
J. Math. Computer Sci., 37 (2025), 106–131

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Some important results for the conformable fractional
stochastic pantograph differential equations in the Lp space

Muhammad Imran Liaqata,∗, Fahim Ud Dina, Ali Akgülb,c, Muhammad Bilal Riazd,e

aAbdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan.
bDepartment of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
cSiirt University, Art and Science Faculty, Department of Mathematics, 56100 Siirt, Turkey.
dIT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czech Republic.
eDepartment of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon.

Abstract

Important mathematical topics include existence, uniqueness, continuous dependency, regularity, and the averaging princi-
ple. In this research work, we establish these results for the conformable fractional stochastic pantograph differential equations
(CFSPDEs) in Lp space. The situation of p = 2 is generalized by the obtained findings. First, we establish the existence and
uniqueness results by applying the contraction mapping principle under a suitably weighted norm and demonstrating the con-
tinuous dependency of solutions on both the initial values and fractional exponent φ. The second section is devoted to examining
the regularity of time. As a result, we find that, for each Φ ∈ (0,φ− 1

2 ), the solution to the considered problem has a Φ-Hölder
continuous version. Next, we study the averaging principle by using Jensen’s, Grönwall-Bellman’s, Hölder’s, and Burkholder-
Davis-Gundy’s inequalities. To help with the understanding of the theoretical results, we provide three applied examples at the
end.
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1. Introduction

Fractional calculus (FC) is a branch of mathematics that studies the extension of derivatives and inte-
grals to any arbitrary order, real or complex. In 1695, not too long after the development of classical calcu-
lus, FC emerged. FC has long been thought of as a field of pure mathematics with no practical uses. But
things have altered in this regard in the last few decades. FC is especially helpful in explaining the behav-
ior of intricate physical systems. Numerous natural phenomena have nonlocal properties, which means
that events from both their recent and distant pasts influence them in the present. Fractional operators are
a more precise way to describe these nonlocal relationships than standard integer-order derivatives. This
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is due to two core reasons: first, we have the choice to select any order for the fractional order derivative
(FrOD) and not be bound to an integer order only. Secondly, non-integer-order derivatives do not rely
only on local conditions but also on the past for support when the system has a long-term memory. The
FrOD is a superior way to represent many real-world phenomena than integer-order calculus.

Different from integer-order derivatives, there are several kinds of definitions for FrOD [3, 25, 26];
some of them are Grunuwald Letnikov, Riemann-Liouville (R-L), Caputo-Fabrizio, Atangana-Baleanu,
Caputo, and conformable. These definitions are generally not equivalent to each other. Khalil et al. [21]
developed the conformable fractional derivative (CFrD), which is a distinctive description of the FrOD
compared to earlier versions. For a mapping ℵ(τ) : [0,∞[→ R, the CFrD of order φ is specified via:

Tφτ ℵ(τ) = lim
ε→0

ℵdφe−1(τ+ ετdφe−φ) −ℵdφe−1(τ)

ε
, (1.1)

u− 1 < φ 6 u, τ > 0, u ∈ N, and dφe, the lowest integer larger than or equivalent to φ. In a particular
case, if 0 < φ 6 1, next, we get

Tφτ ℵ(τ) = lim
ε→0

ℵ(τ+ ετ1−φ) −ℵ(τ)

ε
, τ > 0.

If ℵ(τ) is φ-differentiable in some (0, T), T > 0 and lim
τ→0+

ℵφ(τ) exists, then define ℵ(φ)(0) = lim
τ→0+

ℵ(φ)(τ).

The conformable fractional integral of a function ℵ(τ) starting from α̃ > 0 is defined as:

Iα̃φ(ℵ)(τ) =

∫τ
α̃

ℵ(`)(
`− α̃

)1−φd`, φ ∈ (0, 1].

Variables and their interrelationships are represented mathematically to forecast future events or ex-
plain the observed system. In mathematical terms, it offers details on the intricate phenomenon. It
facilitates comprehension of the complex dynamical system’s behavior. In addition, a variety of scientific,
technical, and social science fields employ mathematical models. There are occurrences across various
disciplines that, when modeled mathematically, are found to be differential equations (DEs). The DEs
with non-integer-order derivatives are called fractional-order differential equations (FODEs). The FODEs
can model and analyze complex structures with complex non-linear processes and higher-order behav-
iors, making them sometimes a better choice for modeling than integer-order DEs. FODEs have been the
subject of much interest and attention in recent decades because of their applications in science and engi-
neering, including viscoelasticity, control, electrochemistry, star clusters, and stellar interiors [11, 22, 38].

On the other hand, the behavior of a system that is affected by random fluctuations is represented
by mathematical models called fractional stochastic differential equations (FSDEs). The FSDEs combine
the concepts of FC and stochastic processes. The FSDEs are a particular kind of DEs in which there are
stochastic and deterministic factors that affect the dynamics of the system. Wiener processes, also known
as Brownian motions, are continuous-time stochastic processes that move unpredictably and randomly.
These processes are typically used to simulate the stochastic component. Kiyoshi Ito first presented
FSDEs in 1940 as a method of simulating particle diffusion in a fluid; since then, they have been widely
applied in this and numerous other fields [30]. The ability of FSDEs to capture the impacts of noise and
unpredictability on a system, which is frequently crucial in real-world applications, is one of the factors
contributing to its popularity. Numerous disciplines, including physics, chemistry, biology, finance, and
engineering, can benefit from their use [2, 5, 27, 43].

Several writers have recently been actively researching the FSDEs. Among these, exponential stability
in the mean square of delay FSDEs is established by Li and Xu [24]. The new standards are derived for
the exponential stability of the mean square of the examined problems in this article. A few instances
are examined to clarify the theory. Li and Peng [23] used the fixed point theory of Sadovskii

′
to obtain

the controllability of a class of FSDEs. Cui and Yan [9] used the same fixed-point theorem to draw some
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findings about the existence of mild solutions for fractional stochastic integrodifferential equations with
delay in Hilbert spaces. In [33], Niu and Xie looked at the regularity, uniqueness, and existence of the
solutions for a certain class of one-dimensional FSDEs with white noise. Using the Schauder fixed point
theorem, Chen and Li [7] demonstrated the existence of global mild solutions as well as saturated mild
solutions. The authors of the works [6, 8] demonstrated the existence of FSDEs solutions under various
hypotheses. In [20], A. Karczewska and C. Lizama presented several findings on the perturbation of the
stochastic Volterra equations in addition to discussing the presence of mild, weak, and strong solutions of
FSDEs. In [36], R. Schnaubelt and M. Veraar demonstrate the path-wise continuity features of solutions
to a stochastic Volterra equation with a local martingale-provided additive noise factor. Xiaoa and Wang
[40] use the stopping time technique to investigate the stability of FSDEs of the Caputo type.

Dynamic systems may rely on previous states in addition to their current ones. The CFSPDEs are
widely employed to simulate these events, whose systems depend on the state ω(ζτ), where 0 < ζ <

1. In particular, the CFSPDEs have far more practical applications in biology, economics, the sciences,
engineering, control, and electrodynamics.

One of the key topics in mathematics is the existence and uniqueness of solutions to FSDEs. It is
fundamental to understand whether a certain FSDE has a unique solution and if it does. The regularity
of a solution to a FSDEs refers to the smoothness of the solution. Alternatively, it characterizes the
degree of behavior of the solution. The averaging principle is a helpful method for simplifying both
stochastic and deterministic systems. The basis for averaging techniques in mathematics, engineering
mechanics, control, and other complicated issues is the averaging principle, a vital and fundamental
approximation theory. It is an approximation principle that has some ability to balance both complex
and basic systems. The averaging principle is based on the proof of an approximation theorem for
FSDEs, which functions as a kind of substitute for the original system, and the subsequent optimal order
convergence theorem. Some scholars have recently become interested in the FSDEs’ averaging concept.
For example, Luo et al. [31] established an averaging principle for a specific set of FSDEs with time
delays in the L2 space, based on innovative assumptions. Similarly, Xu and collaborators demonstrated
the averaging principle within the L2 space for FSDEs featuring Caputo derivatives driven by Brownian
motion [42]. In another study [37], researchers investigated the averaging principle for SDEs with Poisson
noises, while Xu examined the concept for SDEs driven by L’evy noise [41]. Furthermore, in [1], the
authors explored the approximation theorem as an averaging approach for the solutions of Itô-Doob-type
FSDEs characterized by non-Lipschitz coefficients in terms of probability and mean square. For more
details about the averaging approach, see [12, 13].

Inequalities are fundamental tools for analyzing various important concepts in stochastic differen-
tial problems. We utilize Grönwall-Bellman’s inequality (Grön-Bell-Ineq), Jensen’s inequality (Jen-Ineq),
Burkholder-Davis-Gundy’s (BHDG-Ineq), and Hölder’s inequality (Höld-Ineq). Each of the mentioned
inequalities plays a crucial role in understanding different aspects of FSDEs. We explore the importance
of each inequality in the context of FSDEs.

Grön-Bell-Ineq is a fundamental tool in the analysis of DEs, providing bounds on the solutions and
aiding in establishing existence and uniqueness. In the context of FSDEs, which involve fractional oper-
ators and stochastic processes, the application of Grön-Bell-Ineq enhances our understanding in several
ways [29, 35].

i. Existence of Solutions: Grön-Bell-Ineq helps establish conditions under which solutions to FSDEs
exist. By providing bounds on the solutions, it ensures that solutions remain within certain limits,
even in the presence of FrOD and stochastic noise. This is crucial for ensuring that solutions do not
diverge or become undefined.

ii. Uniqueness of Solutions: Grön-Bell-Ineq aids in proving the uniqueness of solutions to FSDEs. It
provides a tool for comparing different solutions and showing that they cannot deviate too much
from each other. This is essential for demonstrating that a given FSDE has a unique solution under
certain conditions, despite the presence of randomness and nonlinearity.
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Incorporating Jen-Ineq into the study of continuous dependency in FSDEs can lead to several advance-
ments.

i. Stability Analysis: Jen-Ineq can be used to establish stability criteria for solutions to FSDEs. By pro-
viding bounds on convex functions of stochastic processes, Jen-Ineq helps in controlling the growth
of solutions. This can be crucial for understanding the continuous dependence of solutions on initial
conditions and parameters. Advancements in stability analysis can lead to better predictions of the
long-term behavior of systems described by FSDEs.

ii. Quantitative Estimates: Jen-Ineq provides quantitative estimates on the growth of solutions to FSDEs.
By bounding convex functions of stochastic processes, it allows researchers to quantify how solutions
evolve over time and how they are influenced by various parameters and initial conditions. Incorpo-
rating Jen-Ineq into the study of continuous dependency can lead to more precise estimates of how
solutions change with perturbations in the system.

iii. Nonlinear Dynamics: Many FSDEs exhibit nonlinear dynamics, where the drift and diffusion coeffi-
cients depend nonlinearly on the state variables and stochastic processes. Jen-Ineq can help in ana-
lyzing the impact of nonlinearity on the continuous dependency of solutions. By providing bounds
on convex functions, it aids in understanding how nonlinearities affect the stability and behavior of
solutions over time.

Overall, incorporating Jen-Ineq into the study of continuous dependency in FSDEs can lead to ad-
vancements in stability analysis, quantitative estimation, and understanding of nonlinear dynamics. These
advancements can deepen our understanding of how solutions to FSDEs depend continuously on initial
conditions and parameters, leading to improved predictions and control of complex systems described by
FSDEs.

The BHDG-Ineq can offer valuable insights into the behavior of solutions to FSDEs under varying
conditions. Here are several ways in which it can provide new insights [4, 18].

i. Estimation of Stochastic Integrals: BHDG-Ineq provides bounds on stochastic integrals involving
fractional Brownian motion. These integrals often appear in the drift and diffusion terms of FSDEs.
By estimating these integrals, researchers can gain insights into the overall behavior of the solutions
to FSDEs, particularly how they are affected by the underlying stochastic processes.

ii. Control of Solution Growth: In FSDEs, the driving noise is typically represented by a fractional
Brownian motion, which can exhibit long-range dependence and roughness. BHDG-Ineq helps in
controlling the growth of solutions by providing bounds on the stochastic integrals involving frac-
tional Brownian motion. This control of solution growth is crucial for understanding how solutions
evolve over time and under varying conditions.

iii. Stability Analysis: The BHDG-Ineq can be used to analyze the stability of solutions to FSDEs. By
bounding the growth of stochastic integrals, BHDG-Ineq aids in determining whether solutions re-
main bounded or converge to certain equilibrium states over time. This is essential for understanding
the long-term behavior of systems described by FSDEs.

iv. Quantitative Estimates: BHDG-Ineq provides quantitative estimates of the growth of stochastic inte-
grals, which are essential for predicting the behavior of solutions to FSDEs. These estimates help in
understanding how solutions evolve over time and how they are influenced by various parameters
and initial conditions.

v. Comparison with Classical SDEs: BHDG-Ineq can also be used to compare solutions to FSDEs with
solutions to classical SDEs. By bounding the growth of stochastic integrals, researchers can assess
how the presence of fractional Brownian motion in FSDEs affects the behavior of solutions compared
to traditional SDEs. This comparison can lead to new insights into the unique characteristics of
FSDEs.

The application of Höld-Ineq is instrumental in studying regularity properties of solutions to FSDEs.
Here’s how Höld-Ineq facilitates this study [10, 39].
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i. Estimation of Moments: Höld-Ineq provides a bound on the Lp norm of a product of functions in
terms of the individual Lp norms of the functions and their Hölder exponents. In the context of FS-
DEs, where solutions may exhibit irregular behavior due to the presence of fractional derivatives and
stochastic noise, Höld-Ineq allows researchers to estimate moments of the solutions. By controlling
the growth of these moments, Höld-Ineq aids in understanding the regularity properties of solutions
and their behavior under various conditions.

ii. Control of Solution Growth: Höld-Ineq helps in controlling the growth of solutions to FSDEs by pro-
viding bounds on the Lp norms of the solutions. This is particularly useful for establishing conditions
under which solutions remain bounded or converge to certain equilibrium states. By bounding the
growth of solutions in terms of their Hölder exponents, Höld-Ineq facilitates the study of regularity
properties and stability of solutions over time.

iii. Analysis of Smoothness: Höld-Ineq characterizes the smoothness of functions in terms of their Hölder
exponents. In the context of FSDEs, where solutions may exhibit fractal-like behavior or irregularities,
Höld-Ineq helps in quantifying the degree of smoothness or regularity of solutions. By estimating
Hölder exponents and bounding the growth of solutions, Höld-Ineq provides insights into the regu-
larity properties of solutions and how they evolve over time.

iv. Stability Analysis: Höld-Ineq aids in stability analysis of solutions to FSDEs by providing bounds
on the differences between solutions at different points in time or space. By controlling the growth
of these differences in terms of Hölder exponents, Höld-Ineq helps in understanding how solutions
behave under perturbations and whether they exhibit stable or chaotic behavior over time.

Inspired by these findings, we established the regularity of the solutions as well as the existence,
uniqueness, and continuous dependence of solutions on the initial values and on the fractional exponent
φ of the CFSPDEs in the Lp space. We also established the averaging principle result for the CFSPDEs
in the sense of pth moment by utilizing the Grönwall-Bellman’s inequality (Grön-Bell-Ineq), Jensen’s
inequality (Jen-Ineq), Burkholder-Davis-Gundy’s (BHDG-Ineq), Hölder’s inequality (Höld-Ineq) and the
interval translation approach. To demonstrate that the mathematical approach is valid, three numerical
examples are also built. We examined the following CFSPDEs of order 1

2 < φ < 1:

Tφτ ω(τ) = Λ
(
τ,ω(τ),ω(τζ)

)
+ δ
(
τ,ω(τ),ω(τζ)

)dWτ

dτ
, (1.2)

where τζ represents the past state and ζ ∈ (0, 1) and φ represent the CFrD within the range, Λ : [0, T]×
Rb × Rb → Rb, δ : [0, T] × Rb × Rb → Rb×m are measurable and on an underlying complete filtered
probability space (f, F̃τ,P), (Wτ)τ∈[0, ∞) is a scalar Brownian motion, with the filtration {F̃τ}fi>0.

Applying numerical techniques to solve CFSPDEs can present several computational complexities,
including [34, 44]:

i. Non-locality of Fractional Operators: Fractional operators in CFSPDEs are non-local operators, mean-
ing they depend on the entire history of the process. This non-locality complicates numerical dis-
cretization, as traditional finite difference or finite element methods designed for local operators may
not be directly applicable. Mitigation strategies include using specialized numerical schemes tailored
for fractional operators, such as the Grünwald-Letnikov or Caputo discretizations, or approximating
FrOD with local approximations in specific cases.

ii. Stochasticity and Randomness: CFSPDEs involve stochastic processes, such as fractional Brownian
motion, introducing randomness into the equations. Numerically simulating these stochastic pro-
cesses accurately can be computationally demanding, especially for long simulation times or high-
dimensional problems. Monte Carlo methods, such as the Euler-Maruyama or Milstein methods,
are commonly used but can require many samples to achieve convergence. Variance reduction tech-
niques, like control variates or importance sampling, can help improve the efficiency of Monte Carlo
simulations.
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iii. Time-stepping and Stability: Numerical integration methods for CFSPDEs must be carefully chosen
to ensure stability and accuracy. These equations often exhibit stiff behavior due to the presence
of both fractional operators and pantograph terms, requiring implicit or semi-implicit time-stepping
methods. However, such methods can increase computational complexity and may require solving
nonlinear systems of equations at each time step. Adaptive time-stepping strategies and advanced
numerical solvers can help mitigate stability issues and improve efficiency.

iv. Dimensionality: CFSPDEs with multiple variables or dimensions can result in high-dimensional
state spaces, leading to increased computational complexity. Direct numerical methods for high-
dimensional problems may be impractical due to memory and computational constraints. Dimen-
sionality reduction techniques, such as model order reduction or proper orthogonal decomposition,
can help mitigate this complexity by approximating the dynamics in a lower-dimensional subspace
while preserving essential features of the system.

v. Accuracy vs. Efficiency Trade-off: Achieving high accuracy in numerical solutions of CFSPDEs often
requires fine discretizations or high-order numerical methods, which can be computationally expen-
sive. Balancing accuracy and efficiency is crucial, particularly for large-scale problems or real-time
applications. Adaptive mesh refinement, adaptive time-stepping, and error estimation techniques can
help optimize computational resources and improve efficiency without sacrificing accuracy.

The format of the study is as follows. In Section 2, we present some important definitions, some key
results, and assumptions that will serve as foundations to support the results regarding CFSPDEs. In the
first subsection of Section 3, we first prove the well-posedness of the solution of CFSPDEs, and in the sec-
ond subsection, we will prove the regularity. In Section 4, we established the averaging principle theorem
and included examples to support our findings in Section 5. Section 6 then presents the conclusion.

2. Preliminaries

In this section, we go over definitions, some assumptions that are the pillars of our results, and a
lemma and a corollary that will be useful in this paper.

Definition 2.1. When p > 2, τ ∈ [0,∞), suppose S̃
p
τ = Lp(f, F̃τ,P) represents all F̃τ-measurable, pth

functions that are integrable ω = (ω1,ω2, · · · ,ωb)
T : f→ Rb with

‖ω‖p =

(∑b

ı=1
E(|ωı|p)

) 1
p

.

A measurable procedure ω(t) : [0, T] → Lp(f, F̃τ,P) becomes F̃τ-adapted process if ω(τ) ∈ S̃
p
τ for

each τ > 0. For ∀θ ∈ S̃
p
0 , a F̃ -adapted process ω(τ) is solution of Eq. (1.2) with initial condition (In.C)

ω(0) = θ if ω(0) = θ and the subsequent equality satisfies on S̃
p
τ for τ ∈ [0, T]:

ω(τ) = θ+

∫τ
0
`φ−1Λ

(
`,ω(`),ω(`ζ)

)
d`+

∫τ
0
`φ−1δ

(
`,ω(`),ω(`ζ)

)
dWτ.

Definition 2.2. For the purposes of this article, we make the assumption that coefficients Λ and δ in Eq.
(1.2) meet the following requirements.

(A1) Global Lipschitz continuity in Rb of the drift term Λ and the diffusion term δ: when ∀O1,O2,V1,V2 ∈
Rb there is L such as

‖δ(τ,O1,O2) − δ(τ,V1,V2)‖p 6 L
(
‖O1 −V1‖p + ‖O2 −V2‖p

)
,

‖Λ(τ,O1,O2) −Λ(τ,V1,V2)‖p 6 L
(
‖O1 −V1‖p + ‖O2 −V2‖p

)
.
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(A2) The drift term Λ(τ, 0, 0) and the diffusion δ(τ, 0, 0) are essential bounded in time, i.e.,

esssup
τ∈[0,T]

‖Λ(τ, 0, 0)‖p < U, esssup
τ∈[0,T]

‖δ(τ, 0, 0)‖p < U.

Keep in consideration that the assumptions (A1) and (A2) do not depend on the norm selected on Rb.
Nonetheless, we provide Rb with the p norm for convenience in our subsequent estimates: for any vector

ω = (ω1,ω2,ω3, · · · ,ωm)T ∈ Rb, ‖ω‖p =

(∑m
ı=1 |ωı|

p
) 1

p

provides the p norm ‖ω‖p of ω.

Now we propose some conditions that are pillars for the results of averaging principle.

(C1) We make the condition that coefficient Λ in Eq. (1.1) when ∀O1,O2,V1,V2,O,V ∈ Rb, τ ∈ [0, T] there
is U1 > 0 such that meets the following:

‖Λ(τ,O1,O2)−Λ(τ,V1,V2)‖∨ ‖δ(τ,O1,O2) − δ(τ,V1,V2)‖ 6 U1
(
‖O1 −V1‖+ ‖O2 −V2‖

)
,

where, Λ∨ δ = max(Λ, δ).
(C1) Now we make the condition that coefficient δ in Eq. (1.1) when ∀O1,O2,V1,V2,O,V ∈ Rb, τ ∈ [0, T]

there is U2 > 0 that satisfies the following:

‖Λ(τ,O,V)‖∨ ‖δ(τ,O,V)‖ 6 U2
(
1 + ‖O‖+ ‖V‖

)
.

(C1) Functions Λ̃ and δ̃ exist and for T1 ∈ [0, T], τ ∈ [0, T], and p > 2, we are able to identify positively
bound functions Y1(T1) and Y2(T1) that fulfill

1
T1

∫T1

0
‖Λ(τ,O,V) − Λ̃(O,V)‖pdτ 6 Y1(T1)

(
1 + ‖O‖p + ‖V‖p),

1
T1

∫T1

0
‖δ(τ,O,V) − δ̃(O,V)‖pdτ 6 Y2(T1)

(
1 + ‖O‖p + ‖V‖p),

where limT1→∞Y1(T1) = 0 and limT1→∞Y2(T1) = 0.

Corollary 2.3. For every Υ ∈ (0,φ− 1
2), there occurred a modification ω2(τ) of ω1(τ) with Φ-Hölder continuous

paths, i.e.,
P(ω1(τ) = ω2(τ)

)
= 1, ∀τ ∈ [0, T].

Proof. By utilzing Kolmogorov test [19], ω(τ) has Υ-Hölder continuous modification for all Υ ∈ (0,φ−
1
2).

Lemma 2.4 ([14]). Assume that there are real numbers W1,W2, . . . ,Wυ(υ ∈ N) and meet Wı > 0 (ı =
1, 2, . . . ,υ). Then (

υ∑
ı=1

Wı

)p

6 υp−1
υ∑
ı=1

W
p
ı , ∀p > 1.

3. The main results

In this part, we demonstrated the well-posedness and regularity of the solutions to CFSPDEs.

3.1. Well-posedness of solutions of CFSPDEs under the standard Lipschitz condition of coefficients
To prove the well-posedness of solutions, we must demonstrate the solution’s existence, uniqueness,

and continuous dependency on φ and the starting data in order to achieve this goal. Suppose H̃p(0, T)
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is the space of all processes ω(τ) that are measurable F̃T-adapted, with F̃T = (F̃τ)τ∈[0,T] and satisfy the
following:

‖ω(τ)‖
H̃p = esssup

τ∈[0,T]

‖ω(τ)‖p <∞.

(
H̃p(0, T), ‖ · ‖

H̃p

)
is surely a Banach space. We construct an operator =θ : H̃p(0, T) → H̃p(0, T) by

=θ(ω(0)) = θ for any θ ∈ S̃
p
0 and for τ ∈ [0, T], the subsequent equality is valid:

=θ(ω(τ)) = θ+

∫τ
0
`φ−1Λ

(
`,ω(`),ω(`ζ)

)
d`+

∫τ
0
`φ−1δ

(
`,ω(`),ω(`ζ)

)
dW`. (3.1)

The well-defined property of this operator is demonstrated in the ensuing lemma. The elementary
inequality below is employed in the proof of this result as well as multiple others that follow,

∥∥ω1 +ω2‖
p
p 6 2p−1

(
‖ω1‖

p
p +

(
‖ω2‖

p
p

)
, ∀ω1,ω2 ∈ Rb. (3.2)

Lemma 3.1. Assume that (A1) and (A2) are valid. The operator =θ is then well defined for any θ ∈ S̃
p
0 .

Proof. Suppose ω(τ) ∈ H̃p[0, T] and here ω(τ) is arbitrary. We have the following ∀τ ∈ [0, T] from the
description of =θ(ω(τ)) as in Eq. (3.1) and the inequality (3.2):

∥∥=θ(ω(τ))
∥∥p

p 6 2p−1∥∥θ∥∥p
p + 22p−2

∥∥∥∥ ∫τ
0
`φ−1Λ

(
`,ω(`),ω(`ζ)

)
d`

∥∥∥∥p

p

+ 22p−2
∥∥∥∥ ∫τ

0
`φ−1δ

(
`,ω(`),ω(`ζ)

)
dWτ

∥∥∥∥p

p
.

(3.3)

The Höld-Ineq gives us the result that∥∥∥∥ ∫τ
0
`φ−1Λ

(
`,ω(`),ω(`ζ)

)
d`

∥∥∥∥p

p
6
∑m

ı=1
E
( ∫τ

0
`φ−1∣∣Λı(`,ω(`),ω(`ζ)

)∣∣d`)p

6
∑m

ı=1
E

(( ∫τ
0
`
(φ−1)p
(p−1) d`

)p−1 ∫τ
0

∣∣Λı(`,ω(`),ω(`ζ)
)∣∣pd`)

6
T(pφ−1)(p − 1)(p−1)

(pφ− 1)(p−1)

∫τ
0

∥∥Λ(`,ω(`),ω(`ζ)
)∥∥p

pd`.

(3.4)

According to (A1), we acquire

∥∥Λ(`,ω(`),ω(`ζ)
)∥∥p

p 6 2p−1
(∥∥Λ(`,ω(`),ω(`ζ)

)
+Λ(`, 0, 0)

∥∥p
p −

∥∥Λ(`, 0, 0)
∥∥p

p

)
6 2p−1

(
Lp
(∥∥ω(`)

∥∥p
p +

∥∥ω(`ζ)
∥∥p

p

)
+
∥∥Λ(`, 0, 0)

∥∥p
p

)
.

Therefore, ∫τ
o

∥∥Λ(`,ω(`),ω(`ζ)
)∥∥p

pd`

6 2p−1Lp

((
esssup
`∈[0,T]

‖ω(`)‖p

)p
+

(
esssup
`∈[0,T]

∥∥ω(s“)
∥∥

p

)p
)∫τ

0
1d`+ 2p−1

∫τ
0

∥∥Λ(`, 0, 0)
∥∥p

pd`

6 2p−1LpT

(∥∥ω(`)
∥∥p
H̃p +

∥∥ω(`“)
∥∥p
H̃p

)
2p−1

∫τ
0

∥∥Λ(`, 0, 0)
∥∥p

pd`.

(3.5)
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By Eqs. (3.4) and (3.5), we get∥∥∥∥ ∫τ
0
`φ−1Λ

(
`,ω(`),ω(`ζ)

)
d`

∥∥∥∥p

p

6
T(pφ−1)(2p − 2)(p−2)

(pφ− 1)(p−1)

(
LpT

(∥∥ω(`)
∥∥p
H̃p +

∥∥ω(`ζ)
∥∥p
H̃p

)
+

∫τ
0

∥∥Λ(`, 0, 0)
∥∥p

pd`

)
.

Now, applying the BHDG-Ineq and Höld-Ineq, we get∥∥∥∥ ∫τ
0
`φ−1δ

(
`,ω(`),ω(`ζ)

)
dWτ

∥∥∥∥p

p
6
∑m

ı=1
E
∣∣∣∣ ∫τ

0
`φ−1(δı(`,ω(`),ω(`ζ)

)
dW`

∣∣∣∣p
6
∑m

ı=1
CpE

∣∣∣∣ ∫τ
0
`2φ−2

∣∣∣∣δı(`,ω(`),ω(`ζ)
)∣∣∣∣2d`∣∣∣∣

p
2

6
∑m

ı=1
CpE
∫τ

0
`2φ−2

∣∣∣∣δı(`,ω(`),ω(`ζ)
)∣∣∣∣pd`( ∫τ

0
`2φ−2d`

) p−2
2

6 Cp

(
T2φ−1

2φ− 1

) p−2
2
∫τ

0
`2φ−2

∥∥∥∥δ(`,ω(`,ω(`ζ)
)∥∥∥∥p

p
d`,

(3.6)

where Cp =

(
pp+1

2(p−1)p−1

) p
2

. By utilizing (A1) and (A2), we get as follows:

∥∥∥∥δ(`,ω(`),ω(`ζ)
)∥∥∥∥p

p
6 2p−1Lp

(∥∥ω(`)
∥∥p

p +
∥∥ω(`ζ)

∥∥p
p

)
+ 2p−1∥∥δ(`, 0, 0)

∥∥p
p

6 2p−1Lp
(∥∥ω(`)

∥∥p
p +

∥∥ω(`ζ)
∥∥p

p

)
+ 2p−1Up.

(3.7)

Thus, ∀τ ∈ [0, T], we get the following:∫τ
0
`2φ−2

∥∥∥∥δ(`,ω(`),ω(`ζ)
)∥∥∥∥p

p
d`

6 2p−1Lp
∫τ

0
`2φ−2

((
esssup
`∈[0,T]

∥∥ω(`)
∥∥

p

)p

+

(
esssup
`∈[0,T]

∥∥ω(`ζ)
∥∥

p

)p
)
d`+ 2p−1Up

∫τ
0
`2φ−2d`

6
2p−1T2φ−1

2φ− 1

(
Lp
(
‖ω(`)‖p

H̃p
+ ‖ω(`ζ)‖p

H̃p

)
+Up

)
.

With Eqs. (3.4), (3.6), and (A2), we obtain that ‖=(ω(τ)
)
‖
H̃p

< ∞. As a consequence, the map =θ is
well-defined.

We must demonstrate the following lemma in order to establish existence and uniqueness.

Lemma 3.2. For any φ > 1
2 and τ > 0, the following inequality holds:

 h

∫τ
0
`2φ−2E2φ−1( h`

2φ−1)d` 6 E2φ−1( hτ
2φ−1),

where Mittag-Leffler function E2φ−1(.) is defined as

E(2φ−1)(τ) =
∑∞

ı=0

τı

Γ((2φ− 1)ı+ 1)
. (3.8)
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Proof. Let  h > 0 be arbitrary. We utilize the following identity after first substituting integral and sum:∫τ
0
`2φ−2`ı(2φ−1)d` = τ(ı+1)(2φ−1)B

(
2φ− 1, ı(2φ− 1) + 1

)
, ı = 0, 1, 2, . . . .

So, we get

 h

Γ(2φ− 1)

∫τ
0
`2φ−2E2φ−1( h`

2φ−1)d` = h
∑∞

ı=0

 hı

Γ(ı(2φ− 1) + 1)

∫τ
0
`2φ−2`ı(2φ−1)d`

=
∑∞

ı=0

 hı+1τ(ı+1)(2φ−1)

Γ(2φ− 1)Γ(ı(2φ− 1) + 1)

=
∑∞

ı=1

 hıτı(2φ−1)

Γ(ı(2φ− 1) + 1)

=E2φ−1( hτ
2φ−1) − 1 6 E2φ−1( hτ

2φ−1),

here, B is a beta function. Hence, the proof is completed.

We shall demonstrate that the operator =θ is contractive under an appropriate weighted norm ([16,
Remark 2.1]) in order to establish the existence and uniqueness of solutions. The weight function in this
case is the Mittag-Leffler function E(2φ−1)(τ), which is defined as Eq. (3.8).

Theorem 3.3. If (A1) and (A2) are valid, then the problem (1.2) with ω(0) = θ has unique solution on [0, T] for
any θ ∈ S̃

p
0 .

Proof. First of all, choose a fix positive constant  h as follows:

 h > Ψ2p−1Γ(2φ− 1), (3.9)

where

Ψ = 2p−1Lp

((
T(p−2)φ+1) 1( (p−2)φ+1

p−1

)p−1 +

(
T2φ−1

2φ− 1

) p−2
2
(

pp+1

2(p − 1)p−1

) p
2
)

. (3.10)

We establish a weighted norm ‖ · ‖ h over the space H̃p([0, T]) as:

‖ω(τ)‖ h = esssup
τ∈[0,T]

( ‖ω(τ)‖p
p

E2φ−1( hτ2φ−1)

) 1
p

, ∀ω(τ) ∈ H̃p([0, T]). (3.11)

Two norms, ‖ · ‖
H̃p and ‖ · ‖ h, are equivalent.

(
H̃p([0, T]

)
, ‖ · ‖ h) is a Banach space as a result. Choose

and fix θ ∈ S̃
p
0 . By virtue of Lemma 3.1, the operator =θ is well-defined. Now, we will prove that the map

=θ is contractive with respect to the norm ‖ · ‖ h. For this purpose, let ω, ω̃ be arbitrary. We obtain the
following ∀τ ∈ [0, T] from Eqs. (3.1) and (3.2):

‖=θ
(
ω(τ)) − =θ

(
ω̃(τ))‖p

p 6 2p−1
∥∥∥∥ ∫τ

0
`φ−1

(
Λ
(
`,ω(`),ω(`ζ)

)
−Λ

(
`, ω̃(`), ω̃(`ζ)

))
d`

∥∥∥∥p

p

+ 2p−1
∥∥∥∥ ∫τ

0
`φ−1

(
δ
(
`,ω(`),ω(`ζ)

)
− δ
(
`, ω̃(`), ω̃(`ζ)

))
dW`

∥∥∥∥p

p
.

Using the Höld-Ineq and (A1), we obtain∥∥∥∥ ∫τ
0
`φ−1

(
Λ
(
s,ω(`),ω(`ζ)

)
−Λ

(
`, ω̃(`), ω̃(`ζ)

))
d`

∥∥∥∥p

p
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6
∑m

ı=1
E
( ∫τ

0
`φ−1

(
Λı
(
`,ω(`),ω(`ζ)

)
−Λı

(
`, ω̃(`), ω̃(`ζ)

))
d`

)p

6
∑m

ı=1
E

(( ∫τ
0
`
(φ−1)(p−2)

p−1 d`

)p−1( ∫τ
0
`2φ−2∣∣Λı(`,ω(`),ω(`ζ)

)
−Λı

(
`, ω̃(`), ω̃(`ζ))

∣∣))

6
LpTpφ−2φ+1(p − 1)p−1

(pφ− 2φ+ 1)p−1

∫τ
0
`2φ−2

(∥∥ω(`) − ω̃(`))
∥∥p

p +
∥∥ω(`ζ) − ω̃(`ζ))

∥∥p
p

)
d`.

However, using (A1) and the BHDK-Ineq, we have∥∥∥∥ ∫τ
0
`φ−1

(
δ
(
`,ω(`),ω(`ζ)

)
− δ
(
`, ω̃(`), ω̃(`ζ)

))
dW`

∥∥∥∥p

p

=
∑m

ı=1
E
∣∣∣∣ ∫τ

0
`φ−1

(
δı
(
`,ω(`),ω(`ζ)

)
− δı

(
`, ω̃(`), ω̃(`ζ)

))
dW`

∣∣∣∣p
6
∑m

ı=1
CpE

∣∣∣∣ ∫τ
0
`2φ−2∣∣δı(`,ω(`),ω(`ζ)

)
− δı

(
`, ω̃(`), ω̃(`ζ)

)∣∣2d`∣∣∣∣
p
2

6
∑m

ı=1
CpE
∫τ

0
`2φ−2∣∣δı(`,ω(`),ω(`ζ)

)
− δı

(
`, ω̃(`), ω̃(`ζ)

)∣∣pd`( ∫τ
0
`2φ−2d`

) p−2
2

6

(
T2φ−1

2φ− 1

) p−2
2

LpCp

∫τ
0
`2φ−2

(∥∥ω(`) − ω̃(`)‖p
p +

∥∥ω(`ζ) − ω̃(`ζ)‖p
p

)
d`.

Thus, ∀τ ∈ [0, T], we have

‖=θ
(
ω(τ)

)
− =θ

(
ω̃(τ)

)∥∥p
p 6 Ψ

∫τ
0

(∥∥ω(`) − ω̃(`)‖p
p +

∥∥ω(`ζ) − ω̃(`ζ)‖p
p

)
`2φ−2d`,

here Ψ is specified in Eq. (3.10). The result suggests that using the definition of ‖ · ‖ h from Eq. (3.11),

‖=θω(τ) − =θω̃(τ)‖p
p

E2φ−1( hτ2φ−1)

6
Ψ
∫τ

0 `
2φ−2

(
‖ω(`)−ω̃(`)‖p

p+‖ω(`ζ)−ω̃(`ζ)‖p
p

)
E2φ−1( h`2φ−1)

E2φ−1( h`
2φ−1)d`

E2φ−1( hτ2φ−1)

6 Ψ

(
esssup
`∈[0,T]

((
‖ω(`) − ω̃(`)‖p

p + ‖ω(`ζ) − ω̃(`ζ)‖p
p
)

E2φ−1( hτ2φ−1)

) 1
p
)p ∫τ

0 `
2φ−2E2φ−1( h`

2φ−1)d`

E2φ−1( hτ2φ−1)

6
ΨΓ(2φ− 1)

 h

(
‖ω(`) − ω̃(`)‖p

 h + ‖ω(`ζ) − ω̃(`ζ)‖p
 h

)
.

By utilizing Lemma 3.2, we get the required result,

‖=θ
(
ω(τ)

)
− =θ

(
ω̃(τ)

)
‖ h 6

(
ΨΓ(2φ− 1)

 h

) 1
p (
‖ω(`) − ω̃(`)‖ h + ‖ω(`ζ) − ω̃(`ζ)‖ h

)
.

From Eqs. (3.9), we get ΨΓ(2φ−1)
 h < 1, the operator =θ on

(
H̃p([0, T]), ‖ · ‖ h

)
is a contractive map. There

is a single fixed point of this map in H̃p([0, T]), according to the Banach fixed point thorem. The unique
solution of Eq. (1.2) with the In.C ω(0) = θ is also this fixed point. This theorem is proved.

In the following theorem, we will demonstrate that the solution continuously depends on φ.
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Theorem 3.4. The solution ℘φ(τ, θ) depends continuously on φ, i.e.,

lim
φ→φ̃

esssup
τ∈[0,T]

‖℘φ(τ, θ) − ℘φ̃(τ, θ)‖p = 0.

Proof. Suppose φ, φ̃ ∈ ( 1
2 , 1) further take θ ∈ S̃

p
0 . As ℘φ(θ, τ) and ℘φ̃(θ, τ) are solutions to Eq. (1.2), we

obtain the following:

℘φ(θ, τ) − ℘φ̃(θ, τ) =
∫τ

0
`φ−1(Λ(`,℘φ(`),℘φ(`ζ)) −Λ(`,℘φ̃(`),℘φ̃(`ζ)))d`

+

∫τ
0

(
`φ−1 − `φ̃−1)Λ(`,℘φ̃(`),℘φ̃(`ζ))d`

+

∫τ
0
`φ−1(δ(`,℘φ(`),℘φ(`ζ)) − δ(`,℘φ̃(`),℘φ̃(`ζ)))dW`

+

∫τ
0

(
`φ−1 − `φ̃−1)δ(`,℘φ̃(`),℘φ̃(`))dW`.

(3.12)

Using Eq. (3.2), we get the following result from Eq. (3.12):

∥∥℘φ(θ, τ) − ℘φ̃(θ, τ)
∥∥p

p 6 2p−1Ψ

∫τ
0
`2φ−2∥∥℘φ(θ, τ) − ℘φ̃(θ, τ)

∥∥p
pd`

+ 22p−2
∥∥∥∥ ∫τ

0

(
`φ−1 − `φ̃−1)Λ(`,℘φ̃(`),℘φ̃(`ζ))d`∥∥∥∥p

p

+

∥∥∥∥ ∫τ
0

(
`φ−1 − `φ̃−1)δ(`,℘φ̃(`),℘φ̃(`ζ))dW`

∥∥∥∥p

p
.

(3.13)

Suppose the following:
A(τ, `,φ, φ̃) =

∣∣`φ−1 − `φ̃−1∣∣. (3.14)

Now we will simplify Eq. (3.13) one by one. First, using Eq. (3.2), the Höld-Ineq, (A1), and (A2), we get
the following result:∥∥∥∥ ∫τ

0

(
`φ−1 − `φ̃−1)Λ(`,℘φ̃(`),℘φ̃(`ζ))d`∥∥∥∥p

p

6
∑m

1
E
( ∫τ

0
A(τ, `,φ, φ̃)

∣∣Λı(`,℘φ̃)∣∣d`)p

6
∑m

1
E

(( ∫τ
0

(
A(τ, `,φ, φ̃)

) p
p−1

)p−1 ∫τ
0

∣∣Λı(`,℘φ̃(`),℘φ̃(`ζ))∣∣pd`)

6

( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
) p

2
( ∫τ

0
1d`
) p−2

2
∫τ

0

∥∥Λ(`,℘φ̃(`),℘φ̃(`ζ))∥∥p
pd`

6

( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
) p

2

T
p−2

2

∫τ
0

2p−1
(

Lp‖℘φ̃(`, θ)‖
p
p) + ‖Λ(`, 0)‖p

p

)
6

( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
) p

2

T
p
2 2p−1

(
Lpesssup
τ∈[0,T]

‖℘φ̃(`, θ)‖
p
p) +Up

)
.

Now we will simplify the second part of Eq. (3.13). For this, using the BHDG-Ineq, Eq. (3.14), (A1), (A2),
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we have as a result,∥∥∥∥ ∫τ
0

(
`φ−1 − `φ̃−1)δ(`,℘φ̃(`),℘φ̃(`ζ))dW`

∥∥∥∥p

p

6
∑m

1
E
∣∣∣∣ ∫τ

0
A(τ, `,φ, φ̃)δı(`,℘φ̃(`),℘φ̃(`ζ))dW`)

∣∣∣∣p
6
∑m

1
CpE

∣∣ ∫τ
0
A(τ, `,φ, φ̃)2∣∣δı(`,℘φ̃(`),℘φ̃(`ζ))∣∣2dW`)

∣∣ p
2

6
∑m

1
CpE

[( ∫τ
0
A(τ, `,φ, φ̃)2∣∣δı(`,℘φ̃(`),℘φ̃(`ζ))∣∣pd`) 2

p
( ∫τ

0

(
A(τ, `,φ, φ̃)

)2
d`

) p−2
p
] p

2

= Cp

∫τ
0
A(τ, `,φ, φ̃)2∥∥δ(`,℘φ̃(`),℘φ̃(`ζ))∥∥p

pd`

( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
d`

) p−2
p

6 Cp

( ∫τ
0
A(τ, `,φ, φ̃)2d`

) p
2

2p−1
(

Lpesssup
τ∈[0,T]

‖℘φ̃(`, θ)‖
p
p +Up

)
.

By utilizing the above results and definition ‖ · ‖ h, we get the following:

∥∥℘φ(θ, τ) − ℘φ̃(θ, τ)
∥∥p

p

E2φ−1( hτ2φ−1)
6
Ψ2p−1

∫τ
0 `

2φ−2

∥∥℘φ(`,θ)−℘φ̃(`,θ)∥∥p

p

E2φ−1( hτ2φ−1)
E2φ−1( hτ

2φ−1)

E2φ−1( hτ2φ−1)

+ 23p−3
(

Lpesssup
τ∈[0,T]

‖℘φ̃(`, θ)‖
p
p +Up

)( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
d`

) p
2

T
p
2

+ 23p−3
(

Lpesssup
τ∈[0,T]

‖℘φ̃(`, θ)‖
p
p +Up

)
Cp

( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
d`

) p
2

6
Ψ2p−1Γ(2φ− 1)

 h

∥∥℘φ(τ, θ) − ℘φ̃(τ,θ)

∥∥p
 h

+ 23p−3
(

Lpesssup
τ∈[0,T]

‖℘φ̃(`, θ)‖
p
p +Up

)( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
d`

) p
2

T
p
2

+ 23p−3
(

Lpesssup
τ∈[0,T]

‖℘φ̃(`, θ)‖
p
p +Up

)
Cp

( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
d`

) p
2

.

Finally, utilizing Lemma 3.2, we get(
1−
Ψ2p−1Γ(2φ− 1)

 h

)∥∥℘φ(τ, θ) − ℘φ̃(τ, θ)
∥∥p

 h

6 23p−3
(

Lpesssup
τ∈[0,T]

‖℘φ̃(`, θ)‖
p
p +Up

)( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
d`

) p
2

T
p
2

+ 23p−3
(

Lpesssup
τ∈[0,T]

‖℘φ̃(`, θ)‖
p
p +Up

)
Cp

( ∫τ
0

(
A(τ, `,φ, φ̃)

)2
d`

) p
2

.

Thus, by Eq. (3.9) and p > 2, it is required to demonstrate the following in order to complete the proof:

lim
φ̃→φ

sup
τ∈[0,T]

∫τ
0

(
A(τ, `,φ, φ̃)

)2
d` = 0.
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We have the following:∫τ
0

(
A(τ, `,φ, φ̃)

)2
d` =

∫τ
0
`2φ−2d`+

∫τ
0
`2φ̃−2d`−

∫τ
0
`φ+φ̃−2d` =

`2φ−1

2φ− 1
+
`2φ̃−1

2φ̃− 1
−

2τφ+φ̃−1

φ+ φ̃− 1
.

Hence, it proved the required result.

The evaluation of the difference between two distinct solutions yields the following result. Conse-
quently, we derive the Lipschitz continuity dependency solutions with respect to the initial values.

Theorem 3.5. For any θ,γ ∈ S̃
p
0 the solution ℘φ(τ, θ) depends Lipschitz continuously on θ, i.e., there exists L > 0

such that
‖℘φ(τ, θ) − ℘φ(τ,γ)|p 6 L‖θ− γ‖p, for all τ ∈ [0, T].

Proof. Choose and fix θ ∈ S̃
p
0 . Let θ ∈ S̃

p
0 arbitrarily. Since ℘φ(τ, θ) and ℘φ(τ,γ) are solutions of Eq. (1.2)

it follows that

℘φ(τ, θ) − ℘φ(τ,γ) = θ− γ+
∫τ

0
`φ−1(Λ(`,℘φ(`, θ),℘φ(`ζ, θ)) −Λ(`,℘φ(`,γ),℘φ(`ζ,γ))

)
d`

+

∫τ
0
`φ−1(δ(`,℘φ(`, θ),℘φ(`ζ, θ)) − δ(`,℘φ(`,γ),℘φ(`ζ,γ)

)
dW`.

Hence, using Eq. (3.2),∥∥℘φ(τ, θ) − ℘φ(τ,γ)
∥∥p

p

6 2p−1
∥∥∥∥ ∫τ

0
`φ−1

(
Λ
(
`,℘φ(`, θ),℘φ(`ζ, θ), )

)
−Λ

(
`,℘φ(`,γ),℘φ(`ζ,γ)

))
d`

∥∥∥∥p

p

+ 2p−1
∥∥∥∥ ∫τ

0
`φ−1

(
δ
(
`,℘φ(`, θ),℘φ(`ζ, θ)

)
− δ
(
`,℘φ(`, θ),℘φ(`ζ,γ)

))
dW`

∥∥∥∥p

p
.

(3.15)

Now we simplify Eq. (3.15) one by one. So, by using Eq. (3.2), Höld-Ineq and (A1), we get the following
reuslt:∥∥∥∥ ∫τ

0
`φ−1

(
Λ
(
`,℘φ(`, θ),℘φ(`ζ, θ)

)
−Λ

(
`,℘φ(`,γ),℘φ(`ζ,γ)

))
d`

∥∥∥∥p

p

6
∑m

ı=1
E
( ∫τ

0
`φ−1

(
Λı
(
`,℘φ(`, θ),℘φ(`ζ, θ)

)
−Λı

(
`,℘φ(`,γ),℘φ(`ζ,γ)

))
d`

)p

6
∑m

ı=1
E

(( ∫τ
0
`
(φ−1)(p−2)

p−1 d`

)p−1( ∫τ
0
`2φ−2∣∣Λı(`,℘φ(`, θ),℘φ(`ζ, θ)

)
−Λı

(
`,℘φ(`,γ),℘φ(`ζ,γ)

)∣∣))

6

(
LpTpφ−2φ+1(p − 1)p−1

(pφ− 2φ+ 1)p−1

) ∫τ
0
`2φ−2

(∥∥℘φ(`, θ) − ℘φ(`,γ)∥∥p
p +

∥∥℘φ(`ζ, θ) − ℘φ(`ζ,γ)
∥∥p

p

)
ds.

(3.16)
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Now using Eq. (3.2), the Höld-Ineq, BHDG-Ineq and (A1), we get∥∥∥∥ ∫τ
0
`φ−1

(
δ
(
`,℘φ(`, θ),℘φ(`ζ, θ)

)
− δ
(
`,℘φ(`,γ),℘φ(`ζ,γ)

))
dW`

∥∥∥∥p

p

=
∑m

ı=1
E
∣∣∣∣ ∫τ

0
`φ−1

(
δı
(
`,℘φ(`, θ),℘φ(`ζ, θ)

)
− δı

(
`,℘φ(`,γ),℘φ(`ζ,γ)

))
dW`

∣∣∣∣p
6
∑m

ı=1
CpE

∣∣∣∣ ∫τ
0
`2φ−2∣∣δı(`,℘φ(`, θ)℘φ(`ζ, θ)

)
− δı

(
`,℘φ(`,γ),℘φ(`ζ,γ)

)∣∣2d`∣∣∣∣
p
2

6
∑m

ı=1
CpE
∫τ

0
`2φ−2∣∣δı(`,℘φ(`, θ),℘φ(`ζ, θ)

)
− δı

(
`,℘φ(`,γ),℘φ(`ζ,γ)

)∣∣pd`( ∫τ
0
`2φ−2d`

) p−2
2

6 LpCp

(
T2φ−1

2φ− 1

) p−2
2
∫τ

0
`2φ−2

(∥∥℘φ(`, θ) − ℘φ(`,γ)∥∥p
p +

∥∥℘φ(`ζ, θ) − ℘φ(`ζ,γ)
∥∥p

p

)
d`.

(3.17)

Utilizing Eqs. (3.16) and (3.17), we can therefore extract the following from Eq. (3.15),∥∥℘φ(τ, θ) − ℘φ(τ,γ)
∥∥p

p

6 2p−1∥∥θ− γ∥∥p
p + 2p−1Ψ

∫τ
0
`2φ−2

(∥∥℘φ(`, θ) − ℘φ(`,γ)∥∥p
p +

∥∥℘φ(`ζ, θ) − ℘φ(`ζ,γ)
∥∥p

p

)
d`.

Considering the Grön-Bell-Ineq, we obtain the following ([17, Lemma 7.1.1]):∥∥℘φ(τ− ζ, θ) − ℘φ(τ− ζ,γ)
∥∥p

p 6 2p−1E2φ−1
(
2p−1ΨΓ(2φ− 1)τ2φ−1)∥∥θ− γ∥∥p

p.

Hence, the proof is complete.

3.2. The regularity of solutions to CFSPDEs

In this subsection, we will prove the regularity of solutions to CFSPDEs.

Theorem 3.6. Consider that (A1) and (A2) are valid. After that, a constant J > 0 that depends on φ, L, J,U, T

exists, so
‖℘φ(θ, τ) − ℘φ(θ, f)‖p 6 J|τ− f|φ− 1

2 , ∀τ, f ∈ [0, T].

Proof. Take τ, u ∈ [0, T], such that τ > u. By applying inequality (3.2), we get the following:

22−2p∥∥℘φ(τ, θ) − ℘φ̃(τ, θ)
∥∥p

p 6

∥∥∥∥ ∫τ
u
`φ−1Λ(`,℘φ(`, θ))d`

∥∥∥∥p

p
+

∥∥∥∥ ∫τ
u
`φ−1δ(`,℘φ(`, θ))dW`

∥∥∥∥p

p
.

Now utilizing Höld-Ineq, BHDG-Ineq, as a result, we get the following from above:

22−2p∥∥℘φ(τ, θ) − ℘φ̃(τ, θ)
∥∥p

p 6
(p − 1)p−1

(pφ− 1)p−1

(
τ

pφ−1
p−1 − u

pφ−1
p−1
)p−1

∫τ
u

∥∥Λ(`,℘φ(`, θ))∥∥p
pd`

+ Cp

∫τ
u

∥∥δ(`,℘φ(`, θ))∥∥p
p

`2−2φ d`

( ∫τ
u

1
`2−2φd`

) p−2
2

.

However, U1 > 0 also exists, as esssup
τ∈[0,T]

‖℘φ(τ, θ)‖p
p 6 U1 because ℘φ(`, θ) ∈ H̃p

(
[0, T]

)
. Along with (A1)

and (A2), this implies∥∥Λ(`,℘φ(`, θ))∥∥p
p 6 2p−1(Lp∥∥℘φ(`, θ))∥∥p

p + ‖Λ(`, 0)‖p
p
)
6 2p−1(LpU1 +Up),
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p 6 2p−1(Lp∥∥℘φ(`, θ))∥∥p

p + ‖δ(`, 0)‖p
p
)
6 2p−1(LpU1 +Up).

The estimate that results from combining the calculations above is as follows:

22−2p∥∥℘φ(τ, θ) − ℘φ̃(τ, θ)
∥∥p

p 6
(2p − 2)p−1

(pφ− 1)p−1

(
τ− f

) (2φ−1)p
2
(
LpU1 +Up)T p

2

+
1

(2φ− 1)
p
2

(
τ− f

) (2φ−1)p
2
(
LpU1 +Up)2p−1Cp.

Hence, we get ∥∥℘φ(τ, θ) − ℘φ̃(τ, θ)
∥∥

p 6 J(τ− f)φ− 1
2 ,

where

Jp = 22p−2
(
(2p − 2)p−1

(pφ− 1)p−1

(
LpU1 +Up)T p

2 +
1

(2φ− 1)
p
2
(LpU1 +Up)2p−1Cp

)
.

4. Averaging principle result

In this section, we establish the growth requirements for δ̃ and the averaging principle result of CF-
SPDEs in the sense of Lp. The averaging principle for FSDEs in the Lp space provides a powerful approach
for solving real-world challenges in various fields, such as finance, physics, biology, and engineering. This
principle involves taking averages of solutions over time or space to obtain smoother and more stable rep-
resentations of the underlying processes. Here’s how it contributes and its limitations.

The contributions of the averaging principle are as follows [32, 34, 44].

i. Noise Reduction: Averaging over time or space helps reduce the impact of random fluctuations or
noise present in the system. In real-world applications, noise can obscure the underlying dynamics
of a process. By averaging, one can obtain a clearer signal that better represents the true behavior of
the system.

ii. Improved Predictions: Averaging allows for more accurate predictions of future states or behaviors
of the system. By obtaining smoother trajectories or representations of the system dynamics, one can
make better-informed decisions or forecasts, which is crucial in fields like finance for risk manage-
ment or in biology for predicting population dynamics.

iii. Enhanced Stability: Averaging can improve the stability of the numerical methods used to solve FS-
DEs. It can help mitigate numerical instabilities or oscillations that may arise due to the complex
interplay between fractional operators and stochastic noise, leading to more reliable numerical solu-
tions.

iv. Regularization: Averaging acts as a form of regularization, smoothing out irregularities in the solu-
tions of FSDEs. This regularization can help in obtaining well-behaved solutions, especially in cases
where the equations are ill-posed or have singularities.

The limitations of the averaging principle are as follows.

i. Loss of Information: Averaging over time or space may lead to a loss of detailed information about
the system dynamics. In some cases, important features or transient behaviors may be smoothed out
or obscured, making it difficult to capture the full complexity of the underlying processes.

ii. Assumption of Stationarity: The averaging principle often assumes stationarity of the underlying
processes, which may not hold true in all real-world scenarios. If the processes exhibit non-stationary
behavior or significant changes over time, simple averaging techniques may not be appropriate or
effective.
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iii. Computational Complexity: Averaging can significantly increase computational complexity, espe-
cially for high-dimensional systems or when dealing with large datasets. This can pose challenges
in terms of computational resources and efficiency, particularly for real-time applications or when
working with big data.

iv. Limited Applicability: The averaging principle may not be applicable to all types of FSDEs or all
real-world problems. Its effectiveness depends on the specific characteristics of the system under
consideration and the goals of the analysis. In some cases, alternative approaches may be more
suitable or necessary.

In summary, while the averaging principle for FSDEs in the Lp space offers valuable benefits in terms
of noise reduction, improved predictions, stability enhancement, and regularization, it also has limitations
related to information loss, stationarity assumptions, computational complexity, and limited applicability.
Careful consideration of these factors is essential when applying the averaging principle to real-world
challenges.

The interval translation approach is a powerful method for demonstrating the averaging principle for
FSDEs. This approach involves dividing the time interval into smaller subintervals and analyzing the
behavior of the solutions within each subinterval. Here are some implications of the interval translation
approach in demonstrating the averaging principle.

i. Smoothing Effect: By dividing the time interval into smaller subintervals, the interval translation
approach allows researchers to analyze the behavior of solutions over shorter time scales. This ap-
proach effectively "smoothes out" the effects of stochastic noise and random fluctuations, leading to
more stable and predictable solutions within each subinterval.

ii. Averaging Over Subintervals: Within each subinterval, the interval translation approach involves av-
eraging the solutions over multiple realizations or trajectories of the stochastic process. This averaging
process helps in reducing the impact of random fluctuations and noise, leading to a clearer and more
robust representation of the underlying dynamics of the system.

iii. Consistency Across Subintervals: The interval translation approach ensures consistency of solutions
across different subintervals. By averaging over multiple realizations within each subinterval, the
approach provides a coherent and consistent representation of the system dynamics, despite the
presence of stochastic noise and variability.

iv. Quantitative Estimates: The interval translation approach allows for quantitative estimates of the
averaging effect. By analyzing the behavior of solutions within each subinterval and comparing
the averaged solutions across different subintervals, researchers can quantify the extent to which
averaging reduces the impact of stochastic noise and improves the stability of the solutions.

v. Validity Across Different Conditions: The interval translation approach demonstrates the robustness
and validity of the averaging principle across different conditions and scenarios. By analyzing the
behavior of solutions within multiple subintervals under varying initial conditions, parameters, or
external influences, the approach confirms the general applicability and effectiveness of the averaging
principle for FSDEs.

Lemma 4.1. For every T1 ∈ [0, T], we can derive the following growth requirements for δ̃ by utilizing conditions
(C2) and (C3):

‖δ̃(O,V)‖p 6 U3 (1 + ‖O‖p + ‖V‖p) ,

where U3 =
(
2p−1Y2 (T1) + 6p−1U

p
2

)
.

Proof. Considering Jen-Ineq and conditions (C2) and (C3), we derive the following result:

‖δ̃(O,V)‖p 6 2p−1‖δ(τ,O,V) − δ̃(O,V)‖p + 2p−1‖δ(τ,O,V)‖p

6 2p−1Y2 (T1) (1 + ‖O‖p + ‖V‖p) + 2p−1U
p

2 (1 + ‖O‖+ ‖V‖)p

6
(
2p−1Y2 (T1) + 6p−1U

p
2

)
(1 + ‖O‖p + ‖V‖p) .
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Now we examin the averaging principle of CFSPDEs in the sense of Lp. Initially, the standard form of
Eq. (3.1) will be examined,

ωε(τ) = θ+ ε
φ

∫τ
0
`φ−1Λ

(
`,ωε(`),ωε(`ζ)

)
d`+ εφ− 1

2

∫τ
0
`φ−1δ

(
`,ωε(`),ωε(`ζ)

)
dW`, (4.1)

where ε ∈ (0, ε0] is a positive small parameter, ε0 is a fixed point, and Λ and δ satisfy the conditions (C1)
and (C2). The averaged representation of Eq. (4.1) is thus depicted below:

ω∗ε(τ) = θ+ ε
φ

∫τ
0
`φ−1Λ̃

(
ω∗ε(`),ω

∗
ε(`ζ)

)
d`+ εφ− 1

2

∫τ
0
`φ−1δ̃

(
ω∗ε(`),ω

∗
ε(`ζ)

)
dW`, (4.2)

where Λ̃ : Rb ×Rb → Rb, δ̃ : Rb ×Rb → Rb×m.
Theorem 4.2. Consider that conditions (C1)-(C3) are met. We can determine the corresponding ε1 ∈ (0, ε0] ,ϕ >
0,χ ∈ (0, 1) satisfies for all ε ∈ (0, ε1] when p ∈

[
2, (1 − φ)−1

)
and for z > 0, which is an arbitrarily small

number. The formula for this is obtained as follows:

E
[

sup
τ∈[0,ϕε−χ]

∥∥ωε(τ) −ω∗ε(τ)∥∥p
]
6 z. (4.3)

Proof. We achieve the following outcome for any ∀τ ∈ [0, a] ⊂ [0, T] via Eqs. (4.1) and (4.2):

ωε(τ) −ω
∗
ε(τ) = (θ− θ) + εφ

∫τ
0
`φ−1(Λ(`,ωε(`),ωε(`ζ))− Λ̃(ω∗ε(`),ω∗ε(`ζ)))d`

+ εφ− 1
2

∫τ
0
`φ−1(δ(`,ωε(`),ωε(`ζ))− δ̃(ω∗ε(`),ω∗ε(`ζ)))dW`.

(4.4)

By using Jen-Ineq, we get the following from Eq. (4.4) as a result:

∥∥ωε(τ) −ω∗ε(τ)∥∥p
6 2p−1

∥∥∥∥εφ ∫τ
0
`φ−1

(
Λ
(
`,ωε(`),ωε(`ζ)

)
− Λ̃

(
ω∗ε(`),ω

∗
ε(`ζ)

))
d`

∥∥∥∥p

+ 2p−1
∥∥∥∥εφ− 1

2

∫τ
0
`φ−1

(
δ
(
`,ωε(`),ωε(`ζ)

)
− δ̃
(
ω∗ε(`),ω

∗
ε(`ζ)

))
dW`

∥∥∥∥p

6 2p−1εφp
∥∥∥∥ ∫τ

0
`φ−1

(
Λ
(
`,ωε(`),ωε(`ζ)

)
− Λ̃

(
ω∗ε(`),ω

∗
ε(`ζ)

))
d`

∥∥∥∥p

+ 2p−1ε(φ− 1
2 )p
∥∥∥∥ ∫τ

0
`φ−1

(
δ
(
`,ωε(`),ωε(`ζ)

)
− δ̃
(
ω∗ε(`),ω

∗
ε(`ζ)

))
dW`

∥∥∥∥p
.

(4.5)

Utilizing Eq. (4.5) in Eq. (4.3),

E
[

sup
06τ6a

∥∥ωε(τ) −ω∗ε(τ)∥∥p
]

6 2p−1εφpE

[
sup

06τ6a

∥∥∥∥ ∫τ
0
`φ−1

(
Λ
(
`,ωε(`),ωε(`ζ)

)
− Λ̃

(
ω∗ε(`),ω

∗
ε(`ζ)

))
d`

∥∥∥∥p
]

+ 2p−1ε(φ− 1
2 )pE

[
sup

06τ6a

∥∥∥∥ ∫τ
0
`φ−1

(
δ
(
`,ωε(`),ωε(`ζ)

)
− δ̃
(
U ∗ε (`),ω

∗
ε(`ζ)

))
dW`

∥∥∥∥p
]
= Y1 + Y2.

(4.6)

From Y1,

Y1 6 22p−2εφpE

[
sup

06τ6a

∥∥∥∥ ∫τ
0
`φ−1

(
Λ
(
`,ωε(`),ωε(`ζ)

)
−Λ

(
`,ω∗ε(`),ω

∗
ε(`ζ)

))
d`

∥∥∥∥p
]

+ 22p−2εφpE

[
sup

06τ6a

∥∥∥∥ ∫τ
0
`φ−1

(
Λ
(
`,ω∗ε(`),ω

∗
ε(`ζ)

)
− Λ̃

(
ω∗ε(`),ω

∗
ε(`ζ)

))
d`

∥∥∥∥p
]
= Y11 + Y12.

(4.7)
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Using Höld-Ineq, Jen-Ineq, and (C1) on Y11, we get the following result:

Y11 6 22p−2εφp
(∫a

0
`
(φ−1)p

p−1 d`

)p−1

E

[
sup

06τ6a

∫τ
0
‖Λ (`,ωε(`),ωε(`ζ)) −Λ (`,ω∗ε(`),ω

∗
ε(`ζ))‖

p d`

]

6 23p−3εφpaφp−1U
p

2

(
p − 1
φp − 1

)p−1
E
[

sup
06τ6a

∫τ
0
‖ωε(`) −ω∗ε(`)‖

p d`

]
+ E
[

sup
06τ6a

∫τ
0
‖ωε(`ζ) −ω∗ε(`ζ)‖

p d`

]

= D11ε
φpaφp−1

( ∫a
0

E
[

sup
06ρ6`

‖ωε(ρ) −ω∗ε(ρ)‖
p
]
d`+

∫a
0

E
[

sup
06ρ6`

‖ωε(ρζ) −ω∗ε(ρζ)‖p
]
d`

)
,

(4.8)

where D11 = 23p−3U
p

2

(
p−1
φp−1

)p−1
. Using Höld-Ineq, Jen-Ineq, and (C3) on Y12, we get the following

result:

Y12 6 22p−2εφp
( ∫a

0
`
(φ−1)p

p−1 d`
)p−1

E
[

sup
06τ6a

∫τ
0

∥∥∥∥Λ(`,ω∗ε(`),ω∗ε(`ζ))− Λ̃(ω∗ε(`),ω∗ε(`ζ))∥∥∥∥p

d`

]
6 22p−2εφp

(
p − 1
φp − 1

)p−1

aφpY1(a)
(
1 + E

∥∥ω∗ε(`)∥∥p
+ E
∥∥ω∗ε(`ζ)∥∥p)

= D12ε
φpaφp,

(4.9)

where D12 = 22p−2Y1(a)
(

1 + E ‖ω∗ε(`)‖
p + E

∥∥ω∗ε(`ζ)∥∥p
)(

p−1
φp−1

)p−1

. Through the use of Jen-Ineq, Y2

provides the following:

Y2 6 22p−2ε(φ− 1
2 )p

(
E

[
sup

06τ6a

∥∥∥∥ ∫τ
0
`φ−1

[
δ
(
`,ωε(`),ωε(`ζ)

)
− δ
(
`,ω∗ε(`),ω

∗
ε(`ζ)

)]
dW`

∥∥∥∥p
])

+ 22p−2ε(φ− 1
2 )p

(
E

[
sup

06τ6a

∥∥∥∥ ∫τ
0
`φ−1

[
δ
(
`,ω∗ε(`),ω

∗
ε(`ζ)

)
− δ̃
(
`,ω∗ε(`),ω

∗
ε(`ζ)

)]
dW`

∥∥∥∥p
])

= Y21 + Y22.

Using (C1), Höld-Ineq, and BHDG-Ineq on Y21, we achieve the following outcomes:

Y21 6 22p−2ε(φ− 1
2 )p(2−1(p − 1)1−ppp+1) p

2

× E
[∫a

0
`2φ−2 ‖δ (`,ωε(`),ωε(`ζ)) − δ (`,ω∗ε(`),ω∗ε(`ζ))‖

2 d`

] p
2

6 22p−2ε(φ− 1
2 )pa

p
2 −1

(
pp+12−1(p − 1)1−p

) p
2

× E
[∫a

0
`(φ−1)p ‖δ (`,ωε(`),ωε(`ζ)) − δ (`,ω∗ε(`),ω∗ε(`ζ))‖

p d`

]
6 23p−3ε(φ− 1

2 )pa
p
2 −1U

p
2
(
pp+12−1(p − 1)1−p) p

2

×
∫a

0
`(φ−1)pE

[
sup

06ρ6`

[
‖ωε(ρ) −ω∗ε(ρ)‖

p + ‖ωε(ρζ) −ω∗ε(ρζ)‖
p]d`]

= D21ε
(φ− 1

2 )pa
p
2 −1

( ∫a
0
`(φ−1)pE

[
sup

06ρ6`
‖ωε(ρ) −ω∗ε(ρ)‖

p d`

]

+

∫a
0
`(φ−1)pE

[
sup

06ρ6`
‖ωε(ρζ) −ω∗ε(ρζ)‖

p d`

])
,

(4.10)
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where D21 = 23p−3U
p

2

(
pp+1

2(p−1)p−1

) p
2
. Again using Höld-Ineq and BHDG-Ineq on Y22, we achieve the

following outcomes:

Y22 6 22p−2(2−1(p − 1)1−ppp+1) p
2 ε(φ− 1

2 )p

× E
[∫a

0

∥∥∥Λ (`,ω∗ε(`),ω
∗
ε(`ζ)) − δ̃ (`,ω

∗
ε(`),ω

∗
ε(`ζ))

∥∥∥2
`2φ−2d`

] p
2

6 22p−2ε(φ− 1
2 )pa

p
2 −1(2−1(p − 1)1−ppp+1) p

2 (4.11)

× E
[ ∫a

0
`(φ−1)p

(
‖δ (`,ω∗ε(`),ω∗ε(`ζ))‖

p +
∥∥δ̃ (ω∗ε(`),ω∗ε(`ζ)) ∥∥p

)
d`

]
6

23p−33p−1ε(φ− 1
2 )paφp− p

2 U
p

2

(
U

p
2 +U3

)p(
(φ− 1)p + 1

) (
2−1(p − 1)1−ppp+1) p

2

×
(
1 + E[‖ω∗ε(`)‖

p] + E[‖ω∗ε(`ζ)‖
p]
)
= D22ε

(φ− 1
2 )paφp− p

2 ,

where D22 = 23p−33p−1U
p

2

(
U

p
2 +U3

)p (
2−1(p − 1)1−ppp+1

) p
2
(
1 + E[‖ω∗ε(`)‖

p] + E[‖ω∗ε(`ζ)‖
p]
)
. By utiliz-

ing Eqs. (4.7)-(4.11) in (4.6), as a result, we get the following outcomes:

E
[

sup
06τ6a

‖ωε(τ) −ω∗ε(τ)‖
p
]

6 D12ε
φpaφp +D22ε

(φ− 1
2 )paφp− p

2

+

∫a
0

[
D11ε

φpaφp−1 +D21ε
(φ− 1

2 )pa
p
2 −1`(φ−1)p

]
E
[

sup
06ρ6`

‖ωε(ρ) −ω∗ε(ρ)‖
p d`

]
+

∫a
0

[
D11ε

φpaφp−1 +D21ε
(φ− 1

2 )pa
p
2 −1`(φ−1)p

]
E
[

sup
06ρ6`

‖ωε(ρζ) −ω∗ε(ρζ)‖
p d`

]
.

(4.12)

Consequently, we obtain the subsequent outcome from Eq. (4.12):

E
[

sup
06τ6a

‖ωε(τ) −ω∗ε(τ)‖
p
]

6

(
D12ε

φpaφp +D22ε
(φ− 1

2 )paφp− p
2

)
exp

(
2D11ε

φpaφp +
2D21

(φ− 1)p + 1
ε(φ− 1

2 )paφp− p
2

)
.

This implies that for any ∀τ ∈ [0,ϕε−χ] ⊆ [0, T], there are ϕ > 0 and χ ∈ (0, 1) as well

E

[
sup

06τ6ϕε−χ
‖ωε(τ) −ω∗ε(τ)‖

p

]
6 Zε1−χ,

where

Z =

(
D12ϕ

φpεφp+χ−φχp−1 +D22ϕ
φp− p

2 ε
p
2 (χ−1)+φp+χ−φχp−1

)

× exp
[

2D11ϕ
φpεφp−pφχ +

2D21

(φ− 1)p + 1
ϕφp− p

2 ε
p
2 (χ−1)+φp−φχp

]
is a constant. As a result, when ∀z > 0, finding ε1 ∈ (0, ε0] that satisfies ∀ε ∈ (0, ε1] and τ ∈ [0,ϕε−χ]
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allows us to deduce

E

[
sup

06τ6ϕε−χ
‖ωε(τ) −ω∗ε(τ)‖

p

]
6 z.

Corollary 4.3. Assume that the conditions (C1) and (C2) are valid. Considering any arbitrary number z1 > 0, the
subsequent criteria are established: χ ∈ (0, 1),ϕ > 0, and ε1 ∈ (0, ε0) occur for ∀ε ∈ (0, ε1], we possess

lim
ε→0

P
(

sup
τ∈[0,ϕε−χ]

∥∥ωε(τ) −ω∗ε(τ)∥∥ > z1

)
= 0.

Proof. Using the Chebyshev-Markov inequality and Theorem 4.2, one can deduce the following for any
number z1 > 0:

P
[

sup
τ∈[0,ϕε−χ]

∥∥ωε(τ) −ω∗ε(τ)∥∥ > z1

]
6

1
z2

1
E
[

sup
τ∈[0,ϕε−χ]

∥∥ωε(`) −ω∗ε(`)∥∥2
]
6
Ψε1−χ

z2
1

6 0 as ε→ 0,

where

Ψ =

(
D12ϕ

φpεφp+χ−φχp−1 +D22ϕ
φp− p

2 ε
p
2 (χ−1)+φp+χ−φχp−1

)

× exp
[

2D11ϕ
φpεφp−pφχ +

2D21

(φ− 1)p + 1
ϕφp− p

2 ε
p
2 (χ−1)+φp−φχp

]
.

It ends the proof.

The results developed in our research work to analyze CFSPDE can be extended and adapted to
analyze more complex systems beyond CFSPDE. Here are some potential extensions or adaptations.

i. Higher-order Fractional Derivatives: While CFSPDEs involve fractional derivatives, the methods de-
veloped can be extended to analyze systems with higher-order fractional derivatives.

ii. Multiscale and Multiphysics Systems: Many real-world systems exhibit multiscale or multiphysics
behavior, where multiple processes operate simultaneously at different scales or interact through
complex couplings. The methods developed for CFSPDE can be extended to analyze such systems by
incorporating multiple fractional processes, coupling terms, or additional physics. This may involve
developing hybrid numerical methods or multiscale modeling approaches to capture the system’s
behavior accurately.

iii. Nonlinear Dynamics and Control: The methods developed for analyzing CFSPDE can be extended to
study nonlinear dynamical systems and control problems. This includes systems with nonlinearities,
bifurcations, chaos, or complex feedback control mechanisms. Numerical techniques such as bifurca-
tion analysis, stability analysis, or optimal control methods can be applied to study the behavior of
nonlinear systems and design control strategies.

iv. Networked and Distributed Systems: Many systems in science and engineering are networked or
distributed, involving interactions between multiple interconnected components or agents. The meth-
ods developed for CFSPDEs can be adapted to analyze such systems by modeling the interactions
between components using fractional operators or stochastic processes. This may include studying
synchronization phenomena, collective behavior, or emergent properties in networked systems.

v. Data-driven and Machine Learning Approaches: Data-driven and machine learning approaches can
complement traditional analytical and numerical methods for analyzing complex systems. The meth-
ods developed for CFSPDE can be combined with data-driven techniques, such as deep learning or
reinforcement learning, to analyze large-scale or high-dimensional systems, infer underlying dynam-
ics from observational data, or optimize system performance.
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vi. Applications in Biology, Finance, and Engineering: The methods developed for analyzing CFSPDE
can be applied to study complex systems in various fields, including biology, finance, and engineer-
ing. This may involve adapting the methods to model specific phenomena or processes in these
domains, such as biological signaling networks, financial markets, or dynamical systems in engineer-
ing.

In the section that follows, we give three examples to show how our presented outcome is valuable.

5. Examples

The average system of a complicated system can be obtained using the average principle result, as
shown by the three numerical examples. Numerical techniques play a crucial role in complementing the-
oretical findings in solving real-world challenges modeled with CFSPDEs. Here’s how they complement
each other.

i. Validation of Theoretical Results: Numerical techniques provide a means to validate theoretical find-
ings obtained from analytical or semi-analytical approaches. By implementing numerical simulations
of CFSPDEs, researchers can verify the behavior of solutions predicted by theoretical models under
various conditions and parameter settings. Consistency between theoretical predictions and numeri-
cal results enhances confidence in the validity of theoretical findings.

ii. Exploration of Complex Scenarios: Real-world challenges often involve complex scenarios that may
not be amenable to analytical solutions. Numerical techniques enable researchers to explore the
behavior of CFSPDE in such scenarios by simulating the dynamics of the system over time. This
allows for the investigation of how different factors and uncertainties affect the solutions and provides
insights that may not be obtainable through purely theoretical analysis.

iii. Parameter Estimation and Sensitivity Analysis: Numerical techniques facilitate parameter estimation
and sensitivity analysis for CFSPDE in real-world applications. By fitting numerical simulations to
observed data, researchers can estimate unknown parameters in the model and assess their sensitivity
to variations in these parameters. This information is valuable for understanding the robustness of
theoretical predictions and calibrating models to real-world observations.

iv. Prediction and Forecasting: Numerical simulations enable the prediction and forecasting of future
behavior in real-world systems modeled with CFSPDE. By extrapolating solutions obtained from
numerical simulations, researchers can anticipate how the system will evolve over time and make
informed decisions or interventions accordingly. This predictive capability is essential for addressing
real-world challenges and for developing strategies to mitigate risks or optimize performance.

v. Handling Nonlinearity and Complexity: Numerical techniques excel at handling the nonlinearity
and complexity inherent in real-world systems modeled with CFSPDE. Through numerical simula-
tions, researchers can explore the behavior of highly nonlinear and complex systems, including those
with discontinuities, singularities, or multi-scale dynamics. This allows for a more comprehensive
understanding of the system’s behavior and its response to various external factors and uncertainties.

Example 5.1. Consider the subsequent CFSPDE:{
T0.8
τ ωε(τ) = 2εφ cos2(τ)ωε(τ) − ε

φωε sin2( 1
2τ) + ε

φ− 1
2 dWτ

dτ , τ ∈ [0,π],
ω(0) = X0,

where φ = 0.8,

Λ(τ,ω(τ),ω(τζ)) = 2ε cos2(τ)ωε(τ) − εωε sin2 (1
2
τ
)
, δ(τ,ω(τ),ω(τζ)) = 1.
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Then,

Λ̃(τ,ω(τ),ω(τζ)) =
1
π

∫π
0

(
2ε cos2(τ)ωε(τ) − εωε sin2 (1

2
τ
))
dτ =

1
2
ωε(τ),

δ̃(τ,ω(τ),ω(τζ)) =
1
π

∫π
0

1dτ = 1.

Thus, we have the corresponding averaged CFSPDE{
T0.8
τ ω

∗
ε(τ) =

1
2ε
φωε(τ) + ε

φ− 1
2 dWτ

dτ ,
ω(0) = X0.

Example 5.2. Consider the subsequent CFSPDE:{
T0.8
τ ωε(τ) = ε

φ sin2(τ)ωε(τζ) + ε
φ− 1

2 sin
(
ωε(τ)

)
dWτ

dτ , τ ∈ [0,π],
ω(0) = X0,

where φ = 0.8,

Λ(τ,ω(τ),ω(τζ)) = sin2(τ)ωε(τζ), δ(τ,ω(τ),ω(τζ)) = sin(ωε(τ)).

Then,

Λ̃(τ,ω(τ),ω(τζ)) =
1
π

∫π
0

sin2(λ)ωε(λζ)dλ =
1
2
ω∗ε(τζ),

δ̃(τ,ω(τ),ω(τζ)) =
1
π

∫π
0

sin(ωε(τ))dλ = sin(ωε(τ)).

Thus, we have the corresponding averaged CFSPDE{
T0.8
τ ω

∗
ε(τ) =

1
2ε
φω∗ε(τζ) + ε

φ− 1
2 sin

(
ω∗ε(τ)

)
dWτ

dτ , τ ∈ [0,π],
ω(0) = X0.

Example 5.3. Consider the subsequent CFSPDE:{
T0.9
τ ωε(τ) =

1
2ε
φωε(τζ) +

3π
4 ε
φ− 1

2 sin3 τ.ωε(τ)dWτ

dτ , τ ∈ [0,π],
ω(0) = X0,

where φ = 0.9,

Λ(τ,ω(τ),ω(τζ)) =
1
2
ωε(τζ), δ(τ,ω(τ),ω(τζ)) =

3π
4

sin3 τ.ωε(τ).

Then,

Λ̃(τ,ω(τ),ω(τζ)) =
1
π

∫π
0

1
2
ωε(λζ)dλ =

1
2
ω∗ε(τζ),

δ̃(τ,ω(τ),ω(τζ)) =
1
π

3π
4

∫π
0

sin3 τ.ωε(τ)dλ = ω∗ε(τ).

Thus, we have the corresponding averaged CFSPDE{
T0.9
τ ω

∗
ε(τ) =

1
2ε
φω∗ε(τζ) + ε

φ− 1
2ω∗ε(τ)

dWτ

dτ , τ ∈ [0,π],
ω(0) = X0.
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6. Conclusions

In this study, we extended the findings regarding the existence, uniqueness, continuous dependency,
regularity of solutions to CFSPDEs, and the averaging principle within the Lp realm. We employed the
notion of a contraction map to explore the existence and uniqueness of the aforementioned problem. This
work uses multiple inequalities and an interval translation approach to illustrate the averaging principle
for CFSPDEs in the Lp space. Finally, three instances are executed in order to understand the determined
results and illustrate the effectiveness of our findings.

In our upcoming work, we will apply numerical methodologies to solve several types of real-world
problems depicted by CFSPDEs.
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