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Abstract
This study presents a general third-order nabla difference operator that allows us to get ϕ(x)-Tribonacci sequences, Tri-

bonacci numbers, and their sum using the coefficients of different trigonometric functions and their inverse. In this section,
we examined the numerical solutions and C∗-solutions of the ϕ(x)-Tribonacci sequences for different functions. In addition,
some interesting conclusions and theorems are obtained for the sum of the terms of the Tribonacci sequence. Also, we offer
appropriate examples to show how to use MATLAB to demonstrate our results.
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1. Introduction

Fibonacci numbers, often referred to as Natural Numbers, permeate various aspects of the natural
world, from the arrangement of leaves on plants to the patterns seen in flower petals, pineapple bracts,
and pineapple scales. The sequence 1, 1, 2, 3, 5, 8, . . ., known as the Fibonacci sequence, has a unique
property: each number is the sum of the previous two. If fvv = 0∞ represents the Fibonacci sequence
mathematically, then it follows that f0 = f1 = 1 and for v > 2, fv = fv−1 + fv−2. Furthermore, the ratio
of consecutive Fibonacci terms converges to the irrational number 1+

√
5

2 , commonly known as the golden
ratio. This ratio has important applications in architecture, science, and art. Further insights into the
properties of Fibonacci numbers have been extensively explored in the literature, particularly in works
such as [9].

∗Corresponding authors
Email addresses: prajini.maths@gmail.com (Rajiniganth Pandurangan), th.sabri@yahoo.com (Sabri T. M. Thabet),
mjvivas@puce.edu.ec (Miguel Vivas-Cortez)

doi: 10.22436/jmcs.037.01.03

Received: 2024-03-22 Revised: 2024-07-01 Accepted: 2024-07-08

http://dx.doi.org/10.22436/jmcs.037.01.03
http://dx.doi.org/10.22436/jmcs.037.01.03
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.037.01.03&domain=pdf


R. Pandurangan, et al., J. Math. Computer Sci., 37 (2025), 32–44 33

The Fibonacci sequence is used in many fields today and has led to the development of various con-
ceptual and mathematical models aimed at explaining its meaning. Originally developed while studying
the growth of rabbit populations, the Fibonacci numbers have fascinated art, nature, and mathematics
enthusiasts alike. Over the centuries, researchers, particularly those associated with the Fibonacci Soci-
ety, have tirelessly explored this concept, leading to groundbreaking advances and encouraging further
research in related fields (see reference therein [3, 4, 11, 14]).

Fractional calculus, an esteemed field of mathematics, traces its origins back to 1695 when it was ini-
tially discussed in a series of correspondences. Fractional calculus, as highlighted by Miller [10], serves
as a valuable tool extensively utilized across various domains, including electronics engineering and
computer science. Despite its intricate mathematical underpinnings, the genesis of fractional calculus
stemmed from the resolution of seemingly simple differentiation problems. While a first-order derivative
signifies the slope of a function, the notion of a half-order derivative poses intriguing questions, paving the
way for unexplored avenues in mathematical inquiry. Its significance extends to signal and image process-
ing, mechanics, control theory, biology, chemistry, and economics, among others. Currently, numerous
scholars are concurrently delving into fractional differentiation, contributing to the ongoing exploration
and advancement of this field. L’Hopital’s inquiry to Leibniz regarding the implications of fractional
differentiation, specifically when the order is 1

2 , sparked significant contemplation. Leibniz’s response
marked a pivotal moment in the exploration of this mathematical concept in [6, 8]. One specific form
of difference operator on u(t) was presented by Jerzy Popenda [2] in 1984 and is defined as ∆αu(t) =
u(t+ 1)−αu(t). Miller and Rose [10] presented the discrete fractional derivative and its inverse, ∇−ν

h f(t),
in 1989, which is similar to the Riemann-Liouville fractional derivative.

The literature on fractional calculus spans various applications and theoretical developments. [5]
examined the theoretical foundations, particularly focusing on solving differential equations of fractional
order, while [12] provide computational insights into the dynamics of fractional order systems, aiding
in modeling and simulation efforts. The authors in [1] contribute to understanding solution properties,
especially in weighted systems, and [13] offer a comparative analysis of fractional operators, highlighting
their efficacy in solving differential equations. [20] tackles nonlocal boundary problems, shedding light
on the behavior of fractional differential equations with nonlocal conditions, and [7] extends fractional
calculus into financial mathematics, proposing novel option pricing models under uncertain conditions;
for more applications by fractional operators, we refer readers to these works [15–18]. Together, these
works advance both theoretical understanding and practical applications of fractional calculus across
diverse domains, showcasing its versatility and significance in tackling complex problems and fostering
innovation. As stated in reference [19], the operator ∆α was expanded to include the generic (α,β)-
difference operator, which is represented as ∆(α,β)`v(t) = βv(t + `) −αv(t) for the real-valued functions
v(t). Motivated by this study, we introduce the third-order trigonometric nabla difference operator and
its inverse by which we observe the ϕ(x)-Tribonacci sequence, polynomials, its sum, and the conformable
α-derivative of the ϕ(x)-Fibonacci polynomials in this paper.

2. ϕ(x)-Trinonacci polynomial, sequence and its series

In this section, we introduce a generalized third-order nabla-difference operator with the coefficients
of trigonometric functions as

∇
ϕ(x)

w(x) = w(x) −α1 sin(r1x)w(x− h) −α2 sin(r2x)w(x− 2h) −α3 sin(r3x)w(x− 3h),

which generates ϕ(x)-Tribonacci polynomials, numbers, sequences, and its sums.

Definition 2.1. For x, h ∈ R+, ϕ(x)-Tribonacci sequence is defined as:

T0 = 1, T1 = α1 sin(r1x), T2 = T1α1 sin(r1(x− h)) +α2 sin(r2x), and
Tn = α1 sin(r1xn,1)Tn−1 +α2 sin(r2xn,2)Tn−2 +α3 sin(r3xn,3)Tn−3, n > 3.

(2.1)
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Table 1: Symbols and explanations used in this manuscript.
Symbol explanations
R Set of all real numbers
R+ Set of all positive real numbers
C Set of all complex numbers
h Shifting value (i.e., h ∈ [0,∞))
x(t) x(x− h)(x− 2h)(x− 3h) · · · (x− (t− 1)h)
x− (n+ r)h xn,r, where n, r being any integers
C∗-solution Closed form solution
N∗-solution Numerical solution

ϕ(x)-sequence
Tribonacci sequence arising from generic third order nabla difference
equation with the coefficient of trigonometric functions

ϕ(x)-equation
Generic third order nabla difference equation with the coefficient
of trigonometric functions

Remark 2.2. Instead of sine function we can deal with any other trigonametric and product of any trigo-
nametric functions in Definition 2.1.

Example 2.3.

(i) Taking x = 6, α1 = 1, n = 3, α2 = 2, h = 0.2, α3 = 3, r1 = 3, r2 = 2, and r3 = 1 in (2.1), we get a
Tribonacci sequence {1,−0.7510,−0.3277, 0.6885, . . .}.

(ii) When x = 6, α1 = 1, n = 3, α2 = 2, h = 0.3, α3 = 3, r1 = 3, r2 = 2, and r3 = 1 in (2.1), we have a
Tribonacci sequence {1, 0.6134, 1.3859, 1.8588, . . .}.

The ϕ(x)-Tribonacci sequence that corresponds to each pair of ϕ(x) ∈ R3 can also be obtained in a similar
manner.
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Figure 1: Sine and sin (cosine) Tribonacci sequences.

Remark 2.4. From the above Example 2.3, equation (2.1) yields the following sin (cosine)-Tribonacci num-
bers:
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n T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

0 1
1 1 -0.7510
2 1 -0.7510 -0.3277
3 1 -0.7510 -0.3277 0.6885
4 1 -0.7510 -0.3277 0.6885 1.3632
5 1 -0.7510 -0.3277 0.6885 1.3632 -0.5832
6 1 -0.7510 -0.3277 0.6885 1.3632 -0.5832 -4.2323
7 1 -0.7510 -0.3277 0.6885 1.3632 -0.5832 -4.2323 -7.0653
8 1 -0.7510 -0.3277 0.6885 1.3632 -0.5832 -4.2323 -7.0653 -3.5141
9 1 -0.7510 -0.3277 0.6885 1.3632 -0.5832 -4.2323 -7.0653 -3.5141 7.4179

Definition 2.5. For x, h ∈ R+, a generic third order nabla operator with the coefficients of trigonometric
functions on w(x), denoted as ∇

ϕ(x)
w(x), is defined by

∇
ϕ(x)

w(x) = w(x) −α1 sin(r1x)w(x− h) −α2 sin(r2x)w(x− 2h) −α3 sin(r3x)w(x− 3h), (2.2)

and its inverse is defined as

if ∇
ϕ(x)

w(x) = y(x), then we write w(x) =
−1
∇
ϕ(x)

y(x). (2.3)

Lemma 2.6. Let w(x) be a function of x ∈ (−∞,∞). Then we obtain

−1
∇
ϕ(x)

asx
[
1 −

α1 sin(r1x)
ash

−
α2 sin(r2x)
a2sh −

α3 sin(r3x)
a3sh

]
= asx. (2.4)

Proof. Taking w(x) = ax in (2.2), we obtain

∇
ϕ(x)

asx = asx
[
1 −

α1 sin(r1x)
ash

−
α2 sin(r2x)
a2sh −

α3 sin(r3x)
a3sh

]
.

Now (2.4) follows from (2.3).

Remark 2.7. If α1 = α2 = α3 = 1 in Lemma 2.6, then we obtain

−1
∇
ϕ(x)

asx
[
1 −

sin(r1x)
ash

−
sin(r2x)
a2sh −

sin(r3x)
a3sh

]
= asx. (2.5)

Proposition 2.8. If w(x) =
−1
∇
ϕ(x)

y(x) be any function, x be any non-negative integer, T0 = 1, T1 = α1 sin(r1x),

T2 = T1α1 sin(r1(x− h)) +α2 sin(r2x), and

Fn+1 = α1 sin(r1xn,0)Tn +α2 sin(r2xn,1)Tn−1 +α3 sin(r3xn,2)Tn−2, for i = 0, 1, 2, . . . ,
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then C∗-solutions and N∗-solutions are equal, that is

w(x) − Tn+1w(xn,−1) − [Tnα2 sin(r2xn,0) + Tn−1α3 sin(r3xn,1)]w(xn,−2)

− Tnα3 sin(r3xn,0)w(xn,−3) =

n∑
i=0

Tiy(x− ih).
(2.6)

Proof. From (2.2) and (2.3), we arrive

w(x) = y(x) +α1 sin(r1x)w(x− h) +α2 sin(r2x)w(x− 2h) +α3 sin(r3x)w(x− 3h). (2.7)

After changing x to x− h in (2.7), and then putting the value of w(x− h), we observe

w(x) = y(x) + T1y(x− h) + [T1α1 sin(r1(x− h)) +α2 sin(r2x)]w(x− 2h)

× [T1α2 sin(r2(x− 2h)) +α3 sin(r3x− h)]w(x− 3h) + T1α3 sin(r3(x− h))w(x− 4h),

which gives

w(x) = T0y(x) + T1y(x− h) + T2w(x− 2h) + [T1α2 sin(r2(x− 2h))

+α3 sin(r3x− h)]w(x− 3h) + T1α3 sin(r3(x− h))w(x− 4h),
(2.8)

where T0, T1, and T2 are available in (2.1). After changing x to x − 2h in (2.7), and then putting the value
of w(x− 2h) into (2.8), we observe

w(x) = T0y(x) + T1y(x− h) + T2y(x− 2h) + T3w(x− 3h) + [T2α2 sin(r2(x− 2h))

+ T1α3 sin(r3(x− h))]w(x− 4h) + [T2α3 sin(r3(x− 2h))]w(x− 5h),

where T0, T1, T2, and T3 are find from the Definition 2.1. When repeating this process, we get (2.6).

Corollary 2.9. If w(x) =
−1
∇
ϕ(x)

y(x) be any function, x be any non-negative real number, n be an integer, T0 = 1,

T1 = sin(r1x), T2 = T1 sin(r1(x− h)) + sin(r2x), . . ., and

Fn+1 = sin(r1xn,0)Tn + sin(r2xn,1)Tn−1 + sin(r3xn,2)Tn−2,

then C∗-solutions and N∗-solutions are equal, which is observed by

w(x) − Tn+1w(xn,−1) − [Tn sin(r2xn,0) + Tn−1 sin(r3xn,1)]w(xn,−2) − Tn sin(r3xn,0)w(xn,−3) =

n∑
i=0

Tiy(x− ih).

Proof. According to Theorem 2.8, the proof can be followed by taking α1 = α2 = α3 = 1.

Corollary 2.10. If w(x) is a C∗-solution of the third order nabla difference equation with the coefficients of trigono-

metric functions ∇
ϕ(x)

w(x) = ax
[

1 −
α1 sin(r1x)

ash
−
α2 sin(r2x)
a2sh −

α3 sin(r3x)
a3sh

]
, then we obtain

asx − Tn+1a
sxn,−1 − [Tnα2 sin(r2xn,0) + Tn−1α3 sin(r3xn,1)]a

sxn,−2 + Tnα3 sin(r3xn,0)a
sxn,−3

=

n∑
i=0

Fia
s(x−ih)

[
1 −

α1 sin(r1(x− ih))
ash

−
α2 sin(r2(x− ih))

a2sh −
α3 sin(r3(x− ih))

a3sh

]
.

(2.9)

Proof. The proof of (2.9) can be obtained by assuming that w(x) = asx and, then using (2.4) to (2.6).

An illustration of the verification of Corollary 2.10 is seen in the following example.



R. Pandurangan, et al., J. Math. Computer Sci., 37 (2025), 32–44 37

Example 2.11. Taking x = 10, s = 2, h = 0.8,n = 3, a = 2, α1 = 0.2, α2 = 0.9, α2 = 1.5, r1 = 5, r2 = 3, and
r3 = 2 in (2.9), we get

220 − T4213.6 − [T3(0.9) sin(38) + T2(1.5) sin(16.8)]212 − T3(1.5) sin(15.2)210.4

=

3∑
i=0

Ti2(20−1.6i)
[
1 −

(0.2) sin(50 − 4i)
21.6 −

(0.9) sin(30 − 2.4i)
23.2 −

(1.5) sin(20 − 1.6i)
24.8

]
= 1028539,

where T0 = 1, T1 = −0.053, T2 = −0.899, T3 = 1.505, and T3 = 0.069.
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Figure 2: Sine and sin (cosine)-Tribonacci sequences.

Proposition 2.12. Consider t ∈ N(0), and the third order nabla difference equation is solved in the closed form
technique. Then,

w(x) −α1 sin(r1x)w(x0,1) −α2 sin(r2x)w(x0,2) −α3 sin(r3x)w(x0,3)

=
[
xt −α1 sin(r1x)(x0,1)

t −α2 sin(r2x)(x0,2)
t −α3 sin(r3x)(x0,3)

t] ,

is
−1
∇
ϕ(x)

[
xt −α1 sin(r1x)(x0,1)

t −α2 sin(r2x)(x0,2)
t −α3 sin(r3x)(x0,3)

t] = xt. (2.10)

Proof. Taking w(x) = xt in (2.2) and using (2.3), we get (2.10).

Corollary 2.13. If C∗-solution of the equation (2.10) is

w(x) =
−1
∇
ϕ(x)

[
xt −α1 sin(r1x)(x− h)t −α2 sin(r2x)(x− 2h)t −α3 sin(r3x)(x− 3h)t] ,
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then

w(x) − Tn+1w(xn,−1) − [Tnα2 sin(r2xn,0) + Tn−1α3 sin(r3xn,1)]w(xn,−2) − Tnα3 sin(r3xn,0)w(xn,−3)

=

n∑
i=0

Fi[(x− ih)t −α1 sin(r1(x− ih))(xi,−1)
t −α2 sin(r2(x− ih))(xi,−2)

t

−α3 sin(r3(x− ih))(xi,−3)
t].

(2.11)

Proof. Taking y(x) = xt − α1 sin(r1x)(x − h)t − α2 sin(r2x)(x − 2h)t − α3 sin(r3x)(x − 3h)t in Theorem 2.8,
we observe (2.11).

An illustration of the verification of Corollary 2.13 is seen in the following example.

Example 2.14. Let x = 7.5, n = 3, r1 = 6, h = 0.6, r2 = 4, r3 = 2 α1 = 0.3, t = 3, α2 = 0.5, and α3 = 1.2 in
Corollary 2.13. Then,

3∑
i=0

Fiy(7.5 − 0.6i) = w(7.5) − T4w(5.1) − [T3(0.5) sin(22.8) + T2(1.2) sin(12.6)]w(7)

− T3(1.2) sin(11.4)w(3.9) = 345.717,

where y(x) = xt − α1 sin(r1x)(x − h)t − α2 sin(r2x)(x − 2h)t − α3 sin(r3x)(x − 3h)t, T0 = 1, T1 = −0.015,
T2 = 0.493, T3 = 0.929, and T4 = 0.522.

Proposition 2.15. If w(x) is a C∗-solution of third order nabla difference equation with the coefficients of trigono-
metric functions

w(x) −α1 sin(r1x)w(x− h) −α2 sin(r2x)w(x− 2h) −α3 sin(r3x)w(x− 3h)

= xtax −α1 sin(r1x)(x− h)tax0,1 −α2 sin(r2x)(x− 2h)tax−2h −α3 sin(r3x)(x− 3h)tax−3h,

then we have the equality relation of C∗ and N∗-solution observed by

w(x) − Tn+1w(xn,−1) −α2 sin(r2xn,0)w(xn,−2)

=

n∑
i=0

Fi(x− ih)tax−ih
[
1 −α1

(xi,−1)
t

a−h sin(r1(x− ih))

−α2
sin(r2(x− ih))(xi,−2)

t

a−2h −α3
sin(r3(x− ih))(xi,−3)

t

a−3h

]
.

(2.12)

Proof. By taking

y(x) = [xtax −α1 sin(r1x)(x− h)tax0,1 −α2 sin(r2x)(x− 2h)tax−2h −α3 sin(r3x)(x− 3h)tax−3h]

in Theorem 2.8 and applying (2.4), we observe (2.12).

Corollary 2.16. A C∗-solution of the third order C∗-equation

∇
ϕ(x)

w(x) = x3ax −α1 sin(r1x)(x− h)3ax0,1 −α2 sin(r1x)(x− 2h)3ax−3h − 3h)3ax−3h
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is x3ax, and hence we have

x3ax − Tn+1x3
n,−1a

xn,−1 − [Tnα2 sin(r2(x− nh))

+ Tn−1α3 sin(r3xn,1)]x3
n,−2a

xn,−2 − Tn+1α3 sin(r3(x− nh))x3
n,−3a

xn,−3

=

n∑
i=0

Fi(x− ih)3ax−ih − [α1 sin(r1(x− ih))(xi,−1)
3axi,−1

−α2 sin(r2(x− ih))](xi,−2)
3axi,−2 −α3 sin(r3(x− ih))(xi,−3)

3axi,−3 .

(2.13)

Proof. By taking t = 3 in Theorem 2.15, we get (2.13).

An illustration of the verification of Corollary 2.16 is seen in the following example.

Example 2.17. Let x = 7.5, h = 0.6, α1 = 0.3, n = 3, α2 = 0.5, a = 3, α3 = 1.2, r1 = 6, r2 = 4, and r3 = 2, in
Corollary 2.16. Then, we obtain

3∑
i=0

Fiy(7.5 − 0.6i) = w(7.5) − T4w(5.1) − [T3(0.5) sin(22.8)

+ T2(1.2) sin(12.6)]w(7) − T3(1.2) sin(11.4)w(3.9) = 282.983,

where y(x) = x3ax −
3∑
r=1

αi sin(rix)(x − ih)3ax−ih, T0 = 1, T1 = 0.255, T2 = −0.535, T3 = 0.844, and

T4 = 0.360.
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Figure 3: Sine and Cos (tangent)-Tribonacci sequences.

Corollary 2.18. A C∗-solution of the third order nabla difference equation

w(x) −α1 sin(r1x)w(x− h) −α2 sin(r2x)w(x− 2h) −α3 sin(r3x)w(x− 3h)
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= xte−x −α1 sin(r1x)(x− h)te−(x−h) −α2 sin(r2x)(x− 2h)te−(x−2) −α3 sin(r3x)(x− 3h)te−(x−3),

is given by

w(x) − Tn+1w(xn,−1) − [Tnα2 sin(r2xn,0) + Tn−1α3 sin(r3xn,1)]w(xn,−2)

− Tnα3 sin(r3xn,0)w(xn,−3)

n∑
i=0

Fie
−(x−ih)[(x− ih)t −α1 sin(r1(x− ih))

× (xi,−1)
teh −α2 sin(r2(x− ih))[xi,−2]

te2h −α3 sin(r3(x− ih))[xi,−3]
te3h].

(2.14)

Proof. Taking a = e−1 in (2.12), we get (2.14).

Proposition 2.19. Let w(x) be a C∗-solution of the ϕ(x)-equation

w(x) −α1 sin(r1x)w(x− h) −α2 sin(r2x)w(x− 2h) −α3 sin(r3x)w(x− 3h) = x(t)ax

−α1 sin(r1x)(x− h)(t)ax0,1 −α2 sin(r2x)(x− 2h)(t)ax−2h −α3 sin(r3x)(x− 3h)(t)ax−3h,

then we have

w(x) − Tn+1w(xn,−1) − [Tnα2 sin(r2xn,0) + Tn−1α3 sin(r3xn,1)]w(xn,−2) − Tnα3 sin(r3xn,0)w(xn,−3)

=

n∑
i=0

Fia
x−ih[(x− ih)(t) −α1 sin(r1(x− ih))[xi,−1]

(t)a−h

−α2 sin(r2(x− ih))[xi,−2]
(t)a−2h −α3 sin(r3(x− ih))[xi,−3]

(t)a−3h].

(2.15)

Proof. Substituting w(x) = x(t)ax in Theorem 2.8 and applying (2.4), leads the proof.

Corollary 2.20. If w(x) is the C∗-solution of the equation (2.15), then we have

x(2)ax − Tn+1x(2)
n,−1a

xn,−1 − [Tnα2 sin(r2xn,0)

+ Tn−1α3 sin(r3xn,1)]x
(2)
n,−2a

xn,−2 − Tnα2 sin(r2xn,0)x
(2)
n,−2a

xn,−2

=

n∑
i=0

Fia
x−ih[(x− ih)(2) −α1 sin(r1(x− ih))[xi,−1]

(2)a−h

−α2 sin(r2(x− ih))[xi,−2]
(2)a−2h −α3 sin(r3(x− ih))[xi,−3]

(2)a−3h].

Proof. Substituting t = 2 in Theorem 2.19, we observe the proof.

An illustration of the verification of Corollary 2.20 is seen in the following example.

Example 2.21. Let x = 11.5, h = 0.6, a = 2, n = 3, α1 = 0.35, α2 = 0.75, α3 = 1.26, r1 = 4, r2 = 5, and
r3 = 2, in Corollary 2.20. Then, we obtain

w(11.5) − T4w(9.1) − [T3(0.75) sin(48.5) + T2(1.26) sin(20.6)]w(8.5)

− T3(1.26) sin(19.4)w(7.9) =
3∑
i=0

Fiy(11.5 − 0.6i) = 420166,

where y(x) = x(2)ax −
3∑
r=1

αi sin(rix)(x − ih)(2)ax−ih, T0 = 1, T1 = 0.316, T2 = 0.570, T3 = −1.347, and

T4 = 0.059.
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Figure 4: Sine and cos (cosecant)-Tribonacci sequences.

Corollary 2.22. Let w(x) be the C∗-solution and N∗-solution of generic third order nabla difference equation with
the coefficients of trigonometric functions

w(x) −α1 sin(r1x)w(x− h) −α2 sin(r2x)w(x− 2h) −α3 sin(r3x)w(x− 3h)

= e−x[x(t) −α1 sin(r1x)(x− h)(t)eh −α2 sin(r2x)(x− 2h)(t)e2h −α2 sin(r2x)w(x− 2h)

−α3 sin(r3x)w(x− 3h) = e−x[x(t) −α1 sin(r1x)(x− h)(t)eh −α3 sin(r3x)(x− 3h)(t)e3h].

Then, we have

w(x) − Tn+1w(xn,−1) − [Tnα2 sin(r2xn,0) + Tn−1α3 sin(r3xn,1)]

=

n∑
i=0

Fie
−(x−ih)[(x− ih)(t) −α1 sin(r1(x− ih))[xi,−1]

(t)eh

−α2 sin(r2(x− ih))[xi,−2]
(t)e2h −α3 sin(r3(x− ih))[xi,−3]

(t)e3h].

(2.16)

Proof. Substituting a = e−1 in equation (2.19), we get the equation (2.16).

Corollary 2.23. A C∗ and N∗-solutions of the ϕ(x)-difference equation

∇
ϕ(x)

w(x) = e−x[x(3) −α1 sin(r1x)(x− h)(3)eh −α2 sin(r2x)(x− 2h)(3)e2h],

is x(3)e−x
and hence we have

w(x) − Tn+1w(xn,−1) − [Tnα2 sin(r2xn,0) + Tn−1α3 sin(r3xn,1)]

=

n∑
i=0

Fie
−(x−ih)[(x− ih)(3) −α1 sin(r1(x− ih))[xi,−1]

(3)eh −α2 sin(r2(x− ih))[k− (i+ 2h)](3)e2h].
(2.17)
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Proof. Substituting t = 3 in Corollary 2.22, leads equation (2.17).

An illustration of the verification of Corollary 2.22 is seen in the following example.

Example 2.24. Let x = 6.5, h = 0.7 n = 3, a = 2, α1 = 0.7, α2 = 0.9, α3 = 1.2, r1 = 5, r2 = 3, and r3 = 1 in
Corollary 2.23. Then, we obtain

3∑
i=0

Fiy(6.5 − 0.7i) = w(6.5) − T4w(3.7) − [T3(0.9) sin(13.2)

+ T2(1.2) sin(4.4)]w(3) − T3(1.2) sin(4.4)w(3.3) = 128260,

where y(x) = x(3)e−x −
3∑
r=1

αi sin(rix)(x − ih)(3)e−x−ih, T0 = 1, T1 = 0.619, T2 = 0.258, T3 = −0.230, and

T4 = −0.252.
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Figure 5: Sine and cos (cosecant)-Tribonacci sequences.

Corollary 2.25. Consider the negative exponential function of x ∈ (−∞,∞) with the coefficient s. Then, we
observe

e−sx − Tn+1e
−sxn,−1 − [Tnα2 sin(r2xn,0) + Tn−1α3 sin(r3xn,1)]e

−sxn,−2 − Tnα3 sin(r3xn,0)e
−sxn,−3

=

n∑
i=0

Fie
−s(x−ih)

=

n∑
i=0

Fie
−(x−ih)

[
1 −α1 sin(r1(x− ih))eh −α2 sin(r2(x− ih))e2h −α3 sin(r3(x− ih))e3h

]
.

(2.18)

Proof. Taking w(x) = e−sx in (2.2) and applying (2.3), we get the equation (2.18).

An illustration of the verification of Corollary 2.25 is seen in the following example.
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Example 2.26. Setting x = 8, α1 = 0.6, n = 3, α2 = 0.5, h =0.7, α3 = 1, r1 = 4, r2 = 2, and r2 = 1 in (2.18),
then we obtain

e−24 − T4e
−15.6 − [T3(0.6) sin(11.8) + T2 sin(6.6)]e−13.5 − T3 sin(5.9)e−11.4

=

3∑
i=0

Fiy(x− (0.7)i) = 26483382788,

where T0 = 1, T1 = 0.331, T2 = −0.303, T3 = 0.964, and T4 = −0.386.

3. Conclusion

We derived a summation formula for the ϕ(x)-Tribonacci sequence by introducing a generalized third-
order nabla operator with coefficients of trigonometric functions. We have obtained results on the closed
and summation form solutions of the generalized third-order difference equation with coefficients of
trigonometric functions, which will be utilized in our future research, to examine the relationship between
the Tribonacci ratio and atomic structure. Specific nuclides exhibit the Tribonacci ratio between protons
and neutrons, creating a noticeable pattern on the nuclide chart.

The typical Tribonacci sequence and numbers consist of positive integers. Using our definitions and
observations enables us to create an infinite variety of real Tribonacci sequences, related polynomials, and
real Tribonacci numbers.
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