, Arab J. Basic Appl. Sci., 29 (2022), 249–256], [A. Batool, I. Talib, R. Bourguiba, I. Suwan, T. Abdeljawad, M. B. Riaz, Int. J.
Nonlinear Sci. Numer. Simul., 24 (2023), 2145–2154] and [D. Franco, D. O’Regan, Arch. Inequal. Appl., 1 (2003), 413–419]. To
assess the validity of the established results, two examples are considered for examination.
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1. Introduction

In the last few decades, fractional derivative differential equations (FDDEs) have been the focus of
substantial research due to their potential to model complex phenomena more effectively. The usefulness
of the physical phenomena modeled with FDDEs has been demonstrated across a wide range of techno-
logical and scientific fields including aerodynamics, physics, ecology, biology, electron-analytic chemistry,
physics, and a broad range of other disciplines. The applications of FDDEs are extensive, and numerous
studies have investigated their usefulness in diverse areas. As an illustration FDDEs allow for the mod-
eling of phenomena with memory effects, enabling more accurate representations of systems influenced
by past events. In Mathematical Epidemiology, FDDEs capture complex disease dynamics with memory
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effects and non-local interactions, improving the accuracy of epidemic modeling [12]. They have also
found applications in fluid mechanics [14, 15] and heat and diffusion phenomena [16, 17], showcasing
their versatility and broad utility in various research domains.

The wide applications and usefulness of the differential equations modeled with fractional-order
derivatives motivated the researchers to develop new criteria for investigating the existence of solutions of
FDDEs corresponding to various boundary conditions (BCs). For instance, Ahmad et al. developed the ex-
istence results for generalized Caputo FDDEs with generalized fractional integral BCs, see [1]. Moreover,
Ntouyas and Etemad in [22] focused on the existence of solutions of fractional derivative differential inclu-
sions corresponding to sum and integral BCs by using the endpoint results for multi-functions. Muthaiah
and Baleanu in [21] studied the existence and uniqueness results for FDDEs that involved generalized
fractional integrals in the BCs. Recent advancements in fractional calculus have significantly expanded
our understanding of complex systems. Bohner et al. conducted a qualitative analysis of Caputo fractional
integro-differential equations with constant delays, focusing on stability and boundedness properties us-
ing Lyapunov functions [6]. Further extending the field, Subramanian et al. investigated systems of
nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of
fractional order. Their work provided insights into the behavior of more complex fractional systems with
multiple interacting components [25].

The upper and lower solutions (ULSs) approach is an effective approach that has been broadly em-
ployed to investigate the existence of solutions of both integer-order and noninteger-order differential
equations corresponding to various initial and BCs. The works of some of them are presented as follows:
Franco and Regan in [11] developed the new existence criteria for the boundary value problems (BVPs)
of second order by introducing the idea of coupled ULSs. The ULSs approach was utilized by Asif et al.
[26] to establish the existence of solutions for nonlinear coupled systems of second order having coupled
boundary conditions that are generalized and involve nonlinearity. Using the ULSs approach, maximal
and minimal solutions of fractional-order difference equations defined in the perspective of Caputo frac-
tional derivative were shown to exist for initial conditions by Chen et al. in [8]. Shi and Zhang in [23]
provided conditions that are sufficient to ensure the existence of solutions for Caputo FDDEs of order
1 < δ 6 2 with Dirichlet BCs by using the ULSs technique. Liu and Jia in [19] studied some new ex-
istence results for Caputo FDDEs with generalized integral BCs by employing the ULSs approach. Lin
et al. in [18] investigated existence of solutions for Caputo FDDEs with periodic type BCs by using the
ULSs method. In later times, Jeelani et al. established novel findings aimed at examining the presence
of positive solutions for Riemann-Liouville FDDEs by using the ULSs approach together with classical
fixed point theorems in a cone, see [13]. Additionally, we make reference to the publications by Mosa and
Eloe [2] as well as Cabada and Samoza [7] in order to investigate the existence outcomes of BVPs with
Neumann BCs, Dirichlet BCs, and periodic BCs using the ULSs approach.

Despite the significant advancements in the study of FDBVPs, several critical gaps remain in our un-
derstanding. For instance, in [4, 5], the authors introduced generalized existence results for FDBVPs using
the coupled ULSs approach, including periodic and anti-periodic FDBVPs as specific cases. However, the
conditions imposed on the boundary functions in these works are insufficient to unify the existence crite-
ria for Dirichlet and Neumann FDBVPs. Our work addresses these gaps and extends previous results in
several important ways.

• We extend the coupled ULSs approach to Dirichlet and Neumann boundary conditions, which were
not addressed in previous works such as [5] that focused on periodic and anti-periodic conditions.

• Unlike studies such as [4] that were restricted to problems of order 0 < δ < 1, our work significantly
broadens the scope by addressing higher-order problems, thus expanding the applicability of the
theoretical framework.

• We extend the methodology used for integer-order problems in [11] to the fractional-order domain.
This represents a non-trivial advancement in fractional differential equations, as it bridges the gap
between integer-order and fractional-order boundary value problems.
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To extend the applicability of the ULSs technique to FDDEs, it is necessary to have information on the
extreme-points when dealing with the Caputo fractional-order derivative. Significant progress in this area
was made by Shi and Zhang [23] as they presented the extremum results, when 1 < δ < 2. These results
were further extended and improved in [3].

Motivated by the aforementioned studies and getting inspiration by the works presented in [3–5, 11,
23], we consider the following generalized FDDEs that involved Caputo fractional derivative

DδCy(t) = w(t,y(t)), t ∈ [0, 1], (1.1)

with nonlinear generalized BCs {
f1(y(0),y(1),y ′(0)) = 0,
f2(y(0),y(1),y ′(1)) = 0,

(1.2)

where, w : [0, 1]×R → R and f1, f2 : R3 → R are continuous functions, and DδC is the Caputo fractional
derivative of order 1 < δ 6 2, defined as [10]

DδCy(t) =
1

Γ(2 − δ)

∫t
0
(t− r)1−δy ′′(r)dr. (1.3)

The problem (1.1) with BCs (1.2) generalizes some certain FDBVPs, for instance if f1(t1, t2, t3) = c1 − t1
and f2(t1, t2, t3) = c2 − t2 with c1, c2 ∈ R, then (1.1) is the Dirichlet FDBVPs, with

y(0) = c1,y(1) = c2. (1.4)

If f1(t1, t2, t3) = t3 − c1, and f2(t1, t2, t3) = c2 − t3, then (1.1) is the Neumann FDBVPs, with

y ′(0) = c1, y ′(1) = c2. (1.5)

Using the ULSs approach to investigate the problem (1.1) with BCs (1.2) represents a novel approach
not yet explored in existing literature dealing with similar topics. While the problem (1.1) with BCs (1.4)
has been addressed in [23] using the ULSs technique, as far as we are aware, it has not been investigated
with generalized BCs (1.2) using the same method. Furthermore, we expand upon the results proposed in
[11] for solving FDDEs under generalized BCs (1.2) by implementing the extremum results presented in
[3, 23]. Another notable aspect of our research is the development of a general approach for examining the
existence of solutions for problems (1.1)-(1.2), with these findings also applicable to the existence criteria
of problem (1.1)-(1.4) and problem (1.1)-(1.5). Additionally, we extend the results introduced in [4, 5].

The rest of the paper is organized as follows. Section 2 reviews some essential definitions. In Section
3, a theorem and a related corollary of the extremum principle in the context of the Caputo fractional
derivative, which is vital for applying the ULSs approach, are presented. An existence result for general-
ized FDBVPs, along with its proof, is provided in Section 4. To demonstrate how the theoretical findings
can be applied, an example is given in Section 5. The conclusion is drawn in Section 6.

2. Preliminary results

The ULSs approach requires a few key definitions, which are reviewed below in this section.

Definition 2.1 ([9]). A function φ ∈ C2[0, 1] is said to be a lower solution of (1.1), if the following inequality
is satisfied:

DδCφ(t) > w(t,φ(t)), t ∈ [0, 1]. (2.1)



I. Talib, A. Batool, J. V. D. C. Sousa, M. Lamine, J. Math. Computer Sci., 37 (2025), 20–31 23

Similarly, a function ψ ∈ C2[0, 1] is said to be an upper solution of (1.1), if it satisfies the following
inequality

DδCψ(t) 6 w(t,ψ(t)), t ∈ [0, 1]. (2.2)

In light of the aforementioned, the assumption will be φ(t) 6 ψ(t), t ∈ [0, 1]. For y1,y2 ∈ C1[0, 1] with
y1(t) 6 y2(t) for all t ∈ [0, 1], define the following set as

[y1,y2] = {v ∈ C1[0, 1] : y1(t) 6 v(t) 6 y2(t), for all t ∈ [0, 1]}.

For the Dirichlet case, the condition for being a solution of the problem (1.1) and (1.4) is to lie between a
lower and upper solutions is as follows

φ(0) 6 c1 6 ψ(0), φ(1) 6 c2 6 ψ(1). (2.3)

The following idea was used in [11] to cover the various prospects for the boundary functions f1 and
f2 and to unify the treatment of various integer-order boundary value problems. We use this concept to
extend the results for FDDEs with generalized nonlinear BCs without considering the assumptions on the
boundary functions.

Definition 2.2 ([11]). The well ordered functions, φ,ψ ∈ C2[0, 1] are called coupled ULSs for the problem
(1.1)-(1.2), if the inequalities (2.1)-(2.2) are satisfied along with the following inequalities:

max{f1(ψ(0),ψ(1),ψ ′(0)), f1(ψ(0),φ(1),ψ ′(0))} 6 0,
and
min{f1(φ(0),φ(1),φ ′(0)), f1(φ(0),ψ(1),φ ′(0))} > 0,

(2.4)

and 
max{f2(ψ(0),ψ(1),ψ ′(1)), f2(φ(0),ψ(1),ψ ′(1))} 6 0,
and
min{f2(φ(0),φ(1),φ ′(1)), f2(ψ(0),φ(1),φ ′(1))} > 0.

(2.5)

Remark 2.3. It is worth noticing that the classical concepts can be generalized by using the Definition 2.2.
For example, considering the Dirichlet case we obtain from (2.4) and (2.5) that (2.3) holds.

Subsequently, we incorporate the following highly valuable lemma that plays a crucial role in estab-
lishing the main findings. Define the following

C◦[0, 1] = {y ∈ C[0, 1] : y(0) = 0}.

Lemma 2.4. Let R : C1[0, 1]→ C◦[0, 1]×R×R be a linear operator. Then the inverse R−1 : C◦[0, 1]×R×R→
C1[0, 1] exists if and only if Ry(t) = 0⇒ y(t) = 0.

Proof. First we assume that Ry(t) = 0 ⇒ y(t) = 0, and show that R−1 exists. Let Ry(t1) = Ry(t2), where
t1, t2 ∈ [0, 1]. Since R is linear, we have

R(y(t1) − y(t2)) = 0 ⇒ y(t1) − y(t2) = 0 (by hypothesis) ⇒ y(t1) = y(t2).

Since for a linear operators, if Ry(t1) = Ry(t2) ⇒ y(t1) = y(t2), then there exists a mapping R−1 :
C◦[0, 1]×R×R→ C1[0, 1], which maps every y◦(t) ∈ C◦[0, 1]×R×R onto that y(t) ∈ C1[0, 1] for which
Ry(t) = y◦(t).

Conversely, suppose that R−1 exists and show that Ry(t) = 0⇒ y(t) = 0. As R−1 exists, so R(y(t1)) =
R(y(t2))⇒ y(t1) = y(t2) with y(t2) = 0⇒ R(y(t1)) = R0 = 0, which finally implies y(t1) = 0.
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Theorem 2.5 ([24]). A closed subspace of C(X, R) on a compact metric space X is compact if and only if it satisfies
the conditions of being bounded and equicontinuous.

Theorem 2.6 ([24]). If a compact operator P maps a nonempty, closed, bounded, and convex subset Y of a Banach
space X to itself that is P : Y → Y, then P must have at least one fixed point in Y.

3. Extremum results

Determining the behavior of the fractional-order derivatives at the extreme points is necessary for the
extension of the ULSs technique to FDDEs. So in [20], the behaviour of Caputo fractional derivative was
studied at extreme points, when 0 < δ < 1. However, the extremum results presented in [20] are not
sufficient to extend the ULSs approach for FDBVPs, when 1 < δ < 2. In order to overcome this problem,
the authors in [23] presented the extremum results for the fractional derivative in Caputo sense, when
1 < δ < 2. These results were further improved and extended in [3]. By introducing some modifications
in the statement and proof of the results proposed in [3], the following extremum result is presented in
Caputo sense.

Theorem 3.1. Let y ∈ C2[0, 1] gains its maximum at t0 ∈ (0, 1), then

DδCy(t0) 6
t−δ0

Γ(2 − δ)
[(δ− 1)(y(0) − y(t0)) − t0y ′(0)], for all 1 < δ < 2.

Proof. For the proof, we refer the reader to study [5].

Corollary 3.2. Let y ∈ C2[0, 1] gains its maximum at t0 ∈ (0, 1), and y ′(0) > 0. Then DδCy(t0) 6 0, for all
1 < δ < 2.

Proof. Since y(t0) > y(0), t0 > 0, and y ′(0) > 0, then Theorem 3.1 implies DδCy(t0) 6 0, for all 1 < δ <
2.

4. Main result

In this section, the ULSs approach is applied to establish the existence result which is generalized in
its nature for studying the existence of solutions of the problems (1.1)-(1.2), (1.1)-(1.4), and (1.1)-(1.5).

Theorem 4.1. Assume that the functions ψ,φ, are the coupled ULSs of the FDBVPs (1.1)-(1.2), and f1 and f2
are monotone functions that specify the boundary conditions. The function f1 is monotone non-decreasing in the
third variable and f2 is non-increasing in the third variable. Moreover the following functions are monotone in
[φ(1),ψ(1)] and [φ(0),ψ(0)], respectively,

f1φ(t) := f1(φ(0), t,φ ′(0)), f1ψ(t) := f1(ψ(0), t,ψ ′(0)),

and
f2φ(t) := f2(t,φ(1),φ ′(1)), f2ψ(t) := f2(t,ψ(1),ψ ′(1)).

Then the problem defined by (1.1)-(1.2) has at least one solution, such that

φ(t) 6 y(t) 6 ψ(t), t ∈ [0, 1].

Proof. We define an appropriately modified problem by introducing the following function:

b(t, x1) := max{φ(t), min{x1,ψ(t)}}, (4.1)
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then the modified problem is
DδCy(t) − µy(t) =W

∗(t,y(t)), t ∈ [0, 1], µ > 0,
y(0) = f∗1(y(0),y(1),y

′(0)),
y(1) = f∗2(y(0),y(1),y

′(1)),
(4.2)

where

W∗(t,y(t)) =


w(t,ψ(t)) − µψ(t), if ψ(t) < y(t),
w(t,y(t)) − µy(t), if φ(t) 6 y(t) 6 ψ(t),
w(t,φ(t)) − µφ(t), if y(t) < φ(t),

and {
f∗1(t1, t2, t3) = b(0, t1 + f1(t1, t2, t3)),
f∗2(t1, t2, t3) = b(1, t2 + f2(t1, t2, t3)).

Since (4.2) is the modified problem of (1.1)-(1.2), so solving it leads towards the solution of (1.1)-(1.2) that
lies between φ and ψ. To be unambiguous, we will split the proof into steps.

Step 1: Determining the fixed point of the operator, R−1S : C1[0, 1] → C1[0, 1], which is defined by the
composition of the mapping defined below is equivalent to the solution of (4.2).

R : C1[0, 1]→ C◦[0, 1]×R×R,
and
S : C1[0, 1]→ C◦[0, 1]×R×R,

which can be defined as
[Ry](t) =

(
y(t) − y(0) −

(
µRLJ

δy
)
(t),y(0),y(1)

)
,

[Sy](t) =

(
(RLJ

δ(W∗(t,y(t)), f∗1(y(0),y(1),y
′(0)), f∗2(y(0),y(1),y

′(1))
)

,

where

RLJ
δy(t) =

1
Γ(δ)

∫t
0
(t− r)δ−1y(r)dr (4.3)

is the fractional integral operator of order 1 < δ < 2, in the context of Riemann-Liouville see [10]. Also,
φ and ψ are our coupled lower and upper solutions, respectively, and are elements of C2-space defined
on a closed interval [0, 1]. Moreover, φ and ψ are bounded by the statement of the boundedness theorem.
Since y lies between two continuous bounded functions, it implies the continuity and boundedness of
y. Additionally, w is depending on y which implies that w is bounded and uniformly continuous on
[0, 1] ×R. Hence, W∗ is uniformly continuous. Moreover the functions f∗1 , f∗2 and Riemann-Liouville
fractional integral are continuous so this will cause the continuity of [Sy] on [0, 1]. Furthermore, the class
{Sy : y ∈ C1[0, 1]} is uniformly bounded as well as equicontinuous, as for every ε > 0, there exist a δ > 0,
such that

|Sy(t1) − Sy(t2)| < ε, ∀y ∈ S, whenever |y(t1) − y(t2)| < δ, ∀t1, t2 ∈ [0, 1].
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Without compromising generality, suppose that t1 6 t2, we have

|Sy(t1) − Sy(t2)| =

(
(RLJ

δ(W∗(t1,y(t1)), f∗1(y(0),y(1),y
′(0)), f∗2(y(0),y(1),y

′(1)))

− (RLJ
δ(W∗(t2,y(t2)), f∗1(y(0),y(1),y

′(0)), f∗2(y(0),y(1),y
′(1)))

)
=

∣∣∣∣( 1
Γ(δ)

∫t1

0
(t1 − s)

δ−1W∗(s,y(s))ds−
∫t2

0
(t2 − s)

δ−1W∗(s,y(s))ds
)∣∣∣∣

6
1
Γ(δ)

( ∫t1

0

∣∣(t1 − s)
δ−1W∗(s,y(s))ds

∣∣− ∫t2

0

∣∣(t2 − s)
δ−1W∗(s,y(s))ds

∣∣)
=

1
Γ(δ)

(
(
∣∣ ∫t1

0

(
(t1 − s)

δ−1 − (t2 − s)
δ−1)W∗(s,y(s))ds∣∣

−

∫t2

t1

∣∣(t2 − s)
δ−1W∗(s,y(s))ds

∣∣) → 0 as t1 → t2.

Consequently, by the statement of Arzelá-Ascoli Theorem 2.5, the relative compactness of the class {Sy :
y ∈ C1[0, 1]} is ensured. In addition R−1 exists by Lemma 2.4 and is continuous. Next, we show the
existence of at least one fixed point y(t) of R−1S as follows. Since

[Sy](t) =
(

RLJ
δW∗(t,y(t)), f∗1(y(0),y(1),y

′(0)), f∗2(y(0),y(1),y
′(1))

)
=

(
RLJ

δ
(
DδCy(t)) − µy(t)

)
,y(0),y(1))

)
=

(
y(t) − y(0) −

(
µRLJ

δy
)
(t),y(0),y(1)

)
= [Ry](t),

which further implies that

R−1[Sy](t) = R−1[Ry](t) = y(t).

Therefore, the relative compactness of the class {Sy : y ∈ C1[0, 1]} and the existence of the continuous
inverse of R implies the compactness of the operator R−1S. Consequently, the statement of Schauder’s
fixed point Theorem 2.6 ensures the existence of at least one fixed point y(t) of R−1S which is the solution
of problem (4.2).

Step 2: Now we will show that, if y(t) is a solution of (4.2), then it must lie in a region bounded by
the coupled ULSs that are well ordered, in such a way that φ(t) 6 y(t) 6 ψ(t), t ∈ [0, 1]. Our claim is,
y(t) 6 ψ(t) for all t ∈ [0, 1]. On contrary, we suppose that y(t) ≮ ψ(t), then y − ψ acquires at some
t0 ∈ [0, 1] (by definitions of f∗1 and f∗2 , we obtain that t0 ∈ (0, 1)) a positive maximum. So (y−ψ) ′(t0) = 0.
Corollary 3.2 implies DδC(y−ψ)(t0) 6 0. Ultimately, we get a contradiction

0 > DδC(y−ψ)(t0) >W
∗(t0,y(t0)) + µy(t0) −w(t0,ψ(t0))

= w(t0,ψ(t0)) − µψ(t0) + µy(t0) −w(t0,ψ(t0)) = µ
(
y(t0) −ψ(t0)

)
> 0.

Consequently, y(t) 6 ψ(t) for all t ∈ [0, 1]. Likewise, it can be proved that φ 6 y on [0, 1].

Step 3: The boundary conditions (1.2) need to be satisfied by y as we claim that y is a solution of the
modified problem. Based on previous steps where we have demonstrated that y is a solution to our
problem which lies between the lower and upper solution, so with respect to the first boundary condition,
this indicates that

φ(0) 6 y(0) 6 ψ(0). (4.4)
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For this, it is sufficient to show that,

φ(0) 6 y(0) + f1
(
y(0),y(1),y ′(0))

)
6 ψ(0). (4.5)

Thus,

y(0) = f∗1(y(0),y(1),y
′(0)) = y(0) + f1(y(0),y(1),y ′(0)).

On the contrary, assume the following

y(0) + f1
(
y(0),y(1),y ′(0))

)
> ψ(0).

Then using (4.1), yields

y(0) = ψ(0). (4.6)

In the last step, we have shown that, y(t) 6 ψ(t) and y(t) −ψ(t) ∈ C1[0, 1]. So, these results together with
(4.6) give

y ′(0) 6 ψ ′(0).

If f1ψ is monotone nonincreasing, then we obtain

y(0) + f1(y(0),y(1),y ′(0)) = ψ(0) + f1(ψ(0),y(1),y ′(0)) 6 ψ(0) + f1(ψ(0),φ(1),ψ ′(0)).

Since φ and ψ are coupled ULSs, we get the contradiction

y(0) + f1(y(0),y(1),y ′(0)) 6 ψ(0).

If f1ψ is monotone nondecreasing, then we have

y(0) + f1(y(0),y(1),y ′(0)) 6 ψ(0) + f1ψ(ψ(1)) = ψ(0) + f1(ψ(0),ψ(1),ψ ′(0)),

again a contradiction is obtained, hence

y(0) + f1(y(0),y(1),y ′(0)) 6 ψ(0).

In order to show that φ(0) 6 y(0) + f1(y(0),y(1),y ′(0)), the boundary function f1φ will be used. For the
second boundary condition, we have to show that,

φ(1) 6 y(1) + f1
(
y(0),y(1),y ′(1))

)
6 ψ(1).

On the contrary, assume the following

y(1) + f2
(
y(0),y(1),y ′(1))

)
> ψ(1).

Then

y(1) = f∗2(y(0),y(1),y
′(1)) = ψ(1).

In the Step 2, we have shown that y(t) 6 ψ(t) and y(t)−ψ(t) ∈ C1[0, 1]. So, altogether these results imply
y ′(1) > ψ ′(1). If f2ψ is monotone nonincreasing, then we obtain

y(1) + f2(y(0),y(1),y ′(1)) 6 ψ(1) + f2ψ(φ(0)) = ψ(1) + f2(φ(0),ψ(1),ψ ′(1)).
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Since φ and ψ are coupled ULSs, we get the contradiction

y(1) + f2(y(0),y(1),y ′(1)) 6 ψ(1).

If f2ψ is monotone nondecreasing, then we have

y(1) + f2(y(0),y(1),y ′(1)) 6 ψ(1) + f2(ψ(0),ψ(1),ψ ′(1)),

again a contradiction is obtained, hence

y(1) + f2(y(0),y(1),y ′(1)) 6 ψ(1).

In order to show that φ(1) 6 y(1)+ f2(y(0),y(1),y ′(1)), the boundary function f2φ will be used. Therefore,
the problem (1.1)-(1.2) has at least one solution, such that

φ(t) 6 y(t) 6 ψ(t), t ∈ [0, 1].

A conclusive proof has been made.

5. Validation of theoretical results

This section provides two problems that validates the proposed theoretical results.

Problem 5.1. Consider nonlinear FDDEs as follows

D
3
2
Cy(t) = y

3(t) − sin2(t), t ∈ [0, 1], (5.1)

with nonlinear BCs {
f1(y(0),y(1),y ′(0)) = y(0) sin(y(0)) − cos(y ′(0))y(1),
f2(y(0),y(1),y ′(1)) = y(0) tan(y(0)) − cos(y ′(1))y(1).

(5.2)

Let φ(t) = −t and ψ(t) = t2 + 2 be the lower and upper solutions, respectively, that satisfy (2.1) and (2.2),
as

D
3
2
Cφ(t) = 0 > w(t,φ(t)) = −t3 − sin2(t), t ∈ [0, 1],

and

D
3
2
Cψ(t) = 2.256758334t

1
2 6 w(t,ψ(t)) = (t2 + 2)3 − sin2(t), t ∈ [0, 1].

Additionally, the functions −t and t2 + 2 are coupled ULSs of the problem (5.1)-(5.2), satisfying (2.4)
because the given set of inequalities are satisfied if f1 is monotone nondecreasing in the second variable.

f1 (ψ(0),ψ(1),ψ ′(0)) 6 0,
and
f1 (φ(0),φ(1),φ ′(0)) > 0.

In a similar manner, if in the first variable f2 is monotone nondecreasing then the set of inequalities
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mentioned as follows are satisfied: 
f2 (ψ(0),ψ(1),ψ ′(1)) 6 0,
and
f2 (φ(0),φ(1),φ ′(1)) > 0.

Also the functions

f1φ(t) := f1(φ(0), t,φ ′(0)), f1ψ(t) := f1(ψ(0), t,ψ ′(0)),

and

f2φ(t) := f2(t,φ(1),φ ′(1)), f2ψ(t) := f2(t,ψ(1),ψ ′(1)),

are monotone on [φ(1),ψ(1)] and [φ(0),ψ(0)], respectively.

This confirms that Theorem 4.1’s assumptions hold true. In Consequence, the problem (5.1)-(5.2) has
atleast one solution, such that φ(t) 6 y(t) 6 ψ(t), for all t ∈ [0, 1].

Problem 5.2. The dynamics of a nonlinear spring system whose mathematical models include nonlinear
restorative forces can be expressed as follows:

mDδCy(t) + ky+ k1y
3 = 0,

where DδC denotes the Caputo fractional derivative. In this context, the spring is classified as hard if k1 > 0
and soft if k1 < 0. For the special case where δ = 2, m = 1, k = 1, and k1 = −1, the model reduces to a
well-known scenario discussed in [27]. However, we discuss its fractional framework, which significantly
broadens its applicability and provides deeper insights into the system’s behavior.

The fractional extension is provided below:

DδCy(t) = y
3(t) − y(t), t ∈ [0, 1], 1 < δ 6 2, (5.3)

subject to the generalized BCs:{
f1(y(0),y(1),y ′(0)) = −y(0) + y(1) cos(y ′(0)),
f2(y(0),y(1),y ′(1)) = −y(1) + y(0) cos(y ′(1)).

(5.4)

Furthermore, let φ(t) = 1 and ψ(t) = 2 be the lower and upper solutions, respectively, that satisfy (2.1)
and (2.2), as

DδCφ(t) = 0 > w(t,φ(t)) = 13 − 1, where 1 < δ 6 2,

and

DδCψ(t) = 0 6 w(t,ψ(t)) = 23 − 2, where 1 < δ 6 2.

Additionally, the functions ψ(t) and φ(t) are coupled ULSs of the problem (5.3)-(5.4), satisfying (2.4)
because the given set of inequalities are satisfied if f1 is monotone nondecreasing in the second variable,

f1 (ψ(0),ψ(1),ψ ′(0)) 6 0,
and
f1 (φ(0),φ(1),φ ′(0)) > 0.
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In a similar manner, if the first variable f2 is monotone nondecreasing, then the set of inequalities men-
tioned as follows are satisfied: 

f2 (ψ(0),ψ(1),ψ ′(1)) 6 0,
and
f2 (φ(0),φ(1),φ ′(1)) > 0.

Also the functions

f1φ(t) := f1(φ(0), t,φ ′(0)), f1ψ(t) := f1(ψ(0), t,ψ ′(0)),

and

f2φ(t) := f2(t,φ(1),φ ′(1)), f2ψ(t) := f2(t,ψ(1),ψ ′(1)),

are monotone on [φ(1),ψ(1)] and [φ(0),ψ(0)], respectively. This confirms that Theorem 4.1’s assumptions
hold true. In Consequence, the problem (5.3)-(5.4) has atleast one solution, such that φ(t) 6 y(t) 6 ψ(t),
for all t ∈ [0, 1].

6. Conclusion

We solved the nonlinear FDDEs involving Caputo derivatives corresponding to the generalized non-
linear BCs. Instead of assuming monotone conditions on the boundary functions, we used the idea of
coupled ULSs to develop generalized results that unified the treatment of certain FDBVPs, which were
previously treated separately in the literature. The extremum principle for Caputo fractional-order deriva-
tives has also been discussed. Building on these findings, we extended the ULSs approach to FDBVPs.
Furthermore, we extended and improved upon the results presented in [4, 5, 11] in this study. Two exam-
ples were provided to illustrate how the developed outcomes can be put into practice. In the future, we
are interested in extending the proposed results by considering nonlinearities in the first-order derivatives
of the solution function.
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