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Abstract
Singularly perturbed boundary value problems (SPBVPs) plays an important role in modeling various phenomena in

engineering and other science fields. The aim of this article is to compare the performance of numerical methods applied
to solve the SPBVPs, which are challenging due to the presence of small perturbation parameters leading to boundary or
interior layers. Four numerical methods are compared, namely, the local radial basis function method, the improved Talbot’s
method, the Euler’s method, and the Weeks method. The main objective of this work is to improve the stability and accuracy
of solutions for SPBVPs, which are important for many applications in science and engineering. We consider two-point SPBVPs
with a boundary layer at one endpoint. To evaluate the performance and effectiveness of the presented numerical techniques,
numerical approximations of four SPBVPs are derived and compared with the analytical solutions. The results presented in
the tables and figures validate that the proposed numerical schemes are highly accurate and clearly outperform the outcomes
of other methods. Furthermore, results from the functional analysis were used to study the existence of the solution to the
considered model and generate sufficient requirements for Ulam-Hyers stability.

Keywords: Singularly perturbed BVPs, local radial basis functions, Laplace transform, Euler’s method, improved Talbot’s
method, Weeks method.

2020 MSC: 34Bxx, 34Cxx, 34D15, 44A10.
©2025 All rights reserved.

1. Introduction

Singularly perturbed differential equations (SPBVPs) plays vital role in various scientific fields [32].
SPBVPs are those problems that have one or more delay term or in which the highest order derivative is
multiplied by a small parameter [26]. The small parameter significantly effect the behavior of the solution.
SPBVPS are challenging because as the small parameter approaches zero, the solutions can vary rapidly,
which often leads to boundary layers where the solution changes sharply. Problems of this type arise
when the past and present, as well as the future, are interdependent. Such equations have applications
in modeling of different phenomena like, the study of bistable devices [29], physiological processes [22],
computational neuroscience [39], control theory [4, 16], blood cell production [28], etc.
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Many researchers have examined the numerical solution of SPBVPs, such as, Debela et al. [10] devel-
oped an accurate numerical method for SPBVPs. Ahsan et al. [5] developed a higher-order Haar wavelet
method for approximating the solution of nonlinear SPBVPs with various types of boundary conditions.
For the first time Pearson [36] solved the SPBVPs including turning points problems numerically by tak-
ing net adjustment via finite difference method. The author of [14] investigated a brand-new replicating
kernel-based approach to a class of singularly SPBVPs. Ramos et al. [40] utilized an unconventional
approach to numerically solve nonlinear SPBVPs on nonuniform models. Vigo-Aguiar and Natesans [56]
obtained the solution for solitary perturbation problems via exponentially fitted difference scheme. The
authors in [37] tackled a non-iterative numerical integration solution for SPBVPs representing an inter-
nal and twin boundary layer. The solution of stiff SPBVPs with twin boundary layers was discussed in
[23]. Jayakumar et al. [31] presented a uniform numerical approach for SPBVPs with boundary layers.
Hammachukiattikul et al. [18] obtained the approximate solution of singularly perturbed advanced-delay
convection-diffusion type differential equations via the finite and hybrid difference schemes. The exis-
tence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion
equations have been examined by Nefedov et al. [33]. Debela and Duressa [11] developed a finite differ-
ence method for studying the numerical solution of SPBVPs with non-local boundary conditions. More
information on the investigation of SPBVPs are reported in [9, 30, 38, 55] and references therein.

In this article, we study the numerical solution to the SPBVPs using the localized radial basis function
method (LRBFM) and the Laplace transform methods (LTM) [2, 47, 61]. The LRBFM is the most practical
and effective method for variety of single and multi variate boundary value problems. LRBFM has gained
attention of the research community over other approaches due to its quick convergence, simplicity of
implementation, low computational cost, ease of understanding, and versatility to higher dimensions [42].
Different real world problems have been solved using the LRBFM, such as the authors of [50] used the
LRBFM to approximate the solution of hyperbolic PDEs. Noorizadegan et al. [35] utilized the LRBFM for
solving the piezoelectric medium problems. In [60] the authors used LRBFM for spatial-temporal calcium
dynamics. Wei et al. [58] studied the solution of variable order fractional diffusion equations via LRBFM.
In [41] used the LRBFM with optimal shape parameter for fractional order integro differential equations.
Nikan et al.[34] developed a stable LRBFM for diffusion equations of time fractional order arising in mass
and heat transfer. More information on the application of LRBFM are reported in [6, 8, 24]. Key features
of the LRBFM are following.

• LRBFM divides the domain into sub-domains and constructs interpolants within each sub-domain.

• LRBFM does not require structured mesh, it uses scattered nodes.

• LRBFM can effectively capture steep gradients and boundary layers.

• LRBFM results in a system of linear equation that can be solved numerically.

• LRBFM can handle multi-dimensional complex problems.

The disadvantages of LRBFM are: (i) this method can be computationally expensive; (ii) if the basis
functions are not selected carefully, this technique may result in an ill-conditioned system. The other
technique used in this article is the Laplace transform technique for the purpose to compare the results
using LRBFM with the results of Laplace transform.

Laplace transform (LT) has been proved to be the finest mathematical tool used for solving linear
ODEs and PDEs in engineering and other sciences. LT has applications in the field of physics, control
engineering, electrical engineering, and signal processing [49]. However, while using the LT, the main
problem is obtaining its inverse. The inverse of LT is not well posed and its analytic inversion for com-
plicated functions is not available. Thus, a numerical technique must be utilized for its inversion. Many
numerical techniques are developed that can be used for the inversion of LT, such as the Fourier series
technique[20], the Zakian’s technique [17], the Weeks technique [59], the Stehfest’s technique [51], the
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Talbot’s method technique [52], etc. The Laplace inversion methods have been utilized by many authors
for various problems (see [19, 25, 45, 46]). However, the Talbot’s and Stehfest’s methods are among the
popular methods frequently used for the inversion of LT for many problems arising in engineering and
other sciences. Some key features of LT method are given as follows.

• LT method is analytic that transforms the problem from time domain to frequency domain.

• Solves the transformed problem in frequency domain.

• Using the LT inversion technique get back the time domain solution.

• LT method can effectively solve initial value problems.

• For many problems LT can provide closed-form solutions, it can also handle impulsive forces and
discontinuities via the Dirac delta and Heaviside functions.

The disadvantages of LT method are: (i) LT cannot handle nonlinear problems; (ii) LT may face problems
in solving problems with variable coefficients or complex boundary conditions; (iii) for complex function
the inversion can be challenging. In this article, we study the application of the LRBFM, the Talbot’s
method [12], the Euler’s method [1], and the Weeks method [59] for a second order SPBVP of the form
([7])

εδ1
d2u(τ)

dτ2 + δ2
du(τ)

dτ
+ δ3u(τ) = f(τ), τ ∈ Ω, (1.1)

or it can be expressed more simply as
Lu(τ) = f(τ), (1.2)

where L = εδ1
d2

dτ2 + δ2
d
dτ + δ3 with Dirichlet’s boundary conditions

Bu(τ) = g1(τ), τ ∈ ∂Ω, (1.3)

and initial condition
u(0) = φ1, u ′(0) = φ2, (1.4)

where δ1, δ2, δ3 are the coefficients, f(τ) g1(τ), u(0) are given sufficiently continuous differentiable func-
tions. Furthermore, we assume that δ2 > q1 throughout the domain Ω, where q1 > 0 which implies
the boundary layer will be at left of the domain, and if δ2 6 q1 < 0 the boundary layer will be at the
right end of the domain. Solution of SPBVPs have a multi-scale character, i.e., there are thin transition
layers where the solution changes fast is known inner region, and the where the solution changes slowly
is known outer region.

2. Existence of solution

In this section, we examine the existence and uniqueness of the solution to the problem (1.1)-(1.4).

Lemma 2.1 ([57]). Let f ∈ C(T,R), where T = [0, T ], then the function u(τ) is a solution of the integral equation

u(τ) = φ1 + τφ2 +

∫τ
0
(τ− s)

[
λ1f(s) − λ2

du(s)

ds
− λ3u(s)

]
ds, τ ∈ T,

if and only if u(τ) is the solution of problem (1.1)-(1.4), where λ1 = 1
εδ1

, λ2 = δ2
εδ1

, λ3 = δ3
εδ1

.

Proof. To achieve our goal we first set the problem defined in (1.1)-(1.4) as

u ′′(τ) = h(τ), (2.1)
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where h(τ) =

[
λ1f(s) − λ2

du(s)
ds − λ3u(s)

]
is a is a continuous function. Integrating both sides of (2.1)

from 0 to τ yields

u ′(τ) − u ′(0) =
∫τ

0
h(s)ds,

or equivalently

u ′(τ) = φ2 +

∫τ
0
h(s)ds. (2.2)

Integration of (2.2) from 0 to τ yields

u(τ) − u(0) = φ2τ+

∫τ
0

∫τ
0
h(s)dsds,

or equivalently

u(τ) = φ1 +φ2τ+

∫τ
0
(τ− s)h(s)ds,

or equivalently

u(τ) = φ1 +φ2τ+

∫τ
0
(τ− s)

[
λ1f(s) − λ2

du(s)

ds
− λ3u(s)

]
ds.

To introduce the Ulam-Hyers stability, we consider the following inequality:∣∣∣∣d2ū(τ)

dτ2 − F

(
dū(τ)

dτ
, ū(τ), f(τ)

)∣∣∣∣ < ε. (2.3)

Definition 2.2 ([54]). A solution of problem (1.1)-(1.4) admits Ulam-Hyers stability if there exist a positive
real number µk such that for every solution ū of the inequality (2.3), there exist an exact solution u such
that ‖u− ū‖ < µkε.

To transform the problem to a fixed point, we define the operator S : Ω→ Ω such that

Su(τ) = φ1 + τφ2 +

∫τ
0
(τ− s)

[
λ1f(s) − λ2

du(s)

ds
− λ3u(s)

]
ds,

the solutions of the problem (1.1) are the fixed points of the operator S. For further analysis we need the
following assumptions. For any τ ∈ [0, T ] there exist constants m1, m2, m3,m4 such that

(A1) |du1
dτ − du2

dτ | 6 m1|u1 − u2|;
(A2) |dudτ | 6 m2|u|;
(A3) |f(τ,u1,u2) − f(τ, ū1, ū2)| 6 m3|u1 − ū1|+m4|u2 − ū2|.

Theorem 2.3 (Schauder’s fixed point theorem, [3]). Let T be a nonempty, convex, compact subset of a Banach
space Ω and let S : T→ T is a compact operator that maps T into itself. Then, S has a fixed point in T.

The integral form of (1.1) is given as

u(τ) = φ1 + τφ2 +

∫τ
0
(τ− s)

[
λ1f(s) − λ2

du(s)

ds
− λ3u(s)

]
ds, τ ∈ T.

Since f is bounded linear function so |f(τ)| 6 Cf, Cf > 0.

Theorem 2.4. Using the hypothesis (A1)-(A2), the problem (1.1) has a solution.
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Proof. To prove the desired result we define the Banach space Ω equipped with norm define by ‖u‖ =

supτ∈T |u(τ)|. Let us define T as T = {u ∈ Ω : ‖u‖ 6 σ}, where σ > 2(|φ1|+|φ2|T
2)+T 3|λ1|Cf

2−T 2(|λ2m2|+|λ3|)
and the operator

S : T→ T by

S[u(τ)] = φ1 +φ2τ+

∫τ
0
(τ− s)[λ1f(s) − λ2

du(s)

ds
− λ3u(s)]ds, τ ∈ T. (2.4)

We need to show that T is bounded, let u ∈ T, then we have using Eq. (2.4),

|u(τ)| =

∣∣∣∣φ1 +φ2τ+

∫τ
0
(τ− s)

[
λ1f(s) − λ2

du(s)

ds
− λ3u(s)

]
ds

∣∣∣∣
6 |φ1|+ |φ2||τ|+

∫τ
0
(τ− s)

[
|λ1||f(s)|ds+ |λ2||m2||u(s)|+ |λ3||u(s)|

]
ds

6 |φ1|+ |φ2|T
2 +

T 2|λ1|Cf

2
+
T 2(|λ2m2|+ |λ3|)

2
‖u‖ 6 σ,

thus ‖u‖ 6 σ. This demonstrates the boundedness of S. It is obvious that S maps bounded set into
bounded sets. Next, we prove that S is continuous, suppose un in T, since T is a closed and compact set.
So, un → u, as n→∞. Therefore, we have

|Sun(τ) − Su(τ)| =

∫τ
0
(τ− s)

[
λ1f(s) − λ2

dun(s)

ds
− λ3un(s)

]
ds

−

( ∫τ
0
(τ− s)

[
λ1f(s) − λ2

du(s)

ds
− λ3u(s)

]
ds

)
6
∫τ

0
(τ− s)|λ2|

∣∣∣∣dun(s)ds
−
du(s)

ds

∣∣∣∣+ |λ3||un(s) − u(s)|ds

6
∫τ

0
(τ− s)

(
|λ2|m1 + |λ3|

)
|un(s) − u(s)|ds

6
τ2

2

(
|λ2|m1 + |λ3|

)
‖un(s) − u(s)‖∞.

Since u is continuous, we have ‖Sun − Su‖ → 0, as n → 0. Hence S is continuous. Next, let τ1, τ2 ∈ T,
then we have

|Su(τ2) − Su(τ1)|

=

∣∣∣∣ ∫τ2

0
(τ2 − s)

[
λ1f(s) − λ2

du(s)

ds
− λ3u(s)

]
ds−

( ∫τ1

0
(τ1 − s)

[
λ1f(s) − λ2

du(s)

ds
− λ3u(s)

]
ds

)∣∣∣∣
6
∫τ1

0
[(τ2 − s) − (τ1 − s)]|λ1f(s) − λ2

du(s)

ds
− λ3u(s)|ds+

∫τ2

τ1

[(τ2 − s)]|λ1f(s) − λ2
du(s)

ds
− λ3u(s)|ds.

Thus

|Su(τ2) − Su(τ1)| 6

(
τ2

2
2

−
τ2

1
2

+
(τ2 − τ1)

2

2
−

(τ2 − τ1)
2

2

)
(λ1Cf + λ2m2σ+ λ3σ)

=
(λ1Cf + λ2m2σ+ λ3σ)

2
(τ2

2 − τ
2
1).

We see that if τ2 → τ1, then τ2
2 − τ

2
1 → 0, then right hand side of the above equation also tends to

zero. Therefore, |Su(τ2) − Su(τ1)| → 0 as τ2 → τ1. Since S continuous and bounded so it is uniformly
continuous. Hence, ‖Su(τ2) − Su(τ1)‖ → 0 as τ2 → τ1. Hence S is equi-continuous, and therefore, by
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Arzelà-Ascoli Theorem S is relatively compact. Therefore, the operator S has atleast one fixed point by
Schauder’s fixed point theorem. Thus, problem (1.1) has a solution.

3. Stability

We develop the stability results for problem (1.1) in this part. The concept of UH stability is crucial
for real-world issues in biology, economics, and physics. Consider the problem

u(τ) = φ1 + τφ2 +

∫τ
0
(τ− s)

[
λ1f(s) − λ2

du(s)

ds
− λ2u(s) + g(s)

]
ds, τ ∈ T, (3.1)

where g ∈ Ω and |g(υ)| 6 ε for ε > 0, then (3.1) has a solution

u(τ) = φ1 + τφ2 +

∫τ
0
(τ− s)

[
λ1f(s) − λ2

du(s)

ds
− λ2u(s) + g(s)

]
ds. (3.2)

Using Theorem 2.4, (3.2) can be written as

u(τ) = Su(τ) +

∫τ
0
(τ− s)g(s)ds, τ ∈ T.

From equation (3.2), using (3.1), one has |Su(τ) − u(τ)| 6 ετ
2

2 .

Theorem 3.1. Problem (1.1)-(1.4) is UH and generalized UH stable if τ2ε
2−τ2(|λ2|m1+|λ3|)

< 1.

Proof. Let u, ū ∈ Ω be exact and approximate solutions of (1.1)-(1.4), respectively, then

‖u− ū‖ = sup
τ∈T

|u(τ) − Sū(τ)| 6 sup
τ∈T

|u(τ) − Su(τ)|+ sup
τ∈T

|Su(τ) − Sū(τ)|

6
τ2

2
ε+

τ2

2

(
|λ2|m1 + |λ3|

)
‖u− ū‖ 6 τ2ε

2 − τ2(|λ2|m1 + |λ3|)
.

4. Numerical scheme

We consider two different approaches: (i) the LRBFM; (ii) the LT methods.

4.1. The local radial basis function method (LRBFM)

In LRBFM the problems domain and its boundary are interpolated on Nr points. For each point
τi(i = 1, 2, 3, . . . ,Nr), there is a local domain Ωi = {τij}

ns
j=1(j = 1, 2, 3, . . . ,ns, ns < Nr), where n is the total

number of points in the local domain Ωi. Hence, the approximation of u(τ) using LRBFM has the form

u(τi) =

ns∑
j=1

βijψ(‖τi − τij‖),

where βi = {βij}
ns
j=1 represents the unknown coefficients, ψ(r) is kernel function, and r = ‖τi − τij‖,

Ωi ⊂ Ω. Many kernel functions are proposed in literature. Some of them are presented in Table 1, and
their graphs for different values of the shape parameter are presented in Figures 1-4.
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Table 1: Different types of RBFs.

Linear spline ψ(r,υ) = υr
Cubic spline ψ(r,υ) = (υr)3

Quadric (Q-RBF) ψ(r,υ) = 1 + υ2r2

Multiquadric (MQ-RBF) ψ(r,υ) =
√

1 + υ2r2

Inverse multiquadric (IMQ-RBF) ψ(r,υ) = 1√
1+υ2r2

Gaussian(GA-RBF) ψ(r,υ) = e−(υr)2
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Figure 1: The plots Q-RBF in the domain [−10, 10] with dif-
ferent values of the shape parameter υ.
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Figure 2: The plots MQ-RBF in the domain [−10, 10] with
different values of the shape parameter υ.
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Figure 3: The plots IMQ-RBF in the domain [−10, 10] with
different values of the shape parameter υ.
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Figure 4: The plots GA-RBF in the domain [−10, 10] with
different values of the shape parameter υ.

In this study, the MQ-RBF defined as ψ(r,υ) =
√

1 + υ2r2 are selected, the sub-domain Ωi has the
center τij and its n− 1 neighboring centers around it. A one dimensional five points stencil is shown in
Figure 5.

Figure 5: A five points stencil.
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Hence, we have n×n systems given as

u(τi1)
u(τi2)

.

.

.
u(τins)

 =



ψ11 ψ12 . . . ψ1ns
ψ21 ψ22 . . . ψ2ns

. . . .

. . . .

. . . .
ψns1 ψns2 . . . ψnsns





βi1
βi2
.
.
.
βins

 , i = 1, 2, . . . ,Nr,

which can be written as
ui = Ψiβi, (4.1)

whereΨi has elements of the form bikj = ψ(‖τik−τij‖), where τik, τij ∈ Ωi. It has been reported in literature
that the system matrix Ψi is non singular, if the points in the stencil are all distinct and υ 6= 0 ([27]). Thus
the coefficients βi in (4.1) can be computed as

βi = (Ψi)−1ui (4.2)

Also for L we have
Lu(τi) =

∑
τj∈Ωi

βijLψ(‖τi − τij‖). (4.3)

From Eq. (4.3), we have
Lu(τi) = ν

i ·βi, (4.4)

where βi and νi are vectors of order ns× 1 and 1×ns, where the elements νi are of the form

νi = Lψ(‖τi − τij‖), τij ∈ Ωi.

From (4.2) and (4.4), we have
Lu(τi) = ν

i(Ψi)−1ui =Φiui,

where
Φi = νi(Ψi)−1. (4.5)

Hence, the linear differential operator L is approximated via LRBFM at each point τi as

Lu ≡ DLu, (4.6)

where DL is a sparse differentiation matrix. We can obtain the approximation of LB in a similar way as

Bu ≡ DBu, (4.7)

using (4.6) and (4.7) in (1.2) and (1.3) we have the following system

DLu = f(τ), DBu = g1(τ). (4.8)

Solving the system defined in (4.8) we will obtain the desired numerical solution.

4.1.1. Selecting best shape parameter
There are numerous radial kernel functions that can be found in the literature. In this article, we

have used the multiquadric radial basis function (MQ-RBF) which is defined as ψ(r,υ) =
√

1 + υ2r2. The
MQ-RBF includes υ known as the shape parameter. The approximate solutions’ accuracy is linked with
the value of this parameter. Many algorithms are proposed in literature for obtaining the best value of υ.
In this article we have used the uncertainty principle due to [43] for selecting the best value of υ. The key
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steps are explained in Table 2,

Table 2: Algorithm for selecting best shape parameter.

Input Kmin, Kmax,dυ
Step i K = 1
Step ii choose 10+12 <K < 10+16

Step iii while K >Kmax and K <Kmin
Step iv construct the interpolation matrix Ψp

Step v U, S, V = svd(Bp)
Step vi C = ρmax

ρmin

Step vii if K <Kmin,υ = υ− dυ
Step viii if K >Kmax,υ = υ+ dυ
Output υ(best) = υ

where K is the condition number of the system matrix Ψi, υ is the shape parameter, and dυ is the
increment in υ. The inverse (Ψi)−1 is computed using svd as (Ψi)−1 = (USVT)

−1
= VS−1UT (see [53]).

Hence we can calculate Φi in (4.5).

4.2. The Laplace transform method

LT has been used by many researchers for studying the solution of differential equations arising in
physics and engineering. The LT of u(τ) is defined as

û(s) = L {u(τ)} =

∫∞
0
e−sτu(τ)dτ,

where s denotes the LT parameter, and the quantities in Laplace space are denoted by an over wide hat.
The LT of nth derivative of u(τ) be given as

L

{
dnu(τ)

dτn

}
= snû(s) − sn−1u(0) − sn−2u ′(0) − · · ·− un(0).

Employing the LT to (1.1)-(1.3), we get

L

{
εδ1

d2u(τ)

dτ2 + δ2
du(τ)

dτ
+ δ3u(τ)

}
= L {f(τ)}

⇒ εδ1[s
2û(s) − su(0) − u ′(0)] + δ2[sû(s) − u(0)] + δ3û(s) = f̂(s),

or (
εδ1s

2 + δ2s+ δ3

)
û(s) = εsu(0) + εu ′(0) + u(0) + f̂(s).

After simplifying the above we get

û(s) =
F̂(s)

εδ1s2 + δ2s+ δ3
, (4.9)

where F̂(s) = εsu(0) + εu ′(0) + u(0) + f̂(s). After applying the inverse LT to Eq. (4.9) we get u(τ) as

u(τ) =
1

2πi

∫ρ+i∞
ρ−i∞ esτû(s)ds =

1
2πi

∫
Γ

esτû(s)ds, (4.10)

where Γ is a contour extending from ρ− i∞ to ρ+ i∞ for ρ > 0, falling to the right of all the singularities
of û(s) in the complex s-plane. The main concern is to compute the integral in (4.10), furthermore, we



Kamran, S. Aljawi, M. Irfan, D. Santina, N. Mlaiki, J. Math. Computer Sci., 37 (2025), 132–153 141

use the numerical methods for its inversion. When an analytical inversion of Laplace domain solution is
not available, a numerical inversion technique must be used. The Laplace inversion can be carried out
via a variety of algorithms that are reported in the literature. Every technique is appropriate for a specific
function and has its own merits. The integral given in Eq. (4.10) is evaluated using approximations in all
inversion techniques. The three commonly used inversion algorithms are presented in the sections that
follow.

4.2.1. The improved Talbot’s method (ITM)
Talbot’s approach for numerically inverting the LT involves integrating the Bromwich integral defined

in (4.10) numerically via the trapezoidal or mid point rule along a special contour Γ . These rules when
coupled with contour deformation can effectively evaluate the integral defined in Eq. (4.10). The contour
is deformed for the purpose to handle the exponential factor in Eq. (4.10). Consider, for example, that the
integration path in (4.10) can be deformed to a Hankel contour, where the real part of the contour starts
at −∞ in the 3rd quadrant, winds around all the singularities of û(s), and ends with the real part again
heading to −∞ in the 2nd quadrant. The integral in Eq. (4.10) is especially well-suited for approximation
by the trapezoidal or midpoint rules on such contours because the exponential factor induces a quick
decrease. As long as the contour stays inside the range of analyticity of the û(s), Cauchy’s theorem can be
used to justify such deformation. Additionally, some conditions on the decay of the transform function
û(s) in the left half-plane are necessary [52]. In literature various contours have been proposed such as
parabola [13] and hyperbola [48]. In this work, we use the contour proposed in [12] having the parametric
form given as

Γ : s = s(ρ), −π 6 ρ 6 π,

Res(±π) = − inf, and s(ρ) is given as

s(ρ) =
Nt

τ
ζ(ρ), ζ(ρ) = −δ+ σρ cot(µρ) + γiρ, (4.11)

where the parameters µ,σ, δ, γ must be selected by the authors. Eqs. (4.11) and (4.10) give

u(τ) =
1

2πi

∫π
−π
es(ρ)τû(s)(s(ρ))s ′(ρ)dρ. (4.12)

We can now use the mid point rule with step h = 2π
Nt

to approximate the integral in Eq. (4.12) as

uApSol(τ) ≈
1
iNt

Nt∑
j=1

es(ρj)τû(s(ρj))s
′(ρj), ρj = −π+ (j−

1
2
)h. (4.13)

4.2.2. Error analysis
The following theorem provides details of the error analysis of improved Talbot’s technique.

Theorem 4.1 ([12]). Let ρj be defined as in (4.13). Let f : Θ→ C be analytic in the set

Θ = {ρ ∈ C : −π < Re(ρ) < π and − c1 < Im(ρ) < c2},

when c2, c1 > 0, then ∫π
−π
f(ρ)dρ−

2π
Nt

Nt∑
j=1

f(ρj) = G−(α) +G+(β),

here

G+(α) =
1
2

(∫−π+iα
−π

+

∫π+iα
−π+iα

+

∫π
π+iα

)(
1 + i tan

(
Ntρ

2

))
f(ρ)dρ,
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and

G−(β) =
1
2

(∫−π−iβ
−π

+

∫π−iβ
−π−iβ

+

∫π
π−iβ

)(
1 − i tan

(
Ntρ

2

))
f(ρ)dρ,

∀0 < α < c2, and 0 < β < d1 and Nt even, if Nt is an odd number, tan(Ntρ2 ) can be replaced with − cot(Ntρ2 ), if
f(ρ̄) = f(ρ), and c2 and c1 can be taken to be equal, then

G(β) = G+(β) +G−(β) = Re

∫π+iβ
−π+iβ

(
1 + i tan

(
Ntρ

2

))
f(ρ)dρ,

Through the analysis of the behavior of complex tangent function, we have

|G(β)| 6
4πM

exp(c2Nt) − 1
,

the above results are obtained for even Nt, for an odd Nt we can have similar results, M, c2 ∈ R+.

For optimal solution, the most effective integration contour is necessary, which may be derived by
deriving the best values of the parameters involved in (4.11). In [12] the following optimal values of the
parameters were derived

γ =
2645

10000
, µ =

6407
10000

, δ =
6122
10000

, and σ =
5017
10000

.

The error estimate is given as

Errest = |u(τ) − uApSol(τ)| = O(e
−1.3580Nt).

4.2.3. Euler’s method (EM)
Euler’s method (EM) is Fourier series method implementation that uses Euler summation for quick

convergence. Since the Fourier series technique can be obtained from the integral in (4.10). In EM for a
given Laplace transform û(s) of a function u(τ) the approximation uApSol(τ) is expressed as

uApSol(τ) =
10

Ne
3

τ

2Ne∑
k=0

βkRe

(
û
(ηk
τ

))
, (4.14)

where

ηk =
Ne ln(10)

3
+ πik, βk = (−1)kζk, (4.15)

with i =
√
−1 and ζ0 = 1

2 , ζk = 1, 1 6 k 6 Ne, ζ2Ne =
1

2Ne ,

ζ2Ne−k = ζ2Ne−k+1 + 2−Ne
(
Ne
k

)
, 0 < k < Ne. (4.16)

Convergence: The parameters in Eq. (4.14) were examined by the authors of [1] and its effect on the
accuracy of the numerical solution was observed. According to their observations “for ξ significant are
required, then let Ne be a positive-integer d1.7ξe. Set the system’s precision at Ne. Calculate and the
system’s precision and ηk and βk in (4.15) (4.16) for given Ne and system precision. Then for given
function û(s) and τ calculate uApSol(τ) in (4.14)".

4.2.4. Weeks method (WM)
In the literature, one of the simplest and most accurate numerical strategies for inverting the Laplace

Transform (LT) is the Weeks method, provided the two parameters with optimal values are selected
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for the Laguerre expansion. The Weeks approach has a notable benefit over the Talbot’s method and
trapezoidal rule: it provides a function expansion, specifically the Laguerre series expansion. In the
proposed approach we select s = ρ+ iη, η ∈ R to obtain

uApSol(τ) =
eρτ

2π

∫∞
−∞ eiτηû(ρ+ iη)dy. (4.17)

The function û(ρ+ iη) is expanded as

û(ρ+ iη) =

∞∑
`=−∞a`

(−σ+ iη)`

(σ+ iη)`+1 , σ > 0, η ∈ R. (4.18)

Substituting (4.18) in (4.17), we have

uApSol(τ) =
eρτ

2π

∞∑
`=−∞a`δ`(τ;σ),

where

δ`(τ;σ) =
∫∞
−∞ eiτη

(−σ+ iη)`

(σ+ iη)`+1dη.

One can calculate the Fourier integral, and for τ > 0, we have

δ`(τ;σ) =
{

2πe−στL`(2στ), ` > 0,
0, ` < 0,

where L`(τ) is Laguerre polynomial of degree `, ρ > ρ0, ρ0 is the abscissa of convergence, and ρ,σ ∈ R+.
The Laguerre polynomials L`(τ) are expressed as

L`(τ) =
eτ

`!
d`

dτ`
(e−ττ`),

where a` are the Taylor series expansion coefficients

M(ζ) =
2σ

1 − ζ
û

(
ρ+

2σ
1 − ζ

− σ

)
=

∞∑
`=0

a`ζ
`, |ζ| < R, (4.19)

where R denotes radius of convergence of Maclaurin series (4.19), the unknowns a` are evaluated as

a` =
1

2πi

∫
|ζ|=1

M(ζ)

ζ`+1 dζ =
1

2π

∫π
−π

M(eiβ)e−ikβdβ, (4.20)

where (4.20) is the classic Cauchy integral formula, which is computed numerically as

ã` =
e−i`k/2

2Nw

Nw−1∑
j=−Nw

M(eiβj+1/2)e−i`βj , ` = 0, 1, 2, . . . ,Nw − 1,

where βj = jk, k = π
Nw

.

Error analysis: The authors of [59] examined the Weeks method’s accuracy. Whilst they had been inves-
tigating the expansion

u(τ) = exp(ρτ)
∞∑
`=0

a` exp(−στ)L`(2στ), (4.21)
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the following conclusions were made. Error was shown to be mainly caused by following three factors:

1st factor is the truncation error;
2nd the numerical evaluation of the unknown coefficients;
3rd the numerical inversion of LT, any inaccuracy during the evaluation of the unknown coefficients will

increase with τ for ρ > 0, it explains how the error in (4.21) can be seen.

To study these errors, the actual expansion is

ũ(τ) = exp(ρτ)
Nw−1∑
`=0

ã`(1 + χ`) exp(−στ)L`(2στ), (4.22)

χ` is the relative error in the floating-point representation of the coefficients, i.e., fl(ã`) = ã`(1+χ`). From
(4.22) and (4.21) we have

|u(τ) − ũ(τ)| 6 e(ρτ)
(
Terr +Derr +Cerr

)
,

with assumption
∑∞̀

=0 |a`| <∞, where Terr =
∑∞̀

=Nw
|a`| is the truncation error bound,

Derr =

Nw−1∑
`=0

|a` − ã`|

is the discretization error bound, Cerr = χ
∑Nw−1
`=0 |ã`| is the conditioning error bound, and χ` de-

notes the roundoff unit of machine satisfying the condition max06`6Nw−1|χ`| 6 χ with the fact that
| exp(−στ)L`(2στ)| 6 1. We can neglect the Derr in comparison with Terr and Cerr ([59]). Therefore, we
refer to Terr and Cerr. For Terr and Cerr the upper bound were given by the author as [59]

Terr 6
`(ξ)

ξNw(ξ− 1)
, Cerr 6 χ

ξ`(ξ)

ξ− 1
,

which is true for ξ ∈ (1,R). Hence, we have

errorest 6
`(ξ)

ξNw(ξ− 1)
+ χ

ξ`(ξ)

ξ− 1
.

5. Numerical results

Here, we provide the computational results of the suggested numerical methods for SPBVPs. The
viability of the suggested numerical techniques is demonstrated using numerical examples. We con-
ducted our experiments using MATLAB R2019a on a Windows 10 (64 bit) PC configured with an Intel(R)
Core(TM) i5-3317U 1.70 GHz CPU and 12 GB of RAM. To measure the accuracy of the methods the max-
imum absolute error Er is used which is defined as Er = max16i6N |u(τi) −uApSol(τi)|, where u(τ) is the
analytical solution and uApSol(τ) is the approximate solution.

Problem 5.1. Here we consider a second order linear SPBVP of the form

−ε
d2u(τ)

dτ2 + u(τ) = τ, 0 6 τ 6 1,

with boundary conditions u(0) = 1 and u(1) = 1 + e
−1√
ε , with exact solution

u(τ) = τ+ e
−τ√
ε .
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The simulation results of the four proposed numerical methods are presented in Table 3. The exact and
approximate solutions are plotted in Figure 6 using the ITM. The absolute errors obtained using the
LRBFM, the EM, the ITM, and the WM are presented in Figures 7-10. It is easily verified from Table 3 that
our techniques give accurate and stable results for various values of ε. Table 3 shows that the numerical
solutions obtained via the suggested numerical methods are in nice agreement with the exact solution
as compared to the numerical solution of [7]. We conclude that the results of the proposed numerical
schemes are better for such type of SPBVPs.

Table 3: The simulation results of the four proposed methods for Problem 5.1.

ε 2−4 2−5 2−6 2−7 2−8

LRBFM
(Nr,ns) = (135, 5) 3.2868×10−5 3.2261×10−5 3.1033×10−5 2.9610×10−5 2.7736×10−5

(Nr,ns) = (145, 5) 2.3365×10−5 2.2610×10−5 2.1585×10−5 2.0216×10−5 1.8433×10−5

(Nr,ns) = (155, 5) 1.2488×10−5 1.2296×10−5 1.2254×10−5 1.2254×10−5 1.3408×10−5

(Nr,ns) = (165, 5) 2.1855×10−5 1.2477×10−5 1.2309×10−5 1.2305×10−5 1.2305×10−5

EM
Ne = 15 3.0143×10−10 3.3044×10−10 3.4648×10−10 3.3950×10−10 2.9124×10−10

Ne = 16 5.2998×10−11 5.2930×10−11 5.4630×10−11 4.9735×10−11 6.7736×10−11

Ne = 17 1.8879×10−11 1.4098×10−11 9.1822×10−12 1.8578×10−11 1.2262×10−11

Ne = 18 1.9334×10−11 2.0401×10−12 1.6474×10−11 1.1262×10−11 3.3382×10−12

ITM
Nt = 20 4.1999×10−10 4.1857×10−10 4.1869×10−10 4.1904×10−10 4.1918×10−10

Nt = 22 4.1918×10−10 3.0826×10−11 3.0791×10−11 3.0768×10−11 3.0758×10−11

Nt = 24 2.2347×10−12 2.2400×10−12 2.2393×10−12 2.2398×10−12 2.2407×10−12

Nt = 28 4.0191×10−14 3.6861×10−14 2.9978×10−14 2.9089×10−14 2.7535×10−14

WM
Nw = 20 4.2188×10−15 3.9524×10−14 7.9137×10−13 3.9668×10−11 1.9445×10−09

Nw = 25 6.6613×10−16 8.8818×10−16 4.4409×10−16 9.1038×10−15 1.9276×10−12

Nw = 30 2.2204×10−16 0 1.1102×10−15 1.7764×10−15 2.3315×10−14

Nw = 35 0 2.2204×10−16 0 0 1.5543×10−15

[7] 6.8842×10−8 1.1283×10−7 4.4143×10−7 5.0019×10−7 5.4573×10−7
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Figure 6: The exact (Exact) and numerical (ApSol) solutions
of Problem 5.1 using ITM with Nt = 28 and ε = 2−8.
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Figure 7: The plot of Er via the LRBFM for Problem 5.1 with
Nr = 120 and n = 9.
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Figure 8: The plot of Er via the EM for Problem 5.1 with
Ne = 18.
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Figure 9: The plot of Er via the ITM for Problem 5.1 with
Nt = 28.

0 0.2 0.4 0.6 0.8 1

 

0

0.5

1

1.5

2

2.5

 E
r
r
o

r

10
-14

=1/16

=1/32

=1/64

=1/128

=1/256

Figure 10: The plot of Er via the WM for Problem 5.1 with
Nw = 30.
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Figure 11: The exact (Exact) and numerical (ApSol) solutions
of Problem 5.2 using LRBFM with Nr = 99, n = 5, and
ε = 2−6.

Problem 5.2. Here we consider a second order linear SPBVP of the form

d2u(τ)

dτ2 + εu(τ) = 0, 0 6 τ 6 1,

with boundary conditions u(0) = 1 and u(1) = 1, with exact solution u(τ) =
sin τ√

ε

sin 1√
ε

. The simulation results

of the four proposed methods are depicted in Table 4. In Figure 11 we present a comparison between
the exact and numerical solution obtained using the LRBFM. The graphical illustration of absolute errors
obtained using the LRBFM, the EM, the ITM, and the WM for various values of ε are presented in Figures
12-15. Table 4 presents a comparison of absolute errors of the four proposed numerical schemes for
different values of the parameter ε with the absolute error of GRBFM [7]. We can see the EM, the ITM,
and the WM have approximated the solution of SPBVPs efficiently and accurately as compared to GRBFM
[7].

Problem 5.3. Here we consider a second order linear SPBVP of the form

−ε
d2u(τ)

dτ2 +
du(τ)

dτ
= επ2 sin(πτ) + π cos(πτ), 0 6 τ 6 1,

with boundary conditions u(0) = 0 and u(1) = 0, with exact solution u(τ) = sin(πτ). The simulation
results of the four proposed numerical methods are presented in Table 5. The exact solution of the
problem and the numerical solution obtained via the LRBFM are compared in Figure 16. A comparison
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Table 4: The simulation results of the four proposed methods for Problem 5.2.

ε 2−2 2−3 2−4 2−5 2−6

LRBFM
(Nr,ns) = (143, 3) 4.8386×10−5 5.2258×10−4 1.3577×10−4 1.0225×10−3 8.8189×10−4

(Nr,ns) = (145, 3) 7.5139×10−5 7.6138×10−4 3.2947×10−5 3.3412×10−4 5.9154×10−4

(Nr,ns) = (147, 3) 8.3786×10−5 1.1981×10−3 1.1970×10−4 7.9011×10−5 4.6007×10−4

EM
Ne = 14 4.7103×10−11 2.0456×10−09 1.9342×10−10 3.8004×10−10 8.8895×10−10

Ne = 16 7.6725×10−12 1.1778×10−10 2.2761×10−11 4.5691×10−11 7.2315×10−11

Ne = 18 1.8157×10−12 6.9169×10−12 4.4202×10−12 4.2526×10−12 1.5797×10−12

ITM
Nt = 56 1.1651×10−12 4.6700×10−12 2.5655×10−12 4.4092×10−12 2.0795×10−11

Nt = 58 2.0091×10−12 8.1861×10−12 4.5642×10−12 7.2183×10−12 4.2448×10−12

Nt = 60 2.3400×10−13 5.4272×10−13 5.1985×10−13 7.6566×10−13 1.3834×10−12

WM
Nw = 25 3.3307×10−16 2.8866×10−16 6.7280×10−14 5.1725×10−12 6.4269×10−09

Nw = 30 4.4409×10−16 0 4.3299×10−15 1.6087×10−13 3.4131×10−11

Nw = 35 0 2.2204×10−16 6.6613×10−16 2.6645×10−15 1.1102×10−14

[7] 5.9287×10−7 3.7321×10−6 2.3293×10−6 5.7657×10−5 9.5596×10−5

0 0.2 0.4 0.6 0.8 1

 

0

0.2

0.4

0.6

0.8

1

1.2

 E
r
r
o

r

10
-4

=1/4

=1/8

=1/16

=1/32

=1/64

Figure 12: The plot of Er via the LRBFM for Problem 5.2
with Nr = 99 and n = 5.
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Figure 13: The plot of Er via the EM for Problem 5.2 with
Ne = 22.
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Figure 14: The plot of Er via the ITM for Problem 5.2 with
Nt = 60.
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Figure 15: The plot of Er via the WM for Problem 5.2 with
Nw = 35.
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of absolute errors obtained using the LRBFM, the EM, the ITM, and the WM for various values of ε is
presented in Figures 17-20. We see that for all the suggested numerical methods the accuracy increases
with increasing the number of nodes. It has been noticed that all the four methods gives accurate and
stable results. The comparison of absolute errors of the suggested numerical schemes with the absolute
error of finite difference scheme [21] is shown in Table 5. The findings demonstrate that the proposed
numerical schemes yield accurate outcomes.

Table 5: The simulation results of the four proposed methods for Problem 5.3.

ε 10−1 10−2 10−3 10−4 10−5

LRBFM
(Nr,ns) = (90, 5) 6.5975×10−6 2.2620×10−5 2.3219×10−5 2.1518×10−5 2.1518×10−5

(Nr,ns) = (100, 5) 4.9814×10−5 2.1468×10−6 1.7536×10−6 1.679×10−6 1.6002×10−6

(Nr,ns) = (110, 5) 3.5865×10−5 4.7597×10−6 5.6790×10−6 6.5696×10−6 6.2798×10−6

(Nr,ns) = (120, 5) 1.8811×10−6 1.4976×10−6 1.6061×10−6 1.6525×10−6 1.5774×10−6

EM
Ne = 15 7.7888×10−11 7.9918×10−11 8.0356×10−11 8.0217×10−11 7.9536×10−11

Ne = 16 2.3088×10−11 2.2306×10−11 2.1312×10−11 2.1526×10−11 2.0640×10−11

Ne = 17 4.2501×10−12 4.6905×10−12 4.2645×10−12 1.0137×10−12 3.5222×10−12

Ne = 18 6.0857×10−13 4.5890×10−12 4.2906×10−12 1.4062×10−12 4.5998×10−12

ITM
Nt = 38 1.9564×10−12 1.9614×10−12 1.9562×10−12 1.9591×10−12 1.9556×10−12

Nt = 40 1.5570×10−12 1.5454×10−12 1.5524×10−12 1.5455×10−12 1.5538×10−12

Nt = 42 6.2705×10−13 6.1079×10−13 6.1190×10−13 6.0378×10−13 6.0970×10−13

Nt = 44 4.0050×10−13 4.1531×10−13 4.2403×10−13 4.0517×10−13 4.2104×10−13

WM
Nw = 20 4.5765×10−14 1.0636×10−13 1.3906×10−13 1.3578×10−13 1.9801×10−14

Nw = 25 9.3805×10−15 1.8711×10−15 2.6449×10−15 4.3463×10−16 2.0640×10−15

Nw = 30 5.8976×10−16 8.5283×10−16 2.9222×10−16 5.7803×10−16 1.0008×10−16

Nw = 35 2.7933×10−16 3.8858×10−16 6.2709×10−16 8.4146×10−16 4.2057×10−17

[21] 8.72×10−7 3.41×10−7 1.42×10−6 1.68×10−6 1.72×10−6
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Figure 16: The exact (Exact) and numerical (ApSol) solutions
of Problem 5.3 using EM with Ne = 18 and ε = 10−5.
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Figure 17: The plot of Er via the LRBFM for Problem 5.3
with Nr = 120 and n = 5.
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Figure 18: The plot of Er via the EM for Problem 5.3 with
Ne = 18.
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Figure 19: The plot of Er via the ITM for Problem 5.3 with
Nt = 60.
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Figure 20: The plot of Er via the WM for Problem 5.3 with
Nw = 20.
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Figure 21: The exact and approximate solutions of Problem
5.4 using LRBFM with Nr = 55 and n = 5 and ε = 5−6.

Problem 5.4. Here we consider a second order linear SPBVP with left-end boundary layer

−ε2d
2u(τ)

dτ2 + u(τ) = (−ε2 + 1)eτ − τ(e+ e−1/ε) − 2(1 − τ), 0 6 τ 6 1,

with boundary condition u(0) = 0 and u(1) = 0, with exact solution u(τ) = e−τ/ε + eτ − τ(e+ e−1/ε) −
2(1 − τ). The simulation results of the four proposed methods are shown in Table 6. Figure 21 shows the
exact and numerical solution computed using the LRBFM. A comparison of absolute errors obtained using
the LRBFM, the EM, the ITM, and the WM for various values of ε is presented in Figures 22-25. One can
see that the error between the exact solution and approximate solution decays by increasing the number
of nodes for each method. Also for the LRBFM, the EM, and ITM the accuracy is not effected much
by varying the value of the parameter ε. However, for the WM the accuracy decreases as we decrease
the value of the parameter ε. Table 6 shows that our numerical methods are considerably accurate in
comparison with the method in [44].
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Table 6: The simulation results of the four proposed methods for Problem 5.4.

ε 5−2 5−3 5−4 5−5 5−6

LRBFM
(Nr,ns) = (145, 7) 1.4916×10−5 2.1773×10−3 2.6502×10−2 1.6506×10−3 6.6124×10−5

(Nr,ns) = (150, 7) 7.7785×10−6 1.9319×10−3 2.7118×10−2 1.7675×10−3 7.0814×10−5

(Nr,ns) = (155, 7) 8.6312×10−6 1.7160×10−3 2.7636×10−2 1.8877×10−3 7.5640×10−5

EM
Ne = 14 7.2078×10−9 7.1432×10−09 7.1413×10−9 7.1412×10−9 7.1412×10−9

Ne = 16 3.3499×10−10 3.2540×10−10 3.2515×10−10 3.2997×10−11 3.2500×10−10

Ne = 18 3.7393×10−11 2.1182×10−11 1.4187×10−11 1.4737×10−11 3.3979×10−11

ITM
Nt = 36 1.4741×10−12 1.5226×10−12 1.5520×10−12 1.5483×10−12 1.5480×10−12

Nt = 38 2.7519×10−13 2.9375×10−13 2.9339×10−13 2.9948×10−13 2.9406×10−13

Nt = 40 9.2418×10−14 8.2851×10−14 7.7848×10−14 7.8564×10−14 9.3106×10−14

WM
Nw = 50 3.8964×10−16 2.7529×10−5 2.0384×10−3 4.0179×10−4 7.9966×10−5

Nw = 55 3.1130×10−15 2.9396×10−5 3.6532×10−3 8.4867×10−4 1.6865×10−4

Nw = 60 2.8896×10−15 3.1968×10−5 2.0331×10−3 1.0858×10−3 2.1546×10−4

[44] 2.8906×10−5 5.8909×10−6 1.2027×10−7 1.2907×10−7 3.8111×10−7
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Figure 22: The plot of Er via the LRBFM for Problem 5.4
with Nr = 55 and n = 7.
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Figure 23: The plot of Er via the EM for Problem 5.4 with
Ne = 18.
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Figure 24: The plot of Er via the ITM for Problem 5.4 with
Nt = 40.
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Figure 25: The plot of Er via the WM for Problem 5.4 with
Nw = 200.
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6. Conclusion

A comparison of LRBFM, Talbot’s, Euler’s, and Weeks method for the numerical solution of SPBVPs
is performed in this paper. Four linear SPBVPs with different values of the perturbed perimeter ε were
solved using the proposed numerical methods. The results obtained using these methods were compared
with each other and with other methods available in literature. The numerical evidence shows superior-
ity of the suggested numerical methods in terms of fast convergence and better accuracy. However, in
these four suggested numerical methods the Weeks method gives more accurate and stable results for
all problems. We also noticed that the proposed numerical methods are easy to implement, require less
computational time, and provide more quantitatively reliable results. The proposed numerical methods
can safely and quickly be used for the solution of a wide range of similar problems
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