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Abstract

The infection of any disease is one of the most highly affected factors for the dynamics of all species population and this may
be for the case of human populations throughout the world. The infection of any disease acts like a predator or competitor for the
healthy population or species of the environment. In this article, the dynamics of one type of species’ density are investigated by
the spreading of infection in the environment along with competition with other species and among themselves. The generalized
operator in the sense of Caputo having fractal dimension and non-integer order is operated to consider the problem for testing
the complex geometry of the said dynamics. The total density of the species is divided into two agents of healthy class and
the infectious class. For the biological validation, the qualitative analysis is carried out in the sense of fixed point theory. The
stability analysis for the solution is also treated by using the Ulam-Hyers concept of stability in the sense of the said operator.
The numerical scheme has been developed for each quantity along with a graphical representation of different fractional order
and fractal dimensions. Using an artificial neural Network (ANN) technique, we have divided the data set into three different
categories in this study: training, testing, and validation. This study includes a detailed analysis that we conducted based on
this division.
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1. Introduction

The transmission of infection of various diseases up to date implies a basic issue due to two reasons,
one is of species existence and the other one is of the balance of different biological or ecosystems. Many
scientific Technique are introduced to find best approaches for the suppressions and controlling of the dis-
eases [12]. One of the significant and more beneficial way is of mathematical modeling in deterministic
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form for treating the epidemiological dynamics which is very effective for understanding the connec-
tions of disease transmission and perform the suitable control methods [11, 16, 34]. Among them are the
basic predator-prey or competitive models extended to Epidemiology problems given in [18] as a devel-
opment of the continuous-time deterministic models using mostly the Natural first-order differentiation.
Such models are significantly constructed in various ways like the continuous-time single population of
species having epidemiological mathematical form with natural derivative of order one [13, 23, 25, 30],
the counting-five times uni-population species epidemiology dynamics [15, 22, 26], the probabilistic uni-
specie model of epidemiology [27, 38], and the time dependent models of Eco-epidemiology [9, 19, 24].

Since 1990, the area of modern calculus have achieved vast interest from the sides of mathematicians.
Famous scholars of mathematics have given their work in this field by incorporating various modern
operators of derivatives and antiderivatives in different research papers. The afore said calculus of in-
tegration and integration provided comparative with real world outcomes as measured by the integer
order derivative. It investigates the dynamical behavior of real globe problems for the non-integer order.
The fractional operations have extra choices for selection and it generalized the natural order differentia-
tion and integrals formulae. The modern world scholars have written papers, monographs, articles, and
different chapters which include the aforesaid field. The diagrammatical and physical interpretation of
the arbitrary derivative order was given by Podlubny [32]. Study of different dynamics related to real
life systems under the modern operators can be searched in [21, 37]. The usages of the aforesaid field
in engineering with more detail is given in [17]. Also more kinds of research articles have published
having their composition are of qualitative analysis and numerical study under the globalized operators.
Among the founders of fractional calculus is Riemann-Liouville who gives the first formulation of frac-
tional derivatives in 1832. After him different researchers made their contribution in this aspects. In 1967,
the aforesaid formula was further simplified by Caputo, vastly applied in searching global phenomena.

Some researchers developed the model of epidemiology like the SIR model as in [18]. For one-type
species situation, the said model is only treated for the infection that is present in the human populations
densities. As, infections also affect the presence of the wild species population densities which interrupt
the stability of the eco-system, for instance, the infections in epidemic species like Orangutans [31], Tarsius
[4], Sumatran Tiger [29], and Komodo dragon [35]. Furthermore, the natural environment dynamics of
animals that threaten the presence of their densities are the intra specific competitive result among them
to preserve sources of their food web or food chain [2, 10, 28]. They considered the aforesaid points for
the models of epidemiology as their contribution in this aspect having the mathematical model [14] as
follows:

Ṡ(t) = (r− µ)S(t) −Ω1S2(t) − (Ω2 +β)S(t)I(t) + ηI(t),

İ(t) = (β−Ω4)S(t)I(t) −Ω3I(t)2 − (η+ µ)I(t),
(1.1)

where S(t) is susceptible class, I(t) is infected class, r is the recruitment rate, µ is the natural occurring
rate of death, Ω1 is the death rate of S(t) due to its same competitors, Ω2 is the rate of death of same class
due to other competitors, Ω3 is death rate infected class due its same competitors, Ω4 the death rate of
same class due to other competitors, η is rate of recovery, and β is the rate infection.

In 2015, a novel formula for Caputo-Fabrizio (CF) differentiation was given by Fabrizio and Caputo
by changing the power law kernel of singularity in the pre-defined formula by exponential non singular
kernel. For applications of the said operator, we reference the readers to study [8, 33, 36]. After one year of
that, in 2016 Baleanu and abdon Atangana under Caputo, converted the CF to ABC kind of operator. This
novel operator has been applied very well in different aspects globalized problems as given in [1, 20].
It is often challenging to provide an exact classical derivative formulation for biological mathematical
problems due to the presence of complex and extraneous data. In such cases, generalized operators,
which account for power-law behaviors and fading memory effects, can be beneficial. Moreover, models
with complex geometries may not be well-suited for a direct application of power-law and fading memory
principles. For obtaining this problem a novel defined formula of fractional-fractal may be beneficial to
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treat such kind of problems related to mathematics [7]. Few years before, Atangana gave a novel fractiona-
fractal formula and provided the relation between fractional and fractal modern calculus [6]. Many
scholars use this novel formula to various models in global life as can be seen in [3, 6]. By application
of the fractal dimensional and fractional order derivative for the complex geometry of SI model is more
generalized as

FFCDi,jt S(t) = (r− µ)S(t) −Ω1S2(t) − (Ω2 +β)S(t)I(t) + ηI(t),
FFCDi,jt I(t) = (β−Ω4)S(t)I(t) −Ω3I(t)2 − (η+ µ)I(t),

S(0) = S0, I(0) = I0.

(1.2)

As for the novelty of the paper, it lies in considering the dynamics of a single species’ density in relation to
the spread of infection in the environment, alongside competition both with other species and within the
species itself. The operator in the sense of Caputo power law having fractal dimension and non-integer
order is operated to consider the problem for testing the complex geometry of the healthy and infections
dynamics. The total density of the species is divided into two agents of healthy class and the infectious
class. For the biological validation, the qualitative analysis is carried out in the sense of fixed point theory.
The stability analysis for the solution is also treated by using the Ulam-Hyers concept of stability in the
sense of the said operator. The approximate solution scheme has been developed for each quantity along
with a graphical representation of different fractional order and fractal dimensions. Using an Artificial
Neural Network (ANN) technique, the authors divided the data set into three different categories in this
study: training, testing, and validation.

The rest of the paper is organized as follows. Section 2 composes some basic definitions related to the
said work. Section 3 presents the derivation of existence and uniqueness of solution for the considered
model. Section 4 is for the stability analysis of the solution of the proposed model. Section 5 presents the
approximate solution scheme of SI model. Section 6 is about graphical representation of both quantities
having different cases with artificial neural network analysis. The concluding remarks are given in Section
7.

2. Basic definitions

Definition 2.1 ([6]). The fractal-fractional operator for a derivable mapping J, with non natural order i
and fractal dimension j in Caputo sense is given as

FFCD
i,j
t (J(t)) =

1
(n− i)

d

dtj

∫t
0
(t− s)n−i−1J(s)ds,

for n− 1 < i, j 6 n, where n ∈M and dJ(s)
dsj

= limt→0
J(t)−J(s)
tj−sj

.

Definition 2.2 ([6]). Let J(t) be defined on a < t < b, then the fractal-fractional Caputo order integral of
J(t) with order i is

FFCIi,jJ(t) =
j

Γ(i)

∫t
0
(t− s)i−1sj−1J(s)ds.

Definition 2.3. The system (1.2) is U-H stable if ∃ any number Ai,j > 0 : ∀ ε > 0 and the total roots
ω ∈ A1(X, R), then the inequality may be defined as |FFCDi,jω(t) − π(t,ω(t))| 6 ε, t ∈ X, S ∈ A1(X, R) is
the unique root for the said model (1.2), 3 |ω(t) − S(t)| 6 Ai,j, t ∈ X.

Note: we define a closed norm space D = (D[0, T ],R) for the mapping whose norm is given as ‖ω‖ =
maxt∈[0,T ] |ω(t)| and in particular ‖ω‖ = ‖S, I‖ = supt∈[0,T ]{|S(t)|+ |I(t)|}.
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3. Qualitative analysis of model (1.2)

Here in this part, we study the system (1.2) for existence along with unique root of the system. As the
given integration is derivable, hence we write the RHS of system (1.2) as under

FFCDiJ(t) = jtj−1H1(S, I, t) = (r− µ)S(t) −Ω1S(t)2 − (Ω2 +β)S(t)I(t) + ηI(t),
FFCDiI(t) = jtj−1H2(S, It) = (β−Ω4)S(t)I(t) −Ω3I(t)2 − (η+ µ)I(t).

Next, by result of (1.2) and for any t ∈ X, the said model may be written as

FFCDiω(t) = jtj−1φ(t,ω(t)), 0 < i, j 6 1, ω(0) = ω0. (3.1)

Using the integration of fractal-fractional Caputo sense, the root of (3.1) will be:

ω(t) = ω0(t) +
j

Γ(i)

∫t
0
sj−1(t− z)i−1φ(s,ω(s))ds, (3.2)

here

ω(t) =

{
S(t),
I(t), ω0(t) =

{
S0,
I0, φ(t,ω(t)) =

{
H1(S, I, t),
H2(S, I, t)).

Next, we transform (1.2) to a fixed point operator form and let the operator T : B→ B can be defined by

T(ω)(t) = ω0(t) +
j

Γ(j)

∫t
0
sj−1(t− s)i−1φ(s,ω(s))ds. (3.3)

To derive the at least results of the said system we apply the theorem as

T(ω)(t) = ω0(t) +
j

Γ(j)

∫t
0
sj−1(t− s)i−1φ(s,ω(s))ds. (3.4)

To derive the existence results of the said system we apply the following theorem.

Theorem 3.1. Let a completely continuous operator T : B → B, J(T) = {ω ∈ B : ω = νT(ω),ν ∈ [0, 1]}, is
bounded, then T has at least one fixed point in B.

Theorem 3.2. Consider the operator φ : D×B→ R is a continuous mapping. Then T is “compact".

Proof. In the first step, we prove that the operator T : B → B, given in (3.4), is continuous. Let A be a
bounded set in B, then ∃Aφ > 0 such that |φ(t,ω(t))| 6 Aφ for all ω ∈ D. For any ω ∈ D, we have

‖T(ω)‖ 6
jAφ

Γ(i)
sup
t∈[0,T ]

∣∣∣∣ ∫t
0
(τ− s)i−1sj−1ds

∣∣∣∣
6
jAφ

Γ(i)
sup
t∈[0,T ]

∫t
0
(t− s)j−1si−1ti+j−1ds 6

jAφT
i+j−1

Γ(i)
D(i, j),

(3.5)

so (3.5) shows that T is uniformly bounded, where Beta function can be written as D(i, j). Next, for
equi-continuity of mapping T, for any t1, t2 ∈ D and ω ∈A, we obtain

‖T(ω(t1)+) − T(ω(t2))‖ 6
jAφ

Γ(i)
sup
t∈[0,T ]

∣∣∣∣ ∫t1

0
(t1 − s)

i−1sj−1ds−

∫t2

0
(t2 − s)

i−1sj−1ds

∣∣∣∣
6
jAφD(i, j)
Γ(i)

(ti+j−1
1 − ti+j−1

2 )→ 0 as t1 → t2.
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Hence, T is equi-continuous and mapping T is continuous and bounded, therefore, by “Arzelá-Ascoli"
result the mapping T is relatively compact which implies completely continuous.

Next, we apply the following assumption:

(A) ∃ a fixed Lφ > 0 3 such that for all ω, Ψ̄ ∈ F, we have |φ(t,ω) −φ(t, Ψ̄)| 6 Lφ|ω− Ψ̄|.

For existence uniqueness, we apply fixed point approach.

Theorem 3.3. Using the assumption (A) and if Θ < 1, then the system (1.2) has a unique solution where Θ is
defined as

Θ =
ΘLφT

i+j−1

Γ(i)
D(i, j). (3.6)

Proof. Let, supt∈[0,T ] |φ(t, 0)| = Kφ <∞,

r >
jT i+j−1D(i, j)Kφ

Γ(i) − jT i+j−1D(i, j)Lφ
.

We have to show that T(Ar) ⊂ Br, where Ar = {ω ∈ F : ‖ω‖ 6 r} and ω ∈Ar, as under

‖T(ω)‖ 6 j

Γ(i)
sup
t∈[0,T ]

∫t
0
sj−1(t− s)i−1(|φ(t,ω(t)) −φ(t, 0)|+ |φ(t, 0)|

)
ds

6
jT i+j−1D(i, j)(Lφ‖ω‖+ Kφ)

Γ(i)
6
jT i+j−1D(i, j)(Lφr+ Kφ)

Γ(i)
6 r.

Consider the mapping T : B → B is defined in (3.4). Using the assumption (A) and for all t ∈ D, ω,
Ψ ∈ D, we obtain

‖T(ω) − T(ω)‖ 6 j

Γ(i)
sup
t∈[0,T ]

∣∣∣∣ ∫t
0
sj−1(t− s)i−1φ(s,ω(s))ds−

∫t
0
sj−1(t− s)i−1φ(s,Ψ(s))ds

∣∣∣∣ 6 Θ‖ω− Ψ̄‖.

By this, T is “contraction". Therefore, the result (3.2) has unique solution and so the considered system
(1.2) has unique root.

4. Stability analysis

Here in this section, we have to test the Ulam-Hyers stability for the proposed model (1.2) and its
solution, for this take Ψ ∈ C(D) related to solution with Ψ(0) = 0. Then

• |Ψ(t)| 6 ξ for ξ > 0;

• FFCDi,jω(t) = Ψ(t,ω(t)) +Ψ(t).

Lemma 4.1. The root of perturbable equation FFCDi,jω(t) = Ψ(t,ω(t)) +Ψ(t), ω(0) = ω0, satisfies the relation∣∣∣∣ω(t) −

(
ω0(t) +

j

Γ(i)

∫t
0
sj−1(t− s)i−1Ψ(s,ω(s))ds

)∣∣∣∣ 6 (
jTi+j−1D(i, j)

Γ(i)

)
ξ = Di,jξ. (4.1)

Theorem 4.2. With the assumption (A) and (4.1), the solution of the integral equation (3.2) is Ulam-Hyers stable
and this implies that the solution of the proposed system is Ulam-Hyers stable if Θ < 1, where Θ is defined in (3.6).
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Proof. Consider S ∈ B be a unique root and ω ∈ B be any root of (3.2), then using fractal-fractional
antiderivative as given in an equation (2.2), then we can write

|ω(t) − S(t)| =

∣∣∣∣ω(t) −

(
S0(t) +

j

Γ(i)

∫t
0
(t− s)i−1sj−1Ψ(s, S(s))ds

)∣∣∣∣
6

∣∣∣∣ω(t) −

(
ω0(t) +

j

Γ(i)

∫t
0
(t− s)i−1sj−1Ψ(s,ω(s))ds

)∣∣∣∣+ ∣∣∣∣(ω0(t)

+
j

Γ(i)

∫t
0
(t− s)i−1sj−1Ψ(s,ω(s))ds

)
−

(
S0(t) +

j

Γ(i)

∫t
0
(t− s)i−1sj−1Ψ(s, S(s))ds

)∣∣∣∣
6 Di,jξ+

ji+j−1Lω

Γ(i)
D(i, j)‖ω− S‖ 6 Di,j + j‖ω− S‖.

Now this implies

‖ω− S‖ 6 Di,j + j‖ω− S‖. (4.2)

From (4.2), we have

‖ω− S‖ 6
(

Di,j

1 − j

)
ξ. (4.3)

Thus from the above equation (4.3), we concluded that the solution of (3.2) is Ulam-Hyers stable and
therefore, the considered system (1.2) solution has Ulam-Hyers.

5. Numerical scheme

The evaluation of exact solution is very difficult task for most of the real world problems having
complexity and non-linearity. Further, the fractional operator makes them more complex because we
find out the complex geometrical dynamics in such fields. Therefore, numerical solution using different
numerical methods have much more importance in such dynamics to the find the approximate solution
along with their prediction in near future. So, we are developing the approximate solution algorithm
for the proposed system and for their validation we perform numerical simulation. Here, for numerical
method the construction of equation (3.2) of the considered model goes to the following form

S(t) = S(0) +
j

Γ(i)

∫t
0
sj−1(t− s)i−1H1(S, I, s)ds, I(t) = I(0) +

j

Γ(i)

∫t
0
sj−1(t− s)i−1H2(S, I, s)ds. (5.1)

Further, we are presenting the approximate solution method to the (5.1) and applying the novel approach
tr+1. The first equation of proposed model becomes

Sr+1 = S0 +
j

Γ(i)

∫tr+1

0
sj−1(tr+1 − s)

i−1H1(S, I, s)ds.

The above equation implies

Sr+1 = S0 +
j

Γ(i)

r∑
z=0

∫tz+1

tz

sj−1(tr+1 − s)
i−1H1(S, I, s)ds. (5.2)

For the finite interval [tz, tz+1] in term of Lagrange’s interpolation polynomials the mapping H1(S, I, s)
along with intervals  h = [tz − tz−1], we obtain

S?
r ≈

1
 h

[
(t− tz−1)t

j−1
z H1(Sz, Iz, tz) − (t− tz)t

j−1
z−1H1(Sz−1, Iz−1, tz−1)

]
, (5.3)
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plugging (5.3) into (5.2), then we can write (5.2) as

Sr+1 = S0 +
j

Γ(i)

r∑
z=0

∫tz+1

tz

si−1(tk+1 − s)
i−1S?

rds. (5.4)

By simplification on the right side integral of (5.4), we obtain first class in (1.2) by applying the fractal-
fractional derivative in the Caputo form as:

Sr+1 = S0 +
j hi

Γ(i+ 2)

r∑
z=0

[
tj−1
z H1(Sz, Iz, tz)

(
(r+ 1z)j(r− z+ 2 + j) − (r− j)j(r− z+ 2 + 2j)

)
− tj−1

z−1H1(Sz−1, Iz−1tz−1)

(
(r+ 1 − z)j + 1 − (r− z)j(r− z+ 1 + j)

)]
.

By the same fashion, the remaining quantities can be written as

Ir+1 = I0 +
j hi

Γ(i+ 2)

r∑
z=0

[
tj−1
z H2(Sz, Iz, tz)

(
(r+ 1z)j(r− z+ 2 + j) − (r− j)j(r− z+ 2 + 2j)

)
− tj−1

z−1H2(Sz−1, Iz−1tz−1)

(
(r+ 1 − z)j + 1 − (r− z)j(r− z+ 1 + j)

)]
.

6. Simulation discussion

Next, we have to graph the two compartments by the developed approximate solution method to
check the dynamics of SI model having response of all the data given in Table 1. We chose five cases for
simulations and comparison among them for different fractional orders. In the first case we take different
fractional orders i and fractal dimension j. Furthermore, the initial numerical values S(0) = 1.5, I(0) = 0.8.
The used parameter values are given in Table 1 ([14]).

Table 1: Parameters numerical values for model (1.1).
Parameter D-I D-II D-III D-IV D-V

r 0.6 0.6 0.6 0.6 0.6
µ 0.1 0.1 0.1 0.1 0.1
ω1 0.1 0.1 0.4 0.7 0.1
ω2 0.1 0.1 0.4 0.8 0.1
ω3 0.1 0.1 0.4 0.8 0.7
ω4 0.1 0.1 0.4 0.1 0.1
β 0.4 0.1 0.2 0.7 0.4
η 0.1 0.1 0.2 0.4 0.6

The model data set is separated into three distinct categories, with 70% designated for training, 15%
for testing, and 15% for validation, based on varying fractional orders. The following figures provide
a graphical representation of both classes on various fractional orders and fractional dimensions using
Lagrange’s interpolation polynomials in the context of FF Caputo and ANN. In Figures 1 (a)-(b), rep-
resenting the values of data-I, in which we draw the dynamics of susceptible and infected classes on
different fractal and fractional order, where time and step size are considered as t ∈ [0, 60] and h = 0.01.
The susceptible class population declines after a short growth but they become stable as the infection
class is controlled. After the increase occur in infected class they also decline up-to small quantity and
then become stable. The performance of the considered model is shown in Figure 2a, with mean square
errors of 1.436e− 13 at epoch 12. The error histogram is shown in Figure 2b, where the best value we find
for this case is −2.4e− 08. The best fit of the training and testing data is shown in Figure 2c, along with
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errors as indicated in the same figure. The regression of the considered model is shown in Figure 3 with
training, testing, and for all data. The value of R is around 1, and from these plots, it is clear that all data
is on the regression line, indicating that the obtained solution is accurately trained.
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Figure 1: Graphical view of S(t) and I(t) on six different fractional orders, fractal dimension, and parameters values are of data-I
with ANN.
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Figure 2: Statistically dynamics of the considered model with ANN (a) mean square error; (b) error histogram; and (c) training
fit.
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Figure 3: Dynamically representation of the regression with ANN for the considered system.

Next, for Data-II the same dynamics are given in Figures 4 (a)-(b), for time t ∈ [0, 60] in which the
infection is controlled and compared with NN. Figure 5a illustrates the performance of the considered
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model at epoch 112, with mean square errors of 6.0613e− 13. The error histogram can be shown in Figure
5b, where 206.4e− 08 is the best value we obtain in this particular example. Figure 5c displays the errors
as stated in the same figure together with the best fit of the training and testing data. Figure 6 displays
the regression of the model under consideration for all data, testing data, and training data. All of the
data is clearly on the regression line, demonstrating that the generated solution is accurately trained. The
value of R is about 1.
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Figure 4: Graphical view of S(t) and I(t) on six different fractional orders, fractal dimension, and parameters values are of data-II
with ANN.
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Figure 5: Statistically dynamics of the considered model with ANN (a) mean square error; (b) error histogram; and (c) training
fit.
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Figure 6: Dynamically representation of the regression with ANN for the considered system.

In figures 7 (a)-(b) the small variation occurs as we use Data-III and NN comparison, respectively.
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The performance of the examined model at epoch 505 is shown in Figure 8a, with mean square errors
of 3.2263e− 12. Figure 8b displays the error histogram, with −1.2e− 06 being the best number we could
find in this case. The errors as indicated in Figure 8c are shown alongside the best fit of the training
and testing data. The model under consideration’s regression for all, testing, and training data is shown
in Figure 9. The produced solution is accurately trained, as evidenced by the fact that all of the data is
clearly on the regression line. R has a value of around 1. In Figures 10 (a)-(b) about the same simulation
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Figure 7: Graphical view of S(t) and I(t) on six different fractional orders, fractal dimension, and parameters values are of
data-III with ANN.
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Figure 8: Statistically dynamics of the considered model with ANN (a) mean square error; (b) error histogram; and (c) training
fit.
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Figure 9: Dynamically representation of the regression with ANN for the considered system.

is shown as in the previous one. These figures represent the dynamics on another set of Data-IV which
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also affect the said dynamics. Figure 11a displays the model performance at epoch 22, with mean square
errors of 9.7032e− 10. The error histogram is shown in Figure 11b, and the best value we could find in
this instance was −8.4e− 07. The best fit of the training and testing data is displayed alongside the errors,
as seen in Figure 11c. Figure 12 displays the regression for all, testing, and training data for the model
under discussion. All of the data is clearly on the regression line, indicating that the generated solution
was accurately trained. R is about equal to 1.
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Figure 10: Graphical view of S(t) and I(t) on six different fractional orders, fractal dimension, and parameters values are of
data-IV with ANN.
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Figure 11: Statistically dynamics of the considered model with ANN (a) mean square error; (b) error histogram; and (c) training
fit.
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Figure 12: Dynamically representation of the regression with ANN for the considered system.

Figures 13 (a)-(b), the damping dynamics for data-V and comparison the results with NN accordingly
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are presented. The model performance at epoch 16, with mean square errors of 1.6093e− 12, is shown in
Figure 14a. The error histogram can be shown in Figure 14b. In this case, −9.6e− 07 was the best number
we could discover. As seen in Figure 14c, the errors are shown alongside the best fit of the training and
testing data. The regression for all, testing, and training data for the model under consideration is shown
in Figure 15. Since every piece of data sits squarely on the regression line, the produced solution was
precisely trained. R is about equivalent to 1.
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Figure 13: Graphical view of S(t) and I(t) on six different fractional orders, fractal dimension, and parameters values are of
data-V with ANN.
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Figure 14: Statistically dynamics of the considered model with ANN (a) mean square error; (b) error histogram; and (c) training
fit.
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Figure 15: Dynamically representation of the regression with ANN for the considered system.
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7. Concluding remarks

The SIS model of healthy population and infected population have been successfully investigated by
the effect of competition with each other and other species in the eco-system under the Caputo fractal
fractional operator for the complex geometry of the system. The said model validity is shown by the
existence and uniqueness of solution along with the Ulam-Hyers stability techniques for the stability of
solution. The developed numerical scheme is verified by the graphical solution for both the cases on
six different fractional orders and fractal dimensions showing extra degree of choice for each quantity.
The rate of infection and rate of death due to competition in the environment are the main factors for
instability showing the biological interpretation in the mathematical findings. The used analysis are
very helpful and will easily applicable for other such type of epidemiological study and predator-prey
systems. Additionally, we used the ANN approach and used graphics to compare the outcomes with
those produced using the PCC method. Three subsets of the dataset were created: training, testing,
and validation. It is clear from both performance evaluation and graphical analysis that the solution is
correctly taught.
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