
J. Math. Computer Sci., 37 (2025), 59–81

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

A fast method to estimate the Moore-Penrose inverse for
well-determined numerical rank matrices based on the
Tikhonov regularization

Pablo Soto-Quiros

Escuela de Matemática, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica.

Abstract
This paper introduces a novel approach for estimating the Moore-Penrose inverse. The method proposed relies on Tikhonov

regularization, which requires the computation of all positive singular values of an m× n matrix. Additionally, we present a
highly efficient and accurate procedure for estimating these singular values. This procedure assumes the well-determined nu-
merical rank of matrices A∗A (if m > n) and AA∗ (if m 6 n). Furthermore, we demonstrate the application of our proposed
method in solving linear discrete well-posed problems. The paper concludes with numerical simulations to illustrate the advan-
tages of our novel approach. Notably, we compare the execution time associated with our technique to that of some relevant
methods in the existing literature, demonstrating that our method outperforms others in terms of computational efficiency. To
further substantiate our findings, we conduct computational experiments to measure execution time and speedup. The results
affirm the efficiency of our proposed method, showcasing reduced execution times compared to other methods. This contributes
to establishing our approach’s practical viability and effectiveness in diverse applications.

Keywords: Moore-Penrose inverse, Tikhonov regularization, singular values, well-determined numerical rank.

2020 MSC: 65F15, 65F20, 65F22, 65F45, 65H10.
©2025 All rights reserved.

1. Introduction

Let Fm×n be the set of all m× n matrices in F, where F represents either R (real numbers) or C

(complex numbers). The Moore-Penrose inverse of A ∈ Fm×n, denoted by A† ∈ Fn×m, is the unique
matrix satisfying the following four Penrose equations:

(i) AA†A = A; (ii) A†AA† = A†; (iii) (AA†)∗ = AA†; (iv) (A†A)∗ = A†A,

where A∗ ∈ Fn×m stands for the conjugate transpose of A (note that if F = R, then A∗ = AT). The
Moore-Penrose inverse, also commonly called pseudoinverse, has been used in several applications, such
as in the solutions of linear least-squares problems [6, 62], image and signal processing [35, 45, 57, 61],
multilinear regression [25], and data analysis [26, 63].

The singular value decomposition (SVD) is the most popular method to compute A† [37]. However,
the SVD technique becomes impractical in the case of large matrices due to its computational complexity

Email address: jusoto@tec.ac.cr (Pablo Soto-Quiros)

doi: 10.22436/jmcs.037.01.05

Received: 2024-01-30 Revised: 2024-05-24 Accepted: 2024-08-10

http://dx.doi.org/10.22436/jmcs.037.01.05
http://dx.doi.org/10.22436/jmcs.037.01.05
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.037.01.05&domain=pdf

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 60

[1]. Therefore, to reduce the computational time, several fast algorithms have been developed to estimate
A†. For example, Courrieu [18] presents an algorithm to approximate the Moore-Pensore inverse based
on reverse order law and a full-rank Cholesky factorization of singular symmetric positive matrices.
Furthermore, in [5, 34, 58], researchers develop a set of methods based on QR decomposition to increase
the computation speed of A†. Other related works are developed in [4, 7, 8, 10, 14, 17, 60].

Another relevant technique to estimate A† is presented in [6, 13, 33, 36]. This method is explained as
follows: if A ∈ Fm×n is full-rank, then the Moore-Penrose inverse is computed by

A† =

{
(A∗A)−1A∗, if m > n,

A∗(AA∗)−1, if m 6 n.
(1.1)

Otherwise, if A is a rank-deficient matrix, then A† is estimated by

A† ≈ Ap(α) =

{
(A∗A+αIn)

−1A∗, if m > n,

A∗(AA∗ +αIm)−1, if m 6 n,
(1.2)

where α > 0 is the regularization parameter, and Im ∈ Fm×m and In ∈ Fn×n are identity matrices. Here,
the letter p in Ap(α) represents the initial letter of word pseudoinverse. Formula (1.2) is an approximation
of Tikhonov regularization in order to estimate A† (see, e.g., [6, Theorem 4.3]). This version of Tikhonov
regularization establishes that if α → 0, then Ap(α) → A†. A suitable value of α is an essential part of
computing Ap(α) accurately.

In this paper, we propose a new approach to estimate A† for rank-deficient matrices using formula
(1.2) such that

‖A† −Ap(α)‖2
fr 6 tol, (1.3)

where ‖ · ‖fr is the Frobenius norm and tol > 0 is a given tolerance. This innovative method outlines the
procedure for selecting the regularization parameter, denoted as α, to ensure the validity of the inequality
provided in (1.3). In particular, we demonstrate that when all positive singular values of matrix A are
known, it is possible to compute α in a manner that satisfies (1.3). Moreover, we introduce an algorithm
designed for estimating the Moore-Penrose inverse, denoted as A†. The algorithm is based on (1.1)
for full-rank matrices and (1.2) for rank-deficient matrices. This algorithmic approach accommodates
the specific characteristics of both full-rank and rank-deficient matrices, providing a comprehensive and
versatile solution for estimating the Moore-Penrose inverse.

The proposed algorithm involves the computation of all positive singular values of the matrix A. To
enhance computational efficiency, we assume that the Gram matrix associated with A is a well-determined
numerical rank matrix. A matrix is considered to have a well-determined numerical rank if its positive sin-
gular values are lower-bounded by a constant dependent on machine precision [28, 65]. Further insights
into well-determined numerical rank matrices are provided in Section 3 below.

Additionally, we demonstrate an application of the proposed method in solving linear discrete well-
posed problems. We derive a dynamic absolute error bound between the solutions of an error-free con-
sistent linear system problem and a noisy linear system problem with a regularization parameter α.

Afterwards, numerical simulations are presented to highlight the advantages of the proposed method.
We illustrate that the execution time associated with the proposed method for estimating A† is lower
than that of other methods in the literature, particularly for large matrices. Moreover, the computational
effort required for this new method is substantially less than that of the algorithm used in MATLAB.
Furthermore, we present the efficiency and accuracy of the proposed method in a real-life application
involving image denoising.

The remainder of the paper is structured as follows. Notation, definitions, and auxiliary results are
included in Section 2. Section 3 provides a concise explanation of the concept of well-determined nu-
merical rank matrices, along with relevant results. The main results, which enable the determination of

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 61

the regularization parameter α ensuring the validity of inequality (1.3), are presented in Section 4. An
application of the proposed method to calculate a solution of a noisy linear discrete well-posed problem is
explained in Section 5. Section 6 details how to efficiently compute the proposed technique for estimating
the Moore-Penrose inverse. Numerical experiments are reported in Section 7. Finally, Section 8 contains
some concluding remarks.

2. Preliminaries

Throughout this paper, we use the following notation and definitions. We define the Gram matrix of
A ∈ Fm×m as the matrix T such that

T =

{
A∗A ∈ Rn×n, if m > n,

AA∗ ∈ Rm×m, if m 6 n,
(2.1)

Let P = UPΣPV
∗
P be the singular value decomposition of P ∈ Fm×n, where UP ∈ Fm×m and VP ∈ Fn×n

are two unitary matrices, i.e., U∗PUP = UPU
∗
P = Im and V∗PVP = VPV

∗
P = In and ΣP ∈ Fm×n is a

generalized diagonal matrix defined by ΣP = diag(σ1(P),σ2(P), . . . ,σmin{m,n}(P)). Here, σ1(P) > σ2(P) >
· · · > σmin{m,n}(P) are the singular values of P. In addition, we consider the following matrix norms:

• Frobenius norm: ‖P‖fr =
√∑m

i=1
∑n
j=1 |P(i, j)|2;

• 1-norm: ‖P‖1 = max
16j6n

∑m
i=1 |P(i, j)|;

• 2-norm: ‖P‖2 = σ1(P).

We denote the eigenvalues of Q ∈ Fm×m by λi(Q), for i = 1, . . . ,m. Moreover, if all eigenvalues of Q are
in R, they are arranged from the largest to the smallest number, i.e., λ1(Q) > λ2(Q) > · · · > λm(Q).

The condition number of a square matrix Q, represented by condp(Q) is given by condp(Q) =
‖Q‖p‖Q−1‖p, where p = 1, 2. If Q is rank-deficient, then condp(Q) =∞.

Before proceeding to the next section, we consider the following lemmas, which will facilitate the
proof of the main results in this paper.

Lemma 2.1 ([37, Proposition 8.1]). For P ∈ Fm×n and y ∈ Fn, ‖Py‖2 6 ‖P‖fr‖y‖2.

Lemma 2.2 ([68, Theorem 2]). For P ∈ Fm×n, cond1(P) 6
√
mn cond2(P).

Lemma 2.3. If a,b > 0, then
1

b2(b2 + a)2 6
1
b6 .

Proof. Note that

0 6 2ab2 + a2 ⇒ b4 6 (b2 + a)2 ⇒ b6 6 b2(b2 + a)2 ⇒ 1
b2(b2 + a)2 6

1
b6 .

3. Well-determined numerical rank matrices

We define P ∈ Fm×n as a well-determined numerical rank matrix [28, 65] if

σi(P) > max{m,n} · σ1(P) · eps,

for all i = 1, . . . , rank(P), where eps = 2−52 is the machine precision for IEEE floating-point arithmetic with
double precision [53]. This procedure is used to estimate the rank of a matrix in various programming

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 62

languages for numerical computations, for example, MATLAB [42], GNU Octave [47], Julia [32], Scilab
[56], Python with NumPy library [46], and C++ with Armadillo library [3].

Below, we present two new results related to Gram matrices and well-determined numerical rank
matrices.

Lemma 3.1. The singular values of A ∈ Fm×n satisfy the condition

σi(A) > max{m,n} · σ1(A) ·
√

eps,

if and only if the Gram matrix of A is a well-determined numerical rank matrix.

Proof. Suppose w.l.g. that m > n. Let T = A∗A be the Gram matrix of A. Based on the facts that
m2 > n2 > n, and σ2

i(A) = σi(T), we obtain

σi(A) > m · σ1(A) ·
√

eps⇔ σ2
i(A) > m

2 · σ2
1(A) · eps

⇔ σi(T) > m
2 · σ1(T) · eps⇔ σi(T) > n · σ1(T) · eps.

The proof is similar if we consider m < n.

Lemma 3.2. If the Gram matrix of A ∈ Fm×m has a well-determined numerical rank, then A also has a well-
determined numerical rank.

Proof. Let T = A∗A be the Gram matrix of A. Based on the facts that σ2
i(A) = σi(T) and σi(A) 6 σ1(A),

for all i = 1, 2, . . . ,m, we obtain

σi(T) > m · σ1(T) · eps⇒ σ2
i(A) > m · σ2

1(A) · eps

⇒
(
σi(A)

σ1(A)

)2

> m · eps⇒ σi(A)

σ1(A)
> m · eps⇒ σi(A) > m · σ1(A) · eps.

(3.1)

It follows from (3.1) that A has a well-determined numerical rank.

4. Main results

This section presents the results that allow us to derive the theoretical method to calculate the regu-
larization parameter α such that inequality (1.3) is valid.

Theorem 4.1. If A ∈ Fm×n, r = rank(A) and α > 0, then

‖A† −Ap(α)‖2
fr =

r∑
i=1

α2

σ2
i(A)(σ

2
i(A) +α)

2 .

Proof. Suppose w.l.g. that m > n. Let A = UAΣAV
∗
A be the SVD of A, and thus, A† = VAΣ

†
AU
∗
A. Note

that Σ∗AΣA +αIn is positive definite and, accordingly, is invertible. Therefore, Ap(α) can be expressed as
follows

Ap(α) = (A∗A+αIn)
−1A∗ = (VAΣ

∗
AΣAV

∗
A +αVAV

∗
A)

−1VAΣ
∗
AU
∗
A

= (VA(Σ
∗
AΣA +αIn)V

∗
A)

−1VAΣ
∗U∗A = VA(Σ

∗
AΣA +αIn)

−1Σ∗AU
∗
A.

Based on the fact that the Frobenius norm is unitarily invariant, then we obtain that

‖A† −Ap(α)‖2
fr = ‖VAΣ

†
AU
∗
A − VA(Σ

∗
AΣA +αIn)

−1Σ∗AU
∗
A‖2
fr = ‖Σ

†
A − (Σ∗AΣA +αIn)

−1Σ∗A‖2
fr. (4.1)

Note that Σ†A, Σ∗AΣA +αIn, and Σ∗A are diagonal matrices. Moreover,

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 63

• Σ
†
A = diag(1/σ1(A), . . . , 1/σr(A), 0, . . . , 0) ∈ Fn×m;

• (Σ∗AΣA +αIn)
−1 = diag(1/(σ2

1(A) +α), . . . , 1/(σ2
r(A) +α), 1/α, . . . , 1/α) ∈ Fn×n;

• Σ∗A = diag(σ1(A), . . . ,σr(A), 0, . . . , 0) ∈ Fn×m.

Thus,
Σ
†
A − (Σ∗AΣA +αIn)

−1Σ∗A = diag(σ̂1, . . . , σ̂r, 0, . . . , 0) ∈ Fn×m, (4.2)

where

σ̂i =
1

σi(A)
−

σi(A)

σ2
i(A) +α

=
α

σi(A)(σ
2
i(A) +α)

, (4.3)

for all i = 1, 2, . . . , r. Finally, from (4.1), (4.2), and (4.3), we obtain that

‖A† −Ap(α)‖2
fr = ‖Σ

†
A − (Σ∗AΣA +αIn)

−1Σ∗A‖2
fr = ‖diag(σ̂1, . . . , σ̂r, 0, . . . , 0)‖2

fr =

r∑
i=1

α2

σ2
i(A)(σ

2
i(A) +α)

2 .

The proof of the case when m 6 n is similar to the proof presented above.

Theorem 4.2. Let us define A ∈ Fm×n and r = rank(A). If tol > 0 is a known tolerance and

0 < α 6

√√√√ tol∑r
i=1

1
σ6
i(A)

, (4.4)

then ‖A† −Ap(α)‖2
fr 6 tol.

Proof. From Lemma 2.3, we obtain that

1
σ2
i(A)(σ

2
i(A) +α)

2 6
1

σ6
i(A)

, (4.5)

for all i = 1, . . . , r. Thus, it follows from Theorem 4.1 and (4.5) that

‖A† −Ap(α)‖2
fr =

r∑
i=1

α2

σ2
i(A)(σ

2
i(A) +α)

2 6 α2
r∑
i=1

1
σ6
i(A)

6
tol

r∑
i=1

1
σ6
i(A)

r∑
i=1

1
σ6
i(A)

= tol.

5. An application of Theorem 4.2: linear discrete well-posed problems

Theorem 4.2 in Section 4 can be applied in the solution of linear discrete well-posed problems when
F = R. A linear discrete well-posed problem is a system of equations

Ax = b, (5.1)

where A ∈ Rm×n has a well-determined numerical rank, x ∈ Rn and b ∈ Rm. Here, b is contaminated
by an error e ∈ Rm, i.e., b = b̂+ e, where b̂ ∈ Rm denotes the unavailable error-free right-hand side. The
error-free linear system of equations

Ax = b̂, (5.2)

is assumed to be consistent. The least-square solution of the minimal Euclidean norm of the unavailable
linear system of equations (5.2) is given by x̂0 = A†b̂. The least-squares solution of the minimal Euclidean

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 64

norm of (5.1), given by x0 = A†b, is not a significant approximation of x̂0 due to the error e. The Tikhonov
regularization for linear systems is a method that modifies (5.1) so that the sensitivity of the solution
to the error e is reduced [12]. This method replaces the solution of the linear system in (5.1) with the
minimization problem

min
x∈Rn

‖Ax− b‖2
2 +α‖x‖2

2, (5.3)

for a suitable α > 0. The unique solution of (5.3) is given by

x0(α) = Ap(α)b, (5.4)

where Ap(α) is defined in (1.2). A suitable value of α is an essential part of Tikhonov regularization.
There are several methods for choosing α, such that the discrepancy principle [11], when ‖e‖2 is known,
or the generalized cross validation [24], when ‖e‖2 is unknown. Based on Theorem 4.2, we propose a new
method to choose a regularization parameter α such that ‖x̂0 − x0(α)‖2

2 is less than or equal to a given
tolerance tol > 0. In this theorem, we assume that ‖e‖2 is available and ‖e‖2 6= 0.

Theorem 5.1. Let x̂0 and x0(α) be the solution of problems (5.2) and (5.3), respectively. If tol > 0 is a known
tolerance and

0 < α 6
‖e‖2

‖b‖2

√√√√√√√
tol
‖e‖2

2
−

r∑
i=1

1
σ2
i(A)

r∑
i=1

1
σ6
i(A)

, (5.5)

then ‖x̂0 − x0(α)‖2
2 6 tol.

Proof. From Lemma 2.1, we obtain that

‖x̂0 − x0(α)‖2
2 = ‖A†b̂−Ap(α)b‖2

2

= ‖A†b−Ap(α)b−A†e‖2
2

6 ‖(A† −Ap(α))b‖2
2 + ‖A†e‖2

2

6 ‖A† −Ap(α)‖2
fr‖b‖2

2 + ‖A†‖2
fr‖e‖2

2.

(5.6)

Finally, it follows from (5.5), (5.6), Theorem 4.2, and the fact that ‖A†‖2
fr =

∑r
i=1

1
σ2
i(A)

, that

‖x̂0 − x0(α)‖2
2 6 ‖A† −Ap(α)‖2

fr‖b‖2
2 + ‖A†‖2

fr‖e‖2
2

6 α2‖b‖2
2

r∑
i=1

1
σ6
i(A)

+ ‖e‖2
2

r∑
i=1

1
σ2
i(A)

6
‖e‖2

2

‖b‖2
2


tol
‖e‖2

2
−

r∑
i=1

1
σ2
i(A)

r∑
i=1

1
σ6
i(A)

 ‖b‖2
2

r∑
i=1

1
σ6
i(A)

+ ‖e‖2
2

r∑
i=1

1
σ2
i(A)

= tol.

The following elementary example illustrates the proposed method performance based on Theorem
5.1.

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 65

Example 5.1. We consider the linear discrete well-posed problem Ax = b, where

A =



8 10 19 16

31 26 12 28

16 20 38 32

7 8 13 12

21 24 39 36


∈ R5×4 and b =



0.55168

1.05861

1.17303

0.51678

1.30061


∈ R5.

Matrix A is a well-determined numerical rank matrix, where rank(A) = 2, and its positive singular values
are σ1(A) =

√
5365 + 6

√
643170 and σ2(A) =

√
5365 − 6

√
643170. Additionally, b is a noisy vector, i.e.,

b = b̂+ e, where

b̂ =



0.53

0.97

1.06

0.4

1.2


∈ R5 and e =



0.02168

0.08861

0.11303

0.11678

0.10061


∈ R5.

In this example, we assume that the error-free system Ax = b̂ is unavailable. The only information
available is the system Ax = b and ‖e‖2 ≈ 0.2117958. It follows from Theorem 5.1 that if tol = 10−4, then

‖e‖2

‖b‖2

√√√√√√√
tol
‖e‖2

2
−

r∑
i=1

1
σ2
i(A)

r∑
i=1

1
σ6
i(A)

≈ 22.699338396628153,

where r = rank(A) = 2. Therefore, if we choose α = 11.349650, then x0(α) in (5.4) is given by

x0(α) =


0.010251345936108

0.009918221395114

0.010349801643984

0.012780129138826

 .

Further, we obtain that ‖x̂0 − x0(α)‖2
2 ≈ 3.5964979× 10−6 < tol, where x̂0 is the solution of consistent and

error-free system Ax = b̂. Thus, Theorem 5.1 is illustrated numerically by this example.

6. Efficient and accurate implementation of the proposed method

This section presents the procedure to compute the Moore-Penrose inverse of A ∈ Rm×n, considering
formulas (1.1) for full-rank matrices and (1.2) for rank-deficient matrices. Further, parameter regulariza-
tion α in (1.2) is calculated using Theorem 4.2. As mentioned in the Section 1, we assume that the Gram
matrix T of A, given by (2.1), is a well-determined numerical rank matrix.

Firstly, note that rank(A) = rank(T). If T is rank-deficient, then cond1(T) = ∞. Otherwise, if T is
full-rank and (w.l.g.) m > n, then it follows from Lemma 2.2, and the fact that T is a well-determined
numerical rank matrix that

cond1(T) 6 n · cond2(T) = n ·
σ1(T)

σn(T)
6

n · σ1(T)

n · σ1(T) · eps
6

1
eps

.

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 66

Therefore, numerically speaking, T is an ill-conditioned matrix if rcond1(T) < eps, where rcond1(T)
is the reciprocal of cond1(T). This condition is used in MATLAB to determine whether matrix is ill-
conditioned [44]. Thus, since T is a well-determined numerical rank matrix in this paper, we state that if
rcond1(T) < eps, then A is rank-deficient; otherwise, if rcond1(T) > eps, then A is full-rank. Moreover,
we show in Lemma 3.2 that if m = n and T is a well-determined numerical rank matrix, then A is also a
well-determined numerical rank matrix. The complexity in flops to compute rcond1(T) is 2n2 − n, when
m > n, and 2m2 −m, when m 6 n, approximately (see, e.g., [31]). Besides, it follows from Theorem 4.2
that α can be chosen by formula

α =
1
2

√√√√ tol∑r
i=1

1
σ6
i(A)

, (6.1)

where r = rank(A). Positive singular values σ1(A), . . . ,σr(A) are calculated efficiently through eigenval-
ues of T . These eigenvalues can be computed using the QR algorithm with transformation to Hessen-
berg/tridiagonal form [2]. Note that T is a symmetric and positive semidefinite matrix, thus λi(T) = σi(T).
Additionally, as mentioned before, rank(A) = rank(T) = r. Therefore, to compute rank(T) when (w.l.g.)
m > n, we choose all eigenvalues λi(T) such that

λi(T) > n · λ1(T) · eps. (6.2)

Thus, the rank of T is given by the number of eigenvalues such that (6.2) is rightful. Finally, positive
singular values of A are the square root of positive eigenvalues of T , i.e., σi(A) =

√
λi(T), for all i =

1, . . . , r. Therefore, the regularization parameter α in (6.1) can already be calculated. The complexity in
flops to compute all singular values of A using this procedure is 4

3n
3, when m > n, and 4

3m
3, when

m 6 n, approximately (see, e.g., [2, Chapter 4]).
The last step is computing A† using formulas (1.1) and (1.2). Both formulas are obtained by solving

the following linear system:

(A∗A)X = A∗, if A is full-rank and m > n,

X(AA∗) = A∗, if A is full-rank and m 6 n,

(A∗A+αIn)X = A∗, if A is rank-deficient and m > n.

X(AA∗ +αIm) = A∗, if A is rank-deficient and m 6 n.

(6.3)

Matrices A∗A, AA∗, A∗A+ αIn, and AA∗ + αIm are symmetric and positive definite. Therefore, we can
solve the linear systems using the Cholesky decomposition. The complexity in flops to obtain X in (6.3)
using this procedure is 1

3n
3 + 2n2 when m > n, and 1

3m
3 + 2m2 when m 6 n, approximately (see, e.g.,

[29]).
The implementation of the proposed method to estimate the Moore-Penrose inverse is presented in

Algorithm 1. Further, Table 1 shows an approximation of the number of flops required to compute A†

using Algorithm 1.

6.1. Some relevant remarks on Algorithm 1
Remark 6.1. Algorithm 1 is designed for matrices with a well-determined numerical rank. Hilbert, Van-
dermonde, and Wilkinson matrices are examples of ill-determined numerical rank matrices [20], and
therefore, Algorithm 1 approximates their Moore-Penrose inverses with poor accuracy. To avoid this is-
sue, we can choose an algorithm that works for ill-determined numerical rank matrices, for example, the
qrginv method [34]. This method approximates A† based on QR decomposition. However, the execution
time of the qrginv method is greater than that of the proposed method in this paper. Other methods to
estimate A† for ill-determined numerical rank matrices are developed in [4, 17].

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 67

Algorithm 1: Proposed method to estimate A†.
Input : A ∈ Rm×n, tol > 0
Output: X ∈ Rn×m

1 At = A
∗

2 if m > n then
3 T = AtA
4 if rcond1(T) < eps then
5 v = [λ1(T) λ2(T) · · · λn(T)]
6 β = n · v(1) · eps
7 Find largest k such that v(k) > β
8 s = [

√
v(1)

√
v(2) . . .

√
v(k)]

9 α = 1
2

√
tol/
∑k
j=1

1
(s(i))6

10 Find X such that (T +αIn)X = At

11 else
12 Find X such that TX = At

13 else
14 T = AAt
15 if rcond1(T) < eps then
16 v = [λ1(T) λ2(T) . . . λm(T)]
17 β = m · v(1) · eps
18 Find largest k such that v(k) > β
19 s = [

√
v(1)

√
v(2) . . .

√
v(k)]

20 α = 1
2

√
tol/
∑k
j=1

1
(s(i))6

21 Find X such that X(T +αIm) = At

22 else
23 Find X such that XT = At

Table 1: Approximation of the number of flops to estimate A† using Algorithm 1.

Dimension Rank condition Steps Flops Total flops

m > n Rank-deficient

1) T = A∗A (2m− 1)n2

5
3n

3 + 3n2 + 2mn2 −n+ 6r
2) rcond1(T) 2n2 −n

3) s = [σ1(A) . . . σr(A)] 4
3n

3

4) α = 1
2

√
tol/
∑r
i=1

1
(s(i))6 6r

5) Solve (T +αIn)X = A∗ 1
3n

3 + 2n2

m > n Full-rank
1) T = A∗A (2m− 1)n2

1
3n

3 + 3n2 + 2mn2 −n
2) rcond1(T) 2n2 −n

3) Solve TX = A∗ 1
3n

3 + 2n2

m 6 n Rank-deficient

1) T = AA∗ (2n− 1)m2

5
3m

3 + 3m2 + 2nm2 −m+ 6r
2) rcond1(T) 2m2 −m

3) s = [σ1(A) . . . σr(A)] 4
3m

3

4) α = 1
2

√
tol/
∑r
i=1

1
(s(i))6 6r

5) Solve X(T +αIn) = A∗ 1
3m

3 + 2m2

m 6 n Full-rank
1) T = AA∗ (2n− 1)m2

1
3m

3 + 3m2 + 2nm2 −m
2) rcond1(T) 2m2 −m

3) Solve XT = A∗ 1
3m

3 + 2m2

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 68

Remark 6.2. The proposed method in Algorithm 1 is based on the fact that it needs to compute eigenvalues
vector ν of the matrix T . To avoid this, there are iterative methods to approximate the pseudoinverse which
involve only basic matrix operations such as multiplications and sums. For example, the classical Schulz’s
method [7] approximates Z† with the iterative expression X(k+1) = X(k)(2Im − ZX(k)), for k = 0, 1, 2, . . .,
where X(0) = γZT and γ ∈]0, 2/‖Z‖2

2[. However, the execution time of Schulz’s method is greater than that
of Algorithm 1. For example, if D ∈ R2500×2000 is a full-rank random matrix generated from the standard
uniform distribution, then the Schulz’s method approximates D† in 354.80s, using 22 iterations such that
‖X(22) −D†‖fr < 10−3. Algorithm 1 computes D† in 0.5485s. Other iterative methods to approximate the
pseudoinverse are developed in [50–52, 69].
Remark 6.3. For the MATLAB code developed for Algorithm 1, we use the commands T=A‚*A and T=A*A‚
to perform the computations in lines 3 and 14, respectively. These simple commands for computing the
Gram matrix T take advantage of MATLAB’s internal optimizations for matrix multiplication. MATLAB
is engineered to handle matrix operations very efficiently, utilizing libraries such as BLAS and LAPACK
[43, 64]. Alternative methods for efficiently computing the Gram matrix are discussed in [21, 30, 39], and
are provided for the reader’s further investigation.
Remark 6.4. If the Gram matrix T is ill-conditioned in Algorithm 1, then the proposed method computes
the singular values of A using the eigenvalues of T to estimate constant α. However, if an eigenvalues
solver is not available, an iterative method can be used to approximate the eigenvalues of T . For example,
the QR algorithm can be used to approximate the eigenvalues of T , and consequently, the singular values
of A. In this case, the approximation of the singular values of A may affect the accuracy of the calculation
of the constant α in Algorithm 1, because the inequality (4.4) in Theorem 4.2 may not hold. In the
following Corollary 6.1, we present a sufficient condition to ensure that the approximation of the singular
values of A does not affect the accuracy of the calculation of its Moore-Penrose inverse.

Corollary 6.1. Let us define A ∈ Fm×n and r = rank(A). Consider σ̂i(A) ∈ R, which is an approximation of
the i-th singular value σi(A). If tol > 0 is a known tolerance,

0 6
r∑
i=1

σ6
i(A) − σ̂i

6(A)

σ6
i(A)σ̂i

6(A)
, (6.4)

and

0 < α̂ 6

√√√√ tol∑r
i=1

1
σ̂i

6(A)

, (6.5)

then ‖A† −Ap(α̂)‖2
fr 6 tol.

Proof. It follows from (6.4) that

0 6
r∑
i=1

σ6
i(A) − σ̂i

6(A)

σ6
i(A)σ̂i

6(A)
⇒ 0 6

r∑
i=1

1

σ̂i
6(A)

−

r∑
i=1

1
σ6
i(A)

⇒

∑r
i=1

1
σ6
i(A)

tol
6

∑r
i=1

1
σ̂i

6(A)

tol
⇒

√√√√ tol∑r
i=1

1
σ̂i

6(A)

6

√√√√ tol∑r
i=1

1
σ6
i(A)

.

(6.6)

Based on (6.5) and (6.6), we obtain that

0 < α̂ 6

√√√√ tol∑r
i=1

1
σ6
i(A)

. (6.7)

Finally, inequality ‖A† −Ap(α̂)‖2
fr 6 tol follows from (6.7) and Theorem 4.2.

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 69

Corollary 6.1 indicates that if we have σ̂1(A), . . . , σ̂k(A), which are approximations of σ1(A), . . . ,σk(A),
respectively, then these approximations can be used to select a constant α̂ such that ‖A†−Ap(α̂)‖2

fr < tol.
To achieve this, the approximations of the singular values must satisfy inequality (6.4), and the constant α̂
must satisfy inequality (6.5). Note that this result is very similar to Theorem 4.2, with the only difference
being the addition of condition (6.4), which is sufficient to ensure that the final accuracy of the Moore-
Penrose inverse approximation is not compromised.

7. Numerical experiments

In this section, we show numerically the advantages of the proposed Algorithm 1. The numerical
examples were run on a desktop computer with a 2.80 GHz processor (Intel(R) Core(TM) i9-10900F CPU)
and 32.00 RAM, using MATLAB R2019a. MATLAB code for numerical experiments is made available on
GitHub (https://github.com/jusotoTEC/fast_moore_penrose_inverse).

The computational performance analysis of Algorithm 1 is evaluated using the metrics speedup and
percent difference [19, p. 27]. Consider two methods that solve the same numerical problem, Method
1 and Method 2, with execution times t1 and t2, respectively. The speedup S (or acceleration) is the
ratio between the execution times of both methods, i.e., S = t2/t1. If Method 1 is an improvement of
Method 2, then S will be greater than 1. However, if Method 1 hurts performance, speedup will be less
than 1. The percent difference P between Method 1 and Method 2, where t1 > t2, is represented by
P = 100 (t1 − t2) /t1 = 100(1 − S). Thus, we say that Method 2 is P% faster than Method 1. In addition,
we use the following error formula to estimate the accuracy of the methods used in this paper:

E0 = ‖A† −X‖2
fr, (7.1)

where X is the approximation of A† given by the methods used in this section. We assume that A† is
obtained in (7.1) by MATLAB’s pinv command. We use the error formula given by (7.1) because the
proposed method follows from the squared error given by (1.3). Recall that Theorem 4.2 estimates α such
that ‖A† −X‖2

fr < tol, where X = Ap(α).

7.1. Numerical experiment 1: Algorithm 1 vs. other methods
We first evaluate the efficiency of Algorithm 1 to approximate the Moore-Penrose inverse using ran-

dom matrices. We compare our proposed method with MATLAB’s pinv command, Courrieu method
[18] (geniv), Katsikis et al. method [34] (qrginv), Alireza method [5] (imqrginv), and Stanimirović et al.
method [58] (ats2). All algorithms were carefully implemented and tested in MATLAB, using the codes
presented in the appendix section associated with each scientific article.

On the other hand, in this document, we do not consider iterative methods for approximating the
Moore-Penrose inverse, such as those developed in [7, 50–52, 69], as these methods have a longer execution
time compared to that obtained by Algorithm 1. However, the author of this scientific paper acknowledges
the importance of these iterative methods for approximating the Moore-Penrose inverse, as they are
highly efficient and useful when computational commands for approximating the eigenvalues of the
Gram matrix T are unavailable because these iterative methods involve only basic matrix operations, such
as multiplications and additions. In this experiment, we consider the following cases.

Case 1. Rectangular and rank-deficient: A = BC ∈ Fm×m/2, where B ∈ Fm×r, C ∈ Fr×m/2, and r =
m/4. Matrices B and C are generated from a normal distribution with zero-mean and standard
deviation 1.

Case 2. Square and rank-deficient: A = DE ∈ Fm×m, where D ∈ Fm×r, E ∈ Fr×m, and r = m/2. Ma-
trices D and E are generated from a normal distribution with zero-mean and standard deviation
1.

Case 3. Rectangular and full-rank: A ∈ Fm×m/4, where A is generated from a normal distribution with
zero-mean and standard deviation 1.

https://github.com/jusotoTEC/fast_moore_penrose_inverse

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 70

Table 2: Computational time, speedup, percent difference, and error for a matrix A ∈ Rm×m/2, where rank(A) 6 m/4.

Dimension (m) Method Time (s) Speed Percent difference E0 = ‖X−A†‖2
fr

5000

pinv 3.6022 − − −

geniv 5.4915 0.65596 952.449 1.8738× 10926

qrginv 4.7042 0.76574 930.592 2.8070× 10932

imqrginv 4.4353 0.81216 923.129 2.8157× 10932

ats2 4.1070 0.87710 914.013 2.5780× 10932

Alg. 1 2.6753 1.34650 25.731 5.5519× 10917

7500

pinv 14.854 − − −

geniv 18.727 0.79317 926.076 5.6634× 10927

qrginv 17.134 0.86692 915.351 3.0134× 10932

imqrginv 16.055 0.92515 98.0900 3.0206× 10932

ats2 15.438 0.96213 93.9358 2.7367× 10932

Alg. 1 10.051 1.47790 32.334 5.5515× 10917

10000

pinv 36.110 − − −

geniv 44.017 0.82037 921.896 3.9523× 10926

qrginv 41.017 0.86116 916.122 3.1203× 10932

imqrginv 39.196 0.92127 98.5455 3.1263× 10932

ats2 36.724 0.98328 91.7009 2.6700× 10932

Alg. 1 6.2085 5.81620 82.807 5.5514× 10917

12500

pinv 69.523 − − −

geniv 84.746 0.82106 921.794 8.3187× 10924

qrginv 79.954 0.87027 914.907 3.6164× 10932

imqrginv 74.657 0.93202 97.2933 3.6214× 10932

ats2 71.117 0.97841 92.2072 2.8043× 10932

Alg. 1 11.523 6.03860 83.440 5.5513× 10917

15000

pinv 119.68 − − −

geniv 145.04 0.82514 921.192 5.7433× 10924

qrginv 138.01 0.86721 915.312 3.7257× 10932

imqrginv 128.25 0.93316 97.1633 3.7299× 10932

ats2 121.85 0.98219 91.8128 3.0424× 10932

Alg. 1 18.897 6.33330 84.210 5.5512× 10917

17500

pinv 192.24 − − −

geniv 226.27 0.84959 917.704 3.1443× 10926

qrginv 219.03 0.87771 913.933 3.6855× 10932

imqrginv 206.31 0.93182 97.3170 3.6893× 10932

ats2 197.63 0.97274 92.8021 3.2780× 10932

Alg. 1 28.185 6.82060 85.338 5.5512× 10917

20000

pinv 282.73 − − −

geniv 339.03 0.83392 919.915 2.0298× 10924

qrginv 335.72 0.84215 918.744 4.0717× 10932

imqrginv 312.91 0.90354 910.676 4.0747× 10932

ats2 288.99 0.97832 92.2161 3.3683× 10932

Alg. 1 42.327 6.67950 85.029 5.5512× 10917

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 71

Table 3: Computational time, speedup, percent difference and error for a matrix A ∈ Rm×m, where rank(A) 6 m/2.

Dimension (m) Method Time (s) Speed Percent difference E0 = ‖X−A†‖2
fr

5000

pinv 30.822 − − −

geniv 42.953 0.71758 939.358 1.6697× 10917

qrginv 14.983 2.05710 51.388 1.1436× 10931

imqrginv 14.611 2.10960 52.597 1.1465× 10931

ats2 15.551 1.98200 49.546 1.1741× 10931

Alg. 1 4.4183 6.97600 85.665 5.5585× 10917

7500

pinv 102.29 − − −

geniv 142.16 0.71950 938.986 8.5463× 10926

qrginv 51.826 1.97360 49.332 1.3125× 10931

imqrginv 49.563 2.06370 51.544 1.3148× 10931

ats2 50.746 2.01560 50.388 1.2433× 10931

Alg. 1 13.668 7.48330 86.637 5.5546× 10917

10000

pinv 241.52 − − −

geniv 337.36 0.71591 939.682 4.9910× 10923

qrginv 112.95 1.96440 49.094 1.3721× 10931

imqrginv 117.34 2.05830 51.416 1.3737× 10931

ats2 119.90 2.01440 50.357 1.3950× 10931

Alg. 1 30.662 7.91880 87.305 5.5533× 10917

12500

pinv 458.73 − − −

geniv 652.97 0.70254 942.341 4.4723× 10924

qrginv 236.09 1.94300 48.533 1.5433× 10931

imqrginv 222.04 2.06590 51.596 1.5446× 10931

ats2 231.02 1.98570 49.640 1.5722× 10931

Alg. 1 57.930 7.91880 87.372 5.5526× 10917

15000

pinv 793.15 − − −

geniv 1102.1 0.71967 938.952 2.2361× 10924

qrginv 401.74 1.97430 49.349 1.7134× 10931

imqrginv 383.38 2.06880 51.663 1.7144× 10931

ats2 392.96 2.01840 50.455 1.8727× 10931

Alg. 1 88.240 8.98850 88.874 5.5522× 10917

17500

pinv 1255.8 − − −

geniv 1767.8 0.71036 940.773 1.0311× 10923

qrginv 642.72 1.95390 48.819 1.7752× 10931

imqrginv 616.67 2.03640 50.893 1.7761× 10931

ats2 628.25 1.99890 49.971 1.8659× 10931

Alg. 1 135.43 9.27250 89.215 5.5520× 10917

20000

pinv 1945.1 − − −

geniv 2511.2 0.77459 929.100 3.6809× 10922

qrginv 1009.8 1.92630 48.086 2.0294× 10931

imqrginv 967.50 2.01050 50.261 2.0301× 10931

ats2 962.08 2.02180 50.539 1.9991× 10931

Alg. 1 210.45 9.24250 89.181 5.5519× 10917

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 72

Table 4: Computational time, speedup, percent difference and error for a matrix full-rank A ∈ Rm×m/4.

Dimension (m) Method Time (s) Speed Percent difference E0 = ‖X−A†‖2
fr

5000

pinv 0.4344 − − −

geniv 0.7558 0.57476 973.986 8.0716× 10930

qrginv 1.4996 0.28969 9245.19 6.7380× 10930

imqrginv 1.2618 0.34429 9190.46 6.6831× 10930

ats2 1.2630 0.34397 9190.73 6.8062× 10930

Alg. 1 0.1544 2.81280 64.448 6.2209× 10930

7500

pinv 1.4421 − − −

geniv 2.6721 0.53970 985.287 9.6818× 10930

qrginv 5.2195 0.27629 9261.94 8.6065× 10930

imqrginv 4.9707 0.29012 9244.68 8.5398× 10930

ats2 4.6307 0.31142 9221.11 8.7234× 10930

Alg. 1 0.5009 2.87850 65.260 7.9578× 10930

10000

pinv 4.5987 − − −

geniv 7.1303 0.64496 955.049 1.2172× 10929

qrginv 13.919 0.33038 9202.68 1.0764× 10929

imqrginv 13.328 0.34504 9189.82 1.0697× 10929

ats2 11.467 0.40106 9149.34 1.0822× 10929

Alg. 1 1.1509 3.99580 74.974 9.9773× 10930

12500

pinv 10.353 − − −

geniv 14.495 0.71428 940.002 1.3407× 10929

qrginv 27.944 0.37050 9169.90 1.2230× 10929

imqrginv 25.645 0.40370 9147.71 1.2171× 10929

ats2 22.408 0.46204 9116.43 1.2286× 10929

Alg. 1 2.1619 4.78890 79.118 1.1288× 10929

15000

pinv 17.567 − − −

geniv 22.491 0.78107 928.029 1.4464× 10929

qrginv 44.419 0.39548 9152.86 1.3669× 10929

imqrginv 43.595 0.40296 9148.17 1.3613× 10929

ats2 38.813 0.45261 9120.94 1.3786× 10929

Alg. 1 3.3005 5.32250 81.212 1.2654× 10929

17500

pinv 29.314 − − −

geniv 36.245 0.80879 923.642 1.7233× 10929

qrginv 77.979 0.37593 9166.01 1.6361× 10929

imqrginv 73.323 0.39980 9150.13 1.6303× 10929

ats2 63.710 0.46012 9117.33 1.6459× 10929

Alg. 1 4.9352 5.93990 83.165 1.5241× 10929

20000

pinv 45.552 − − −

geniv 54.262 0.83948 919.122 1.8559× 10929

qrginv 115.37 0.39483 9153.27 1.7713× 10929

imqrginv 108.47 0.41994 9138.13 1.7652× 10929

ats2 93.681 0.48624 9105.66 1.7762× 10929

Alg. 1 7.6159 5.98110 83.281 1.6428× 10929

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 73

Tables 2, 3, and 4 present execution time, speedup, percent difference, and error associated with Cases
1, 2, and 3, respectively. Here, we consider m ∈ {5000, 7500, 10000, 12500, 15000, 17500, 20000}. Algorithm
1 uses machine precision as tolerance, i.e., tol = eps = 2−52 ≈ 2.2204× 10−16.

It follows from Tables 2, 3, and 4 that Algorithm 1 estimates A† in less time than the other meth-
ods. Moreover, numerical results show that the speedup and percent difference of the proposed method
increase as dimension m increases. Thus, Algorithm 1 is between 25% to 89% faster than MATLAB’s
pinv command. Besides, although the associated error of the new algorithm is slightly larger than that
obtained by the other methods for rank-deficient matrices, the numerical results in Tables 2 and 3 show
that the associated error with Algorithm 1 is less than the given tolerance tol = eps.

Therefore, this experiment illustrates that Algorithm 1 is faster than the other methods and preserves
a good accuracy, which is less than the machine precision.

7.2. Numerical experiment 2: matrices with known singular values

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Dimension (m)

0

50

100

150

200

250

300

T
im

e
 (

s
)

pinv

Alg. 1

qrginv

imqrginv

ats2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Dimension (m)

0

2

4

6

8

E
rr

o
r

10-17

Alg. 1

qrginv

imqrginv

ats2

(a) (b)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Dimension (m)

0

5

10

15

20

S
p
e
e
d
u
p

Alg. 1

qrginv

imqrginv

ats2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Dimension (m)

30

40

50

60

70

80

90

100

P
e
rc

e
n
t
D

if
fe

re
n
c
e Alg. 1

qrginv

imqrginv

ats2

(c) (d)

Figure 1: Diagrams of MATLAB’s pinv command, Algorithm 1, qrginv, imqrginv, and ats2 methods. The matrix dimension m
versus: (a) execution time (in seconds); (b) error (E0 = ‖X−A†‖2

fr); (c) speedup; (d) percent difference between the methods.

Note that Steps 5-8 and 16-19 in Algorithm 1 compute all positive singular values of A. Therefore,
if the singular values of A are known previously, then the execution time of the proposed Algorithm 1
is significantly reduced. This numerical experiment estimates the Moore-Penrose inverse of a structured
matrix, whose positive singular values are formerly known. Precisely, we consider the tridiagonal matrix
A ∈ Rm×m defined by

A =



1
√
d√

d d+ 1
√
d

√
d

.

. . . d+ 1
√
d√

d d


, (7.2)

where d is a positive real number. This matrix is used in statistical mechanics and mathematics in Bethe
trees. Bethe trees, also called Bethe Lattice, are simple connected undirected graphs with no cycles [48, 54].
It follows from Lemma 8 in [54] that A is a rank-deficient matrix, where rank(A) = m− 1. Moreover, the
nonzero eigenvalues of A are given by λk(A) = d+ 1 + 2

√
d cos(πk/m), for k = 1, 2, . . . ,m− 1. Note that

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 74

A is symmetric and λk(A) > 0, for all k = 1, 2, . . . ,m− 1. Therefore, singular values of A are given by

σk(A) = d+ 1 + 2
√
d cos

(
πk

m

)
, (7.3)

for k = 1, 2, . . . ,m− 1, and σm(A) = 0. In this experiment, we estimate the Moore-Penrose inverse of
the rank-deficient matrix given by (7.2). In addition, Algorithm 1 is modified, so singular values are not
computed. Instead, this algorithm receives all positive singular values of A given by (7.3). Numerical
simulations consider m = 1000k, where k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and d = 10α, where α is generated
from a uniform distribution with zero-mean and standard deviation 1. Moreover, Algorithm 1 uses
machine precision as tolerance, i.e., tol = 2−52.

Figure 1 presents the diagrams of execution time, error, speedup, and percent difference associated
with MATLAB’s pinv command, Algorithm 1, qrginv, imqrginv, and ats2 methods. This experiment
does not consider the geniv method because its associated errors in numerical simulations are greater
than 10−1.

Figure 1 (a) shows that the proposed method estimates the Moore-Penrose inverse of the rank-deficient
matrix (7.2) in less time than the other methods. Figures 1 (c) and (d) show that speedup and percent
difference of Algorithm 1 increase as dimension m increases. Moreover, the proposed method in this
paper is between 85% to 95% faster than MATLAB’s pinv command. Similar to numerical experiment
1, the associated error of the new algorithm is slightly larger than that obtained by the other methods.
However, Figure 1 (b) shows that the error of the proposed method is less than the given tolerance
tol = eps.

Therefore, if all positive singular values of A are previously known, Algorithm 1 is much faster than
the other methods. Moreover, the proposed method preserves a good accuracy, which is less than the
machine’s precision.

7.3. Numerical experiment 3: Real-life application in image denoising
Numerical simulations presented in Sections 7.1 and 7.2 showed that the execution time of Algorithm

1 is much less than MATLAB’s pinv command and other methods in the literature. Although the error
associated with this new method is slightly higher than that of different techniques for rank-deficient
matrices, we can ensure that the estimation of the Moore-Penrose inverse is accurate because the associ-
ated error is less than machine precision when tol = eps. This numerical experiment presents a real-life
application in denoising images [13, 15, 16, 57], where the accuracy of Algorithm 1 allows reconstructing
a noisy image with the same precision as MATLAB’s pinv command.

(a)

(b)

Figure 2: (a) Some randomly selected images of X. (b) Noisy versions of images in (a).

Specifically, we use Algorithm 1 for the problem of filtering a noisy grayscale image Y ∈ R128×128

based on a set of training images X = {X(1), . . . ,X(p)}, where X(j) ∈ R128×128, for j = 1, . . . ,p. Training set
X consists of p = 1110 grayscale images of coast scenes of optical aerial pictures from visible spectrum

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 75

(see Figure 2 (a) for six sample images). Images in X are chosen from the MASATI database [23]. The
MASATI database comprises of satellite images labeled according to the following seven classes: land,
coast, sea, ship, multi, coastship, and detail. In this experiment, we consider the coast class.

It is assumed that instead of images in X, we observed their noisy version Y = {Y(1), . . . ,Y(p)}, where
Y(j) ∈ R128×128, for j = 1, . . . ,p. Each Y(j) is simulated as Y(j) = X(j) + 0.1N(j), where N(j) ∈ R128×128

is a random matrix generated from a normal distribution with zero-mean and standard deviation 1. For
each image X(j), matrix N(j) simulates noise (see Figure 2 (b) for six sample images). Here, we vectorize
matrices X(j) and Y(j), i.e., convert each matrix into a column vector by stacking the columns of the
matrix. Let vec : Rm×n → Rmn be the vectorization transform. We write xj = vec(X(j)) ∈ R16384 and
yj = vec(Y(j)) ∈ R16384, for j = 1, 2, . . . ,p. If X = [x1 x2 · · · xp] ∈ R16384×1110 and Y = [y1 y2 · · · yp] ∈
R16384×1110, the goal of the image denoising problem is find a filter matrix F̂ ∈ R16384×16384 that gives a
small reconstruction error for the training set, i.e., find F̂ such that

‖F̂Y −X‖2
fr = min

F∈R16384×16384
‖FY −X‖2

fr. (7.4)

A solution of problem (7.4), given by Penrose [49], is F̂ = XY†. We consider vectors x̄ ∈ R16384 and
ȳ ∈ R16384, which are the vector representation of images X ∈ R128×128 and Y ∈ R128×128, respectively,
i.e., x̄ = vec(X) and ȳ = vec(Y). Here, Y represents a noisy observed image of a desired source image X.
Figures 3 (a) and 3 (b) show images X and Y used in this numerical experiment. Finally, estimation of X
is given by X̃ = vec−1(F̂ȳ). Finally, we assume that noisy image for filtering Y does not necessarily belong
to Y, but it is “similar" to one of them, i.e., Y ∈ J(δ), where

J(δ) =
{
Y ∈ R128×128 : ‖Y − Y(j)‖fr 6 δ, for some Y(j) ∈ Y

}
,

for a given δ > 0. In this experiment, T = YTY ∈ R1110×1110 is a rank-deficient and well-determined
numerical matrix, where rank(T) = 1100. Thus, we use Algorithm 1 to estimate Y†, with tol = eps.

Table 5: Computational time, speedup, percent difference, and error for computing Y†.

Method Time (s) Speed Percent difference E0 = ‖Z− Y†‖2
fr

pinv 1.2479 − − −

Alg. 1 0.64186 1.9443 48.567 2.3639× 10917

Table 6: Relative errors of estimation X̃ in simulations presented in Figures 3 (c) and 3 (d).

Method Simulation 1 Simulation 2 Simulation 3 Simulation 4

pinv 1.11895× 1091 1.1045× 1091 9.7809× 1092 9.1159× 1092

Alg. 1 1.11895× 1091 1.1045× 1091 9.7809× 1092 9.1159× 1092

Table 5 presents the execution time, speedup, percent difference, and error associated with MATLAB’s
pinv command and Algorithm 1 for computing Y†. Error formula is given by E0 = ‖Z− Y†‖2

fr, where Z
is the approximation of Y† given by Algorithm 1. Figures 3 (c) and 3 (d) show the estimates of four noisy
images in Figure 3 (b) using both methods. Further, Table 6 presents the relative error of estimation X̃,
where the relative error formula is given by Er = ‖X− X̃‖fr/‖X‖fr.

Results obtained in Figure 3 and Tables 5 and 6 demonstrate the advantages of the proposed method.
Table 5 shows that Algorithm 1 estimates Y† faster than that MATLAB’s pinv command. Moreover, it
follows from Table 6 and Figures 3 (c) and 3 (c) that both methods have the same accuracy in obtaining X̃.

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 76

Simulation 1 Simulation 2 Simulation 3 Simulation 4

(a)

(b)

(c)

(d)

Figure 3: Illustration of the estimation of four noisy images by MATLAB’s pinv command and Algorithm 1. (a) Source image X.
(b) Noisy observed image Y. (c) Estimation X̃ using MATLAB’s pinv command. (d) Estimation X̃ using Algorithm 1.

7.4. Numerical experiment 4: Algorithm 1 vs. parallel implementation for solving linear equation systems
In this numerical experiment, we compare the efficiency of Algorithm 1, using sequential implemen-

tation, with a parallel implementation using distributed arrays for solving linear equation systems in
MATLAB. We based this experiment on the computational implementation developed in [41]. The nu-
merical example in [41] shows how to solve a system of linear equations of the form Ax = b in parallel
with command mldivide using distributed arrays. It follows from [41] that distributed arrays distribute
data from the client workspace to a parallel pool in a local machine or a cluster. Each worker stores a por-
tion of the array in its memory, but can also communicate with the other workers to access all segments
of the array.

We consider Ax = b, where A ∈ Rm×10000 and b ∈ Rm such that b =
∑n
i=1A(:, i), i.e., solution

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 77

of Ax = b is given by x̂ = (1, 1, . . . , 1)T ∈ R10000. Here, m = {50, 100, 200, 300, 600, 900, . . . , 5700, 6000},
and rank(A) = m

2 , where T = AAT ∈ Rm×m is a rank-deficiented and well-determined numerical
matrix. Moreover, Algorithm 1 uses machine precision as tolerance, i.e., tol = 2−52, and for parallel
implementation, we use 10 computational threads.

Figure 4 presents the diagram of execution time associated with Algorithm 1 and parallel implemen-
tation for solving linear equation system Ax = b. It follows from Figure 4 that the proposed method
estimates the solution of the linear system in less time than the parallel implementation when m 6 2400.
However, ifm > 2400, the parallel implementation using distributed arrays with 10 computational threads
is faster than Algorithm 1. These results follow because when the dimension of data increases, the parallel
implementation using distributed arrays becomes faster than the serial method in Algorithm 1 [40, 41].

0 1000 2000 3000 4000 5000 6000

Dimension (m)

0

1

2

3

4

5

6

7

8

9

10

T
im

e
 (

s
)

Alg. 1

Parallel Implementation

Figure 4: Diagrams of Algorithm 1 and parallel implementation using distributed arrays for solving linear equation system
Ax = b. The matrix dimension m versus execution time (in seconds) between both methods to estimate solution of Ax = b.

7.5. Numerical experiment 5: Algorithm 1 using an iterative method to estimate singular values of A
In this experiment, we numerically illustrate the behavior of Remark 6.4 and Corollary 6.1, which

pertain to using an iterative method to approximate the singular values of A. We consider the matrix

A =



−1 1 −1 −2

0 0 0 4

2 −2 2 0

0 0 0 −2

1 −1 1 0


,

where rank(A) = 2. Moreover, σ1(A) =
√

21 +
√

21 and σ2(A) =
√

21 −
√

21. Let σ̂1(A) = 4.4159
and σ̂2(A) = 3.0465 be the approximations of σ1(A) and σ2(A), respectively, using three iterations of
the QR algorithm to estimate the eigenvalues of T = ATA. Note that |σ1(A) − σ̂1(A)| = 0.6420 and
|σ2(A) − σ̂2(A)| = 1.0053. However, inequality (6.4) from Corollary 6.1 holds true. Therefore, if we use the
value

α̂ =
1
2

√√√√ tol∑r
i=1

1
σ̂6
i(A)

≈ 1.3432× 10−4

with tol = 10−10, we obtain ‖A† −Ap(α̂)‖2
fr = 5.1549× 10−12 < tol. Thus, Corollary 6.1 is numerically

illustrated by this experiment.

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 78

7.6. Comments on numerical experiments
This section presents some comments on the numerical simulations developed previously.

• Tables 2 and 4 in numerical experiment 1 reveal that the execution times of the methods qrginv,
imqrginv, and ats2 is greater than those of MATLAB’s pinv command. Additionally, the results
presented in Tables 1, 2, and 3 in numerical experiments 1 and 2 suggest that the method geniv is the
slowest among the approaches considered in this paper for estimating the Moore-Pensore inverse.
Importantly, these findings do not conflict with the conclusions drawn in previous scientific papers
[5, 18, 34, 58], wherein it was established that these methods exhibit faster performance compared
to MATLAB’s pinv command. It is noteworthy that the numerical results in the cited papers were
confined to square matrices with a maximum dimension of m = 4096 and n = 4096. In contrast, the
results in Tables 2, 3, and 4 are derived from both rectangular and square matrices, where either m
or n exceeds the value of 4096.

• The findings of numerical experiment 2 in Section 7.2 indicate that Algorithm 1 significantly re-
duces its execution time when all positive singular values are precomputed. Various expeditious
techniques from the literature are available for estimating singular values of structured matrices.
Notably, there exist methods for centrosymmetric matrices [67], pentadiagonal symmetric Toeplitz
matrices [22], tridiagonal symmetric Toeplitz matrices [27], Sylvester–Kac matrices [9], k-tridiagonal
matrices [59], and Hankel matrices [66]. Therefore, by employing the aforementioned approaches
for singular value computation, Algorithm 1 is capable of efficiently calculating the Moore-Penrose
inverse of these structured matrices, thereby further enhancing its computational speed.

• Numerical experiment 3 considers the MATLAB’s pinv command and Algorithm 1 to estimate
Y†. We do not consider the methods geniv, qrginv, imqrginv, and ats2 because the aim of this
experiment is to measure the accuracy of Algorithm 1. It is evident from numerical experiments 1
and 2 that Algorithm 1 is faster than the other methods. However, the accuracy was not the same.
Therefore, we only consider MATLAB’s pinv command and Algorithm 1 to illustrate that Algorithm
1 is as accurate as MATLAB’s pinv in a real-life application.

• Numerical experiment 4 compares time execution of the sequential implementation in Algorithm 1
with a parallel implementation using distributed arrays for solving linear equation systems in MAT-
LAB. In most cases, sequential implementation of a method is faster than parallel implementation.
However, this experiment shows that the proposed Algorithm 1 is faster than a parallel implemen-
tation for solving a linear system Ax = b, for some particular cases. This result shows the efficiency
and speed of Algorithm 1.

• In each numerical experiment presented in Section 7, we set tol = eps in Algorithm 1. Additionally,
according to Theorem 4.2, it is evident that ‖A† −Ap(α)‖2

fr 6 tol, irrespective of the specific value
assigned to tol. However, when we opt for tol < eps in our numerical simulations, we observe
that ‖A† −Ap(α)‖2

fr � tol. This discrepancy arises from a floating-point error inherent in MATLAB
computations, attributed to selecting a tolerance smaller than the machine precision. Consequently,
we advocate for the choice of tol > eps in Algorithm 1 during numerical simulations to mitigate the
impact of floating-point errors and ensure the reliability of the results.

8. Conclusions and future work

This paper introduced a novel algorithm for estimating the Moore-Penrose inverse of a matrix A
through Tikhonov regularization. Our approach assumed that the Gram matrix of A, as defined in
(2.1), is a well-determined numerical rank matrix. The proposed method involved computing all positive
singular values of matrix A. Additionally, we present an efficient and accurate technique for estimating
these singular values. Furthermore, we demonstrate the application of our method in solving linear

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 79

discrete well-posed problems. Numerical simulations reveal that our technique exhibits lower execution
times compared to existing methods in the literature. Notably, our proposed method is 25% to 95% faster
than MATLAB’s pinv command.

Moreover, we validate the efficiency and accuracy of our approach through a real-life application in
image denoising, utilizing training data. As part of our future work, we plan to explore the computational
implementation of Algorithm 1 in C++ using Armadillo [55] and Boost Multiprecision [38] libraries. This
exploration aims to select a tolerance level below machine precision, thereby enhancing the computational
accuracy of the method presented in this paper.

Acknowledgements

The author thanks Professor Oscar Rojo from Universidad Católica del Norte, Antofagasta, Chile, for his
help in numerical experiment 2, and the reviewers of the paper for their insightful comments. This work
was financially supported by Vicerrectoría de Investigación y Extensión from Instituto Tecnológico de Costa Rica
(Research #1440042).

References

[1] Z. Allen-Zhu, Y. Li, LazySVD: Even faster SVD decomposition yet without agonizing pain, Adv. Neural Inf. Process
Syst., 29 (2016), 9 pages. 1

[2] P. Arbenz, D. Kressner, D. Zürich, Lecture notes on solving large scale eigenvalue problems, D-MATH, EHT Zur., 2
(2012), 256 pages. 6, 6

[3] Armadillo, Armadillo reference documentation of command rank, [Accessed 25 January 2024]. 3
[4] S. Artidiello, A. Cordero, J. R. Torregrosa, M. P. Vassileva, Generalized inverses estimations by means of iterative

methods with memory, Mathematics, 8 (2020), 13 pages. 1, 6.1
[5] A. Ataei, Improved Qrginv algorithm for computing Moore-Penrose inverse matrices, ISRN Appl. Math., 2014 (2014), 5

pages. 1, 7.1, 7.6
[6] J. C. A. Barata, M. S. Hussein, The Moore–Penrose pseudoinverse: A tutorial review of the theory, Braz. J. Phys., 42

(2012), 146–165. 1, 1
[7] A. Ben-Israel, An iterative method for computing the generalized inverse of an arbitrary matrix, Math. Comput., 19

(1965), 452–455. 1, 6.2, 7.1
[8] M. W. Benson, P. O. Frederickson, Fast parallel algorithms for the Moore-Penrose pseudo-inverse, SIAM, Philadelphia,

PA, (1987). 1
[9] T. Boros, P. Rózsa, An explicit formula for singular values of the Sylvester-Kac matrix, Linear Algebra Appl., 421 (2007),

407–416. 7.6
[10] M. Brand, Fast low-rank modifications of the thin singular value decomposition, Linear Algebra Appl., 415 (2006), 20–30.

1
[11] D. Calvetti, L. Reichel, Tikhonov regularization of large linear problems, BIT, 43 (2003), 263–283. 5
[12] D. Calvetti, L. Reichel, Tikhonov regularization with a solution constraint, SIAM J. Sci. Comput., 26 (2004), 224–239. 5
[13] J. Chavarría-Molina, J. J. Fallas-Monge, P. Soto-Quiros, Effective implementation to reduce execution time of a low-rank

matrix approximation problem, J. Comput. Appl. Math., 401 (2022), 17 pages. 1, 7.3
[14] H. Chen, Y. Wang, A family of higher-order convergent iterative methods for computing the Moore-Penrose inverse, Appl.

Math. Comput., 218 (2011), 4012–4016. 1
[15] J. Chung, M. Chung, Computing optimal low-rank matrix approximations for image processing, In: 2013 Asilomar

Conference on Signals, Systems and Computers, IEEE, (2013), 670–674. 7.3
[16] J. Chung, M. Chung, An efficient approach for computing optimal low-rank regularized inverse matrices, Inverse Probl.,

30 (2014), 19 pages. 7.3
[17] A. Cordero, P. Soto-Quiros, J. R. Torregrosa, A general class of arbitrary order iterative methods for computing generalized

inverses, Appl. Math. Comput., 409 (2021), 18 pages. 1, 6.1
[18] P. Courrieu, Fast computation of Moore-Penrose inverse matrices, Neural Inform. Process. Lett. Rev., 8 (2005), 25–29.

1, 7.1, 7.6
[19] H. Cragon, Computer architecture and implementation, Cambridge University Press, (2000). 7
[20] B. N. Datta, Numerical linear algebra and applications, Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, (2010). 6.1
[21] P. Drineas, M. Mahoney, Approximating a Gram matrix for improved kernel-based learning (extended abstract), In: Lec-

ture Notes in Comput. Sci., Springer, Berlin, 3559 (2005), 323–337. 6.3
[22] M. Elouafi, An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices, Linear Algebra Appl., 435

(2011), 2986–2998. 7.6

https://proceedings.neurips.cc/paper/2016/hash/c6e19e830859f2cb9f7c8f8cacb8d2a6-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c6e19e830859f2cb9f7c8f8cacb8d2a6-Abstract.html
https://people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp
https://people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp
http://arma.sourceforge.net/docs.html#rank
https://doi.org/10.3390/math8010002
https://doi.org/10.3390/math8010002
https://doi.org/10.1155/2014/641706
https://doi.org/10.1155/2014/641706
https://doi.org/10.1007/s13538-011-0052-z
https://doi.org/10.1007/s13538-011-0052-z
https://doi.org/10.2307/2003676
https://doi.org/10.2307/2003676
https://www.osti.gov/biblio/7181991
https://www.osti.gov/biblio/7181991
https://doi.org/10.1016/j.laa.2006.10.008
https://doi.org/10.1016/j.laa.2006.10.008
https://doi.org/10.1016/j.laa.2005.07.021
https://doi.org/10.1023/A:1026083619097
https://doi.org/10.1137/S1064827502412280
https://doi.org/10.1016/j.cam.2021.113763
https://doi.org/10.1016/j.cam.2021.113763
https://doi.org/10.1016/j.amc.2011.05.066
https://doi.org/10.1016/j.amc.2011.05.066
https://doi.org/10.1109/ACSSC.2013.6810366
https://doi.org/10.1109/ACSSC.2013.6810366
https://doi.org/10.1088/0266-5611/30/11/114009
https://doi.org/10.1088/0266-5611/30/11/114009
https://doi.org/10.1016/j.amc.2021.126381
https://doi.org/10.1016/j.amc.2021.126381
https://doi.org/10.48550/arXiv.0804.4809
https://doi.org/10.1017/CBO9781139164412
https://doi.org/10.1137/1.9780898717655
https://doi.org/10.1137/1.9780898717655
https://doi.org/10.1007/11503415_22
https://doi.org/10.1007/11503415_22
https://doi.org/10.1016/j.laa.2011.05.025
https://doi.org/10.1016/j.laa.2011.05.025

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 80

[23] A.-J. Gallego, A. Pertusa, P. Gil, Automatic ship classification from optical aerial images with convolutional neural net-
works, Remote Sens., 10 (2018), 20 pages. 7.3

[24] G. H. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Tech-
nometrics, 21 (1979), 215–223. 5

[25] T. N. E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Rev., 2 (1960), 15–22. 1
[26] P. Guo, D. Zhao, M. Han, S. Feng, Pseudoinverse learners: New trend and applications to big data, In: INNS big data

and deep learning conference, Springer, Cham, (2019), 158–168. 1
[27] J. Gutiérrez-Gutiérrez, Eigenvalue decomposition for persymmetric Hankel matrices with at most three non-zero anti-

diagonals, Appl. Math. Comput., 234 (2014), 333–338. 7.6
[28] P. C. Hansen, The truncated SVD as a method for regularization, BIT, 27 (1987), 534–553. 1, 3
[29] N. J. Higham, Cholesky factorization, WIREs Comput. Stat., 1 (2009), 251–254. 6
[30] J. T. Holodnak, I. C. F. Ipsen, Randomized approximation of the Gram matrix: exact computation and probabilistic bounds,

SIAM J. Matrix Anal. Appl., 36 (2015), 110–137. 6.3
[31] R. Hunger, Floating point operations in matrix-vector calculus, Tech. Univ. München, (2007). 6
[32] Julia, Julia reference documentation of command rank, [Accessed 25 January 2024]. 3
[33] V. N. Katsikis, D. Pappas, Fast computing of the Moore-Penrose inverse matrix, Electron. J. Linear Algebra, 17 (2008),

637–650. 1
[34] V. N. Katsikis, D. Pappas, A. Petralias, An improved method for the computation of the Moore–Penrose inverse matrix,

Appl. Math. Comput., 217 (2011), 9828–9834. 1, 6.1, 7.1, 7.6
[35] S. López-Tapia, A. Lucas, R. Molina, A. K. Katsaggelos, A single video super-resolution gan for multiple downsampling

operators based on pseudo-inverse image formation models, Digit. Signal Process., 104 (2020), 12 pages. 1
[36] S. Lu, X. Wang, G. Zhang, X. Zhou, Effective algorithms of the Moore-Penrose inverse matrices for extreme learning

machine, Intell. Data Anal., 19 (2015), 743–760. 1
[37] T. Lyche, Numerical linear algebra and matrix factorizations, Springer, Cham, (2020). 1, 2.1
[38] J. Maddock, C. Kormanyos, Boost multiprecision, [Accessed 25 January 2024]. 8
[39] O. Makkonen, C. Hollanti, Secure distributed gram matrix multiplication, In: 2023 IEEE Information Theory Work-

shop (ITW), (2023), 192–197. 6.3
[40] MathWorks, Distributing arrays to parallel workers, [Accessed 25 January 2024]. 7.4
[41] MathWorks, Use distributed arrays to solve systems of linear equations with direct methods, [Accessed 25 January 2024].

7.4
[42] MathWorks, Matlab reference documentation of command rank, [Accessed 25 January 2024]. 3
[43] MathWorks, Matlab reference documentation of command mtimes, [Accessed 25 January 2024]. 6.3
[44] MathWorks, Matlab reference documentation of command isillconditioned, [Accessed 25 January 2024]. 6
[45] S. Miljković, M. Miladinović, P. Stanimirović, I. Stojanović, Application of the pseudoinverse computation in reconstruc-

tion of blurred images, Filomat, 26 (2012), 453–465. 1
[46] NumPy, Numpy reference documentation of command rank, [Accessed 25 January 2024]. 3
[47] Octave, Octave reference documentation of command rank, [Accessed 25 January 2024]. 3
[48] M. Ostilli, Cayley trees and Bethe lattices: A concise analysis for mathematicians and physicists, Phys. A, 391 (2012),

3417–3423. 7.2
[49] R. Penrose, On best approximate solutions of linear matrix equations, Math. Proc. Camb. Philos. Soc., 52 (1956), 17–19.

7.3
[50] M. D. Petković, Generalized schultz iterative methods for the computation of outer inverses, Comput. Math. Appl., 67

(2014), 1837–1847. 6.2, 7.1
[51] M. D. Petković, M. A. Krstić, K. P. Rajković, Rapid generalized schultz iterative methods for the computation of outer

inverses, J. Comput. Appl. Math., 344 (2018), 572–584.
[52] M. D. Petković, M. S. Petković, Hyper-power methods for the computation of outer inverses, J. Comput. Appl. Math.,

278 (2015), 110–118. 6.2, 7.1
[53] V. Rajaraman, IEEE standard for floating point numbers, Resonance, 21 (2016), 11–30. 3
[54] O. Rojo, M. Robbiano, An explicit formula for eigenvalues of Bethe trees and upper bounds on the largest eigenvalue of

any tree, Lin. Algebra Appl., 427 (2007), 138–150. 7.2
[55] C. Sanderson, R. Curtin, Armadillo: a template-based C++ library for linear algebra, J. Open Source Softw., 1 (2016), 2

pages. 8
[56] Scilab, Scilab reference documentation of command rank, [Accessed 25 January 2024]. 3
[57] P. Soto-Quiros, J. Jose Fallas-Monge, J. Chavarría-Molina, A fast algorithm for image deconvolution based on a rank

constrained inverse matrix approximation problem, In: Proceedings of Sixth International Congress on Information
and Communication Technology, Springer, Singapore, (2022), 165–176. 1, 7.3

[58] P. S. Stanimirović, D. Pappas, V. N. Katsikis, I. P. Stanimirović, Full-rank representations of outer inverses based on the
QR decomposition, Appl. Math. Comput., 218 (2012), 10321–10333. 1, 7.1, 7.6

[59] A. Tănăsescu, P. G. Popescu, A fast singular value decomposition algorithm of general k-tridiagonal matrices, J. Comput.
Sci., 31 (2019), 1–5. 7.6

[60] B. Telfer, D. Casasent, Fast method for updating robust pseudoinverse and Ho-Kashyap associative processors, IEEE Trans.
Syst. Man. Cybern., 24 (1994), 1387–1390. 1

https://doi.org/10.3390/rs10040511
https://doi.org/10.3390/rs10040511
https://doi.org/10.2307/1268518
https://doi.org/10.2307/1268518
https://doi.org/10.1137/1002004
https://link.springer.com/chapter/10.1007/978-3-030-16841-4_17
https://link.springer.com/chapter/10.1007/978-3-030-16841-4_17
https://doi.org/10.1016/j.amc.2014.01.169
https://doi.org/10.1016/j.amc.2014.01.169
https://doi.org/10.1007/BF01937276
https://doi.org/10.1002/wics.18
https://doi.org/10.1137/130940116
https://doi.org/10.1137/130940116
https://mediatum.ub.tum.de/doc/625604/625604.
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.rank
https://doi.org/10.13001/1081-3810.1287
https://doi.org/10.13001/1081-3810.1287
https://doi.org/10.1016/j.amc.2011.04.080
https://doi.org/10.1016/j.amc.2011.04.080
https://doi.org/10.1016/j.dsp.2020.102801
https://doi.org/10.1016/j.dsp.2020.102801
https://content.iospress.com/articles/intelligent-data-analysis/ida743
https://content.iospress.com/articles/intelligent-data-analysis/ida743
https://doi.org/10.1007/978-3-030-36468-7
https://www.boost.org/doc/libs/1_69_0/libs/multiprecision/doc/html/
https://doi.org/10.1109/ITW55543.2023.10161614
https://doi.org/10.1109/ITW55543.2023.10161614
https://mathworks.com/help/parallel-computing/Use-Distributed-Arrays-to-Solve-Systems-of-Linear-Equations-with-Direct-Methods.html
https://mathworks.com/help/parallel-computing/distributing-arrays-to-parallel-workers.html
https://mathworks.com/help/matlab/ref/rank.html
https://mathworks.com/help/matlab/ref/mtimes.html
https://www.mathworks.com/help/matlab/ref/decomposition.isillconditioned.html
https://doi.org/10.2298/FIL1203453M
https://doi.org/10.2298/FIL1203453M
https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html
https://octave.sourceforge.io/octave/function/rank.html
https://doi.org/10.1016/j.physa.2012.01.038
https://doi.org/10.1016/j.physa.2012.01.038
https://doi.org/10.1017/S0305004100030929
https://doi.org/10.1016/j.camwa.2014.03.019
https://doi.org/10.1016/j.camwa.2014.03.019
https://doi.org/10.1016/j.cam.2018.05.048
https://doi.org/10.1016/j.cam.2018.05.048
https://doi.org/10.1016/j.cam.2014.09.024
https://doi.org/10.1016/j.cam.2014.09.024
https://doi.org/10.1007/s12045-016-0292-x
https://doi.org/10.1016/j.laa.2007.06.024
https://doi.org/10.1016/j.laa.2007.06.024
https://doi.org/10.21105/joss.00026
https://doi.org/10.21105/joss.00026
https://help.scilab.org/rank
https://doi.org/10.1007/978-981-16-2380-6_15
https://doi.org/10.1007/978-981-16-2380-6_15
https://doi.org/10.1007/978-981-16-2380-6_15
https://doi.org/10.1016/j.amc.2012.04.011
https://doi.org/10.1016/j.amc.2012.04.011
https://doi.org/10.1016/j.jocs.2018.12.009
https://doi.org/10.1016/j.jocs.2018.12.009
https://doi.org/10.1109/21.310515
https://doi.org/10.1109/21.310515

P. Soto-Quiros, J. Math. Computer Sci., 37 (2025), 59–81 81

[61] A. Torokhti, P. Soto-Quiros, Generalized Brillinger-like transforms, IEEE Signal Process. Lett., 23 (2016), 843–847. 1
[62] G. Wang, Y. Wei, S. Qiao, Generalized inverses: Theory and computations, Springer, Singapore; Science Press Beijing,

Beijing, (2018). 1
[63] J. Wang, P. Guo, X. Xin, Review of pseudoinverse learning algorithm for multilayer neural networks and applications, In:

Advances in Neural Networks – ISNN 2018, Lecture Notes in Computer Science, Springer, Cham (2018), 99–106.
1

[64] R. E. White, Computational Linear Algebra: with Applications and MATLAB® Computations, Chapman & Hall/CRC,
New York, (2023). 6.3

[65] L. Wu, Regularization methods and algorithms for least squares and Kronecker product least squares problems, ProQuest
LLC, Ann Arbor, MI, (1997). 1, 3

[66] W. Xu, S. Qiao, A fast symmetric SVD algorithm for square Hankel matrices, Linear Algebra Appl., 428 (2008), 550–563.
7.6

[67] C. Xu, K. Wang, Z. Liu, Singular value decomposition for central extended matrix, In: 2011 International Conference
on Computer Science and Service System (CSSS), IEEE, (2011), 736–738. 7.6

[68] G. Zielke, Report on test matrices for generalized inverses, Computing, 36 (1986), 105–162. 2.2
[69] D. D. Zontini, M. L. Mirkoski, J. A. Santos, Error bounds in the computation of outer inverses with generalized Schultz

iterative methods and its use in computing of Moore-Penrose inverse, Appl. Math. Comput., 440 (2023), 10 pages. 6.2,
7.1

https://doi.org/10.1109/LSP.2016.2556714
https://doi.org/10.1007/978-981-13-0146-9
https://doi.org/10.1007/978-981-13-0146-9
https://doi.org/10.1007/978-3-319-92537-0_12
https://doi.org/10.1007/978-3-319-92537-0_12
https://doi.org/10.1201/9781003304128
https://doi.org/10.1201/9781003304128
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9730130
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9730130
https://doi.org/10.1016/j.laa.2007.05.027
https://doi.org/10.1109/CSSS.2011.5974974
https://doi.org/10.1109/CSSS.2011.5974974
https://doi.org/10.1007/BF02238196
https://doi.org/10.1016/j.amc.2022.127664
https://doi.org/10.1016/j.amc.2022.127664

	Introduction
	Preliminaries
	Well-determined numerical rank matrices
	Main results
	An application of Theorem 4.2: linear discrete well-posed problems
	Efficient and accurate implementation of the proposed method
	Some relevant remarks on Algorithm 1

	Numerical experiments
	Numerical experiment 1: Algorithm 1 vs. other methods
	Numerical experiment 2: matrices with known singular values
	Numerical experiment 3: Real-life application in image denoising
	Numerical experiment 4: Algorithm 1 vs. parallel implementation for solving linear equation systems
	Numerical experiment 5: Algorithm 1 using an iterative method to estimate singular values of A
	Comments on numerical experiments

	Conclusions and future work

