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Abstract
The series approach is commonly used to obtain approximate analytic solutions for differential equations, but it often

converges for a short time. To address this limitation, a new algorithm has been developed that enables the solution to be
carried out over a longer period. The Laplace residual power series method (LRPSM) is a technique that generates a solution
for fractional differential equations in terms of FOPS via simulation generalized Taylors’ series in the Laplace space. To apply
the LRPSM for a long time space, a new Modified LRPSM (MLRPSM) algorithm is introduced which divides the time into
shorter intervals and applies the LRPSM to each interval. The algorithm investigates the continuity of the solution to ensure
that the obtained solution for each interval is smoothly connected to the solution for the previous interval. The effectiveness
of the proposed algorithm is demonstrated through its application to the Riccati equation and the Lorenz chaotic system. To
comprehend the physical features of studied models, the 2D, and 3D graphical representations of the acquired results for some
parameters had been drawn. Especially, at the critical value of the fractional derivative, which marks the transition of the solution
behavior for the Lorenz system from a chaotic to a non-chaotic attractor. The efficacy, accuracy, and feasibility of this technique
are verified numerically. From this viewpoint, the simulations of gained results indicate that the future iterative technique is
indeed robust, effective, and convenient in gaining the approximation solutions over a longer period of a wide range of linear
and nonlinear fractional physical problems.

Keywords: Fractional calculus, Laplace transform, residual power series, multi-stage method, fractional Riccati equation,
fractional chaotic system.
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1. Introduction

The fractional calculus topic (FC) has witnessed fast growth in the last three decades at theoretical
and practical levels, where the theory of FC is considered a significant instrument of applied mathematics
for studying the integration and differentiation operators of arbitrary order and generalization of the
traditional calculus operators. An enormous number of worthy efforts have been carried out on the
theoretical fields of FC as well as its practical prominence [15, 21, 24–27]. The merit of utilizing the
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fractional derivative (FD) in modeling dynamical systems against the ordinary derivative (OD) is that
the FD is globally in nature, while the OD is locally in nature. This behavior of FD is convenient and
reasonable in modeling physical problems which provides an ideal support to describe the memory
and hereditary features of diverse processes and materials. Due to the non-local features of dynamical
systems of fractional problems, great attention has been paid to describing their hereditary properties,
and memories as well as finding and developing instruments that would control the dynamic behavior
of resulting solutions for FDs [4, 22, 36, 41, 47]. In this orientation, numerous attractive notions are
introduced in terms of FDs by many analysts, including Atangana-Baleanu, Weyl, Grunwald-Letnikov,
Riesz, Caputo-Fabrizio, Riemann–Liouville, and Caputo derivatives, which allow accurate characterize
dynamical systems with memory relying on the generalized Mittag-Leffer function, singular kernel, non-
local kernel, and exponential kernel [8, 14, 17, 29, 31].

Lastly, both linear and non-linear fractional differential equations (FDEs) have gained considerable
attention in modeling and simulating dynamic systems due to their importance in providing accurate
descriptions and predictions of various dynamic fractional systems and their sake of better understand-
ing of the complex situations of these systems, such as viscoelasticity, signal processing, rheology, en-
tropy generations, fluid flow, nonlinear optics [5, 16, 33, 37, 46, 48], and so on. The solutions of FDEs
are essential and profitable for the physical understanding of the applications as mentioned earlier and
others [2, 9, 19, 40, 42, 43, 49]. However, closed-form solutions to these equations are not always avail-
able, so approximate solutions are often necessary. Several numerical methods have been proposed for
solving FDEs, including the Generalized Adam Bashforth method [35] and the Grunwald-Letnikov ap-
proximation method [38], which is a finite difference method that approximates the FD using a truncated
series expansion. Additionally, many methods for generating approximate analytic solutions to FDEs
rely on series expansion techniques. For instance, the power series method represents the solution in the
form

∑M
i=0 ci(t− t0)

i, while the Adomian decomposition method (ADM) [18] and the homotopy analysis
method (HAM) [1] assume the solution can be expressed as

∑M
i=0 ui(t).

In general, the series solution will converge for a short domain that is near the initial point. This is
one of the limitation points of the methods. So finding the approximate series solution which converges
for a long time is one of the biggest challenges in this topic. Several algorithms were proposed to over-
come this issue such as the Pade approximation method [13] which assumes facilitate the convergence
of the method, and the multistage method [45] which proposes that the time can be divided into several
subintervals and then applying the algorithm for each one by observing the continuity condition.

Finding an accurate approximate continuous solution for a non-linear FDE has had great attention in
the last century. So, the researchers suggested several methods using different approaches such as pure
numerical or approximate analytic types. One of the effective methods for solving FDE is the traditional
residual power series method (RPSM) which presents the solution in terms of fractional-order power
series (FOPS) after collecting for the unknown coefficients of the suggested series by applying (n− 1)α-th
Caputo-FD of residual-error function. To overcome this limitation, the Laplace RPSM (LRPSM) has been
introduced and proved in [23]. LRPSM presents the solution in terms of fractional-order power series
(FOPS) with an easy recurrence formula for the coefficients based on the limit idea notion at infinity. This
method is a suitable alternative scheme that relies on the simulation of the generalized Taylor’s formula of
the posed model in Laplace space. The method explores the exact and accurate approximate continuous
solutions for a wide range of complex non-linear FDEs arising in numerous systems in engineering and
natural science, see [3, 6, 9, 10, 12, 39] for more details.

Most real-world problems are influenced by a variety of external factors that change their behavior
and make it more complex and unpredictable, FDEs provide a theoretical framework for adequately de-
scribing the nature of these problems. Therefore, the numerical approximation methods are considering
a suitable manner to handle these situations to develop a model that provides a workable solution, since
this approximate analytic solution in most cases is valued for a short domain, we intend in the current
analysis to build a modified LRPSM (MLRPSM) based on the multistage method to provide a convenient
methodology that generates a piecewise continuous solution for the FDE for a long time with high ac-
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curacy. The modified algorithm is valued for a long domain and the approximation is continuous along
its domain. Moreover, we discuss the solution of the fractional Riccati equation and the chaotic fractional
Lorenz system with unequal fractional order and compute the residual error.

The non-linear Riccati equation has several applications in science and engineering, such as financial
mathematics, stochastic realization theory, and optimal control [28]. Simplified models of lasers, dy-
namos, thermosyphons, brushless DC motors, electric circuits, chemical reactions, forward osmosis, and
electric circuits can all give birth to the Lorenz equations [32]. Thus, finding accurate approximate ana-
lytic solutions for general derivatives for those models will highly contribute to the fields that use those
equations.

The current analysis is arranged as a quick overview of FD in the Caputo framework notion and the
main results relating to LT and LRPSM are presented in Section 2. The principle of implementing the
modified algorithm for solving non-linear FDE is presented in Section 3. In Section 4, two attractive
non-linear applications of FDEs are stated to demonstrate the accuracy and applicability of our scheme.
Finally, the conclusion is presented in Section 5.

2. Preliminary and notations

The Caputo fractional differentiation (FD) operator, introduced by Michel Caputo in the late 1960s
[10], is a mathematical tool designed for fractional order differentiation. It is widely employed in diverse
fields such as optics, mechanics, control theory, biology, and physics. The Caputo FD operator is a potent
instrument for providing precise descriptions and analyzing phenomena exhibiting memory or non-local
behaviors. This operator is recognized as one of the most commonly used FD operators and distinguishes
itself from others found in the literature by addressing a broad spectrum of fractional differential equa-
tions (FDEs), particularly when considering the FD in the traditional sense for the initial point [16, 19, 33].
This section aims to emphasize the fundamental definition of the Caputo FD operator and additionally
provides an overview of the foundational principles of the fractional LRPSM sense.

The Riemann-Liouville integral operator of order α > 0 for a continuous function f(t) is defined by

(Iαf)(t) =
1
Γ(α)

∫t
0

f(x)

(t− x)1−αdx.

While the α order fractional derivative in the Caputo sense is given by

(aD
αf)(t) =

1
Γ(n−α)

∫t
a

(t− x)n−α−1f(n)(x)dx.

provided the integration exists. The Laplace transform of the piecewise continuous function f(t) on [0,∞)
is given by

F(s) = L{f(t)} =

∫∞
0
f(t)e−stdt,

and the inverse LT of the transform function F(s) is defined by

L−1{F(s)} = f(t) =

∫ϑ+i∞
ϑ−i∞ F(s)estds.

The LT of the piecewise continuous functions L{x(t)} = X(s) and L{y(t) = Y(s)} for t ∈ [0,∞) have the
following properties.

• lim
s→∞ sY(s) = y(0).

• L {(0D
αy)(t)} = sαY(s) −

n−1∑
k=0

sα−k−1y(k)(0), α ∈ (n− 1,n], n ∈N.
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• L
{
(0D

kαy)(t)
}
= skαY(s) −

k−1∑
j=0

s(k−j)α−1(0D
jαy)(0), for α ∈ (0, 1].

Assuming that (Dnαf)(0) exist for n = 1, 2, . . . , then F(s) = L{f(t)} can be written in the following series
expansion:

F(s) =

∞∑
n=0

dn

snα+1 , s > 0,α ∈ (0, 1], (2.1)

where dn = (0D
nαf)(0).

Theorem 2.1 ([10]). Whenever the function F(s) = L{f(t)} can be expressed in Eq. (2.1) with
∣∣∣sL [D(n+1)α

t f(t)
]∣∣∣

6 £, where 0 < α 6 1, then the remaining part of the new expansion shape in (2.1) satisfies the following inequality:

|Rn(s)| 6
£

s1+(n+1)α , 0 < s 6 ξ.

3. Principle of multi-stage fractional LRPSM

The residual power series (RPS) approach is an efficient and convenient numeric-analytic technique
to create approximate fractional-order power series (FOPS) solutions of differential, integral, and integro-
differential equations involving FDs. It has shown its accuracy and applicability in handling numerous
kinds of FDEs, which provides a straightforward mechanism to find out the unknown terms of the sug-
gested FOPS solution [7, 20, 34]. For some cases, especially non-linear fractional problems, the procedures
of obtaining the unknown terms of FOPS and closed-form solutions is very hard work. So, to overcome
this defect of RPS approach, the authors in [23] have compiled the Laplace transform (LT) approach with
the simulation of RPS approach via implementing the infinite limit notion to determine the expansion
of unknown terms instead of the idea of FD of fractional-error function as in RPS approach. The new
recommended method, LRPSM, confirmed the speed and simplicity of its methodology to create the
FOPS approximate solutions, and that makes an alternative suitable technique to treat a wide range of
non-linear fractional physical applications. This segment introduces a modified algorithm to acquire con-
tinuous approximate solutions over a longer domain for certain fractional models subject to proper initial
points.

Remark 3.1. Because (aDαy)(t) = (0Dαy)(t− a), then the solution of

(aDαy)(t) = f(t,y), t > a, y(a) = y0,

is given by y(t) = v(u− a), where v(u) is a solution to

(0Dαv)(u) = f(u+ a, v), u > 0, v(0) = y0.

We consider the nonlinear fractional initial value problem (F.I.V.P)

(0Dαy)(t) = f(t,y), 0 < t 6 T , y(0) = y0. (3.1)

In the following, we present a new algorithm to solve the F.I.V.P (3.1).

Step 1. Divide the interval [0, T ] into n sub-intervals [0, t1], . . . , [ti−1, tt], . . . , [tn−1, tn = T ].

Step 2. On the sub-interval [ti−1, ti], we consider yi(t) to be the solution of

(ti−1Dαyi)(t) = f(t,yi(t)), yi(ti−1) = ci−1, ti−1 6 t 6 ti, (3.2)

and yi(t) = ci−1 for t ∈ [0, ti−1], where c0 = y0, and ci = yi(ti−1), 1 6 i 6 n.
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Step 3. Based on the short note in Remark 3.1 the solution of Eq. (3.2) is equivalent to the solution of

(0Dαvi)(u) = f(u+ ti−1, vi(u)), vi(0) = ci−1, (3.3)

where yi(t) = vi(u− ti−1).

Step 4. Applying the Laplace transform to Eq. (3.3), we have

Vi(s) =
vi(0)
s

+
1
sα
L[f(u+ ti−1, vi)(u)],

where Vi(s) = L(vi)(u).

Step 5. Substitute Vi(s) =
∑j
i=0

vi
sαi+1 into the residual equation

Resj =

j∑
i=1

vi
sαi+1 −

1
sα
L

[
f

(
u+ ti−1,L−1

[
j∑
i=0

vi
sαi+1

])]
.

Step 6. Assume L
[
f
(
u+ ti−1,L−1

[∑j
i=0

vi
sαi+1

])]
can be written as

L

[
f

(
u+ ti−1,L−1

[
j∑
i=0

vi
sαi+1

])]
=

M∑
i=0

gi
sαi+1 , M > j.

Step 7. Take the following limit

lim
s→∞ sjα+1Resj =

j∑
i=1

vi

sα(i−j)
−

M∑
i=0

gi

sα(i−j+1) = 0,

for j = 1, 2, . . . , which gives vj = gj−i.

Step 8. Write the solution as

vi(u) = L
−1

[ ∞∑
i=0

vi
sαi+1

]
=

∞∑
i=0

vi
Γ [αi+ 1]

uαi+1.

At this line, we can find the solution of yi(t) = vi(u− ti−1).

Remark 3.2. Since yi(t) = ci−1, t ∈ [0, ti−1], then yi(t) is continuous on [0, ti]. Because y ′i(t) = 0, t ∈
[0, ti−1], then it holds that

(0Dαyi)(t) = (ti−1Dαyi)(t).

That is yi(t) is a solution to Eq. (3.1) in the interval [0, ti].

4. Applications and simulation results

This segment highlights the performance and accuracy of the Multi-stage LRPSM by including some
fractional applications in light of Caputo differentiation. The non-linear fractional Riccati equation is
investigated in [7, Application 4.1], whereas the fractional Lorenz system is investigated in [11, Appli-
cation 4.2]. Indeed, replacing the ODs with FDs refines the solution provided by the ordinary Riccati
and Loranze models as well as increases their applications in the study of dynamical systems arising in
economics, physics, and the science of epidemiology fields. The obtained FOPS approximate solutions
in studied applications are compared with each other at varied Caputo-FD values and with the exact
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solution at OD value for a long time. Further, numerical simulations are carried out to illustrate the
accuracy of the recommended algorithm. All symbolic computations and simulations have been done via
Mathematica Package 12.

Application 4.1. Consider the following fractional Riccati equation

(0D
αy)(t) = 2y(t) − y2(t) + 1, (4.1)

t > 0, 0 < α 6 1, subject to the initial condition y(0) = c. The exact solution of the Riccati equation (4.1),
when α = 1, is

y(t) = 1 +
√

2 tanh

[
√

2t+
1
2

log(
√

2 − 1√
2 + 1

)

]
.

By Applying the MLPSM algorithm in Section 4.6, we have following.

• Dividing the domain [0, T ] by h = ti − ti−1 into subdomains.

• In the subinterval [ti−1, ti], Eq. (4.1) becomes

(ti−1D
αyi)(t) = 2yi(t) − y2

i(t) + 1, yi(ti−1) = ci−1, ti−1 6 t 6 ti. (4.2)

• Equation (4.2) is equivalent to

(0D
αvi)(u) = 2vi(u) − v2

i(u) + 1, vi(0) = ci−1, 0 6 u 6 t− ti−1.

• Applying Laplace transform to have

Vi(s) −
vi(0)
s

=
1
sα

(2Vi(s) − L[L−1[Vi(s)]
2]) +

1
sα+1 .

• Step 5 reads

L[L−1[Vi(s)]
2]) = L

 2J∑
i=0

uαi
min [i,J]∑

n=max [0,n−J]

dndi−n
Γ(αn+ 1)Γ(α(i−n) + 1)


=

2J∑
i=0

Γ(αi+ 1)
sαi+1

min [i,J]∑
n=max [0,n−J]

dndi−n
Γ(αn+ 1)Γ(α(i−n) + 1)

,

• Step 6 gives

lim
s→∞ sαJ+1ResJ = lim

s→∞
(
J∑
i=1

di

sα(i−J)
− 2

J∑
i=0

di

sα(i+1−J)

+

2J∑
i=0

Γ(αi+ 1)
sα(i+1−J)

min [i,J]∑
n=max [0,n−J]

dndi−n
Γ(αn+ 1)(Γ(α(i−n) + 1))

−
1

sα(1−J)

)
= 0,

This will give us the recurrence relation

dJ = 2dJ−1 + Γ(α(J− 1) + 1)
J−1∑
n=0

dndJ−1−n

Γ(αn+ 1)(Γ(α(J− 1 −n) + 1))
− (1 − χJ)
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for J = 1, 2, . . .M, where

χJ =

{
0, J 6 1,
1, J > 1.

• At this line the approximate solution using M-terms of the series in step 7 is

yi(t) = L
−1

[
M∑
i=0

di
sαi+1

]
=

M∑
i=0

(t− ti−1)
αi

Γ [αi+!]
, ti−1 6 t 6 ti. (4.3)

By defining the initial condition in the next interval as yi(ti) = ci = yi+1(ti), the solution will be
continuous. If M = 3 in Eq. (4.3), we have

yi(t) = ci−1 +

(
−c2
i−1 + 2ci−1 + 1

)
(u− ti−1)

α

Γ(α+ 1)

+
2
(
c3
i−1 − 3c2

i−1 + ci−1 + 1
)
(u− ti−1)

2α

Γ(2α+ 1)
−A (u− ti−1)

3α,

where

A =
((ci−1 − 2) ci−1 − 1)

(
4Γ(α+ 1)2 (ci−1 − 1) 2 + Γ(2α+ 1) ((ci−1 − 2) ci−1 − 1)

)
Γ(α+ 1)2Γ(3α+ 1)

.

Now, we have c0 = 0 in the interval [0 = t0, t1) and the solution becomes

0y(t) = t
α

 1
Γ(α+ 1)

+

(
4 −

Γ(2α+1)
Γ(α+1)2

)
t2α

Γ(3α+ 1)
+

2tα

Γ(2α+ 1)

 , 0 6 t < t1.

In the next interval [t1, t2), we start with initial condition c1 = 1y(t1) = 0y(t1). Following analogous
steps, we generate a pairwise continuous solution y(t) along the interval [0, T ].

In the following, the geometric behavior of fractional level curves for the gained 7-terms series solution
of Application 4.1 at numerous values of Caputo FD α, when h = 0.002 are presented in Figure 1 and
Table 1, while the residual error for the seventh approximate series solution is computed and displayed
in Table 2 when h = 0.002 and numerous values of Caputo FD α. From the viewpoint of this simulation,
the proposed method is highly accurate in providing a series of approximate solutions that agree with
each other and with exact solutions at standard-order of FD.

α=1

α=0.9

α=0.8

α=0.7

Exact

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

t

y

Figure 1: 7-terms series solution of Application 4.1 with different values of α using h = 0.002.
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Table 1: The solution of fractional Riccati equation using different values of α using MLRPSM.
t α=1 Exact α=0.9 α=0.8 α=0.7

0.5 0.756014 0.756014 1.63952 2.33101 2.41347
1. 1.6895 1.6895 2.34671 2.41376 2.41421
1.5 2.19563 2.19563 2.40974 2.41421 2.41421
2. 2.35777 2.35777 2.41392 2.41421 2.41421
2.5 2.40028 2.40028 2.41419 2.41421 2.41421
3. 2.41081 2.41081 2.41421 2.41421 2.41421

Table 2: The residual Error of fractional Riccati equation using different values of α Using MLRPSM.
t α=1 α=0.9 α=0.8 α=0.7

0.5 1.11022×10−16 1.33227×10−15 1.22125×10−15 1.44329×10−15

1. 3.33067×10−16 1.11022×10−16 9.99201×10−16 6.66134×10−16

1.5 4.44089×10−16 6.66134×10−16 3.33067×10−16 2.22045×10−16

2. 3.33067×10−16 1.55431×10−15 3.33067×10−16 5.55112×10−16

2.5 1.66533×10−15 0. 2.22045×10−16 5.55112×10−16

3. 1.11022×10−16 1.11022×10−16 1.11022×10−16 5.55112×10−16

Application 4.2. Consider the fractional Lorenz system

(0D
α1x)(t) = σ(y(t) − x(t)), (4.4)

(0D
α2y)(t) = (24 − 4ρ)x(t) − x(t)z(t) + ρy(t), (4.5)

(0D
α3z)(t) = x(t)y(t) −βz(t). (4.6)

Subject to the initial conditions x(0) = β1,y(0) = β2, z(0) = β3. The system has chaotic behavior when
ρ = −1, 5,σ = 10,β = 8

3 ,α1 = α2 = α3 = 1. To solve the problem in non-commercial cases, we modified
the Laplace series solution to be in the form

j∑
i=0

di
sqi+1 ,

where q = 1
m ,m ∈ Z+, and αi = γiq, for i = 1, 2, 3. Following the same algorithm in Application 4.1, we

solve the system (4.4)-(4.6) in the interval [tk−1, tk] by replacing the fractional derivatives (tk−1D
α1x)(t),

(tk−1D
α2y)(t), and (tk−1D

α3z)(t), subject to the initial conditions x(tk−1) = β1,k−1, y(tk−1) = β2,k−1,
z(tk−1) = β3,k−1. To take the Laplace transform to the system, we generate the corresponding system

(0D
α1x)(u) = σ(y(u) − x(u)), (4.7)

(0D
α2y)(u) = (24 − 4ρ)x(u) − x(u)z(u) + ρy(u), (4.8)

(0D
α3z)(u) = x(u)y(u) −βz(u), (4.9)

subject to the initial conditions x(0) = β1,k−1, y(0) = β2,k−1, z(0) = β3,k−1. Now, assume q = 1
100 , αi = γiq

for i = 1, 2, 3, then the Laplace transforms for equations (4.7)-(4.9) become

X(s) −
x(0)
s

=
1
sγ1q

[σ(Y(s) −X(s))] , (4.10)

Y(s) −
y(0)
s

=
1
sγ2q

[
(24 − 4ρ)X(s) − L[L−1[X(s)]L−1[Z(s)]] + ρY(s)

]
, (4.11)

Z(s) −
z(0)
s

=
1
sγ3q

[
L[L−1[X(s)]L−1[Y(s)]] −βZ(s)

]
. (4.12)
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By substituting

X(s) =

j∑
i=0

xi
sqi+1 , Y(s) =

j∑
i=0

yi
sqi+1 , Z(s) =

j∑
i=0

zi
sqi+1 ,

in equations (4.10)-(4.12), and multiplying the residual error Resj by sqj+1, we get

sqj+1Resxj =

j∑
i=1

xi

sq(i−j)
−

1
sγ1q

[
σ(

j∑
i=0

yi

sq(i−j)
−

j∑
i=0

xi

sq(i−j)
)

]
,

sqj+1Resyj =

j∑
i=1

yi

sq(i−j)
−

1
sγ2q

[
(24 − 4ρ)

j∑
i=0

xi

sq(i−j)
− sqj+1L

{
L−1[

j∑
i=0

xi
sqi+1 ]L

−1[

j∑
i=0

zi
sqi+1 ]

}

+ρ

j∑
i=0

yi

sq(i−j)

]

=

j∑
i=1

yi

sq(i−j)
−

1
sγ2q

[
(24 − 4ρ)

j∑
i=0

xi

sq(i−j)
+ ρ

j∑
i=0

yi

sq(i−j)

−

2j∑
i=0

Γ(qi+ 1)
sq(i−j)

min [i,j]∑
n=max [0,n−j]

xnzi−n
Γ(αn+ 1)(Γ(q(i−n) + 1))

 ,

sqj+1Reszj =

j∑
i=1

zi

sq(i−j)
−

1
sγ3q

[
sqj+1L

{
L−1[

j∑
i=0

xi

sq(i+1 ]L
−1[

j∑
i=0

yi
sqi+1 ]

}
−β

j∑
i=0

zi

sq(i−j)

]

=

j∑
i=1

zi

sq(i−j)
−

1
sγ3q

 2j∑
i=0

Γ(qi+ 1)
sq(i−j)

min [i,j]∑
n=max [0,n−j]

xnyi−n
Γ(αn+ 1)(Γ(q(i−n) + 1))

−β

j∑
i=0

zi

sq(i−j)

 .

By taking
lim
s→∞ sqj+1Resxj = lim

s→∞ sqj+1Resyj = lim
s→∞ sqj+1Reszj = 0,

for j = 0, 1, 2, . . . , the initial conditions give x0 = β1,y0 = β2, z0 = β3. And xi = 0 for i = 1, 2, . . . ,γ1 − 1,
yi = 0 for i = 1, 2, . . . ,γ2 − 1, zi = 0 for i = 1, 2, . . . ,γ3 − 1. The recurrence relation is given by

xj = σ(yj−γ1 − xj−γ1),

yj = −Γ(q(j− γ2) + 1)
j−γ2∑
k=0

xkzj−γ2−k

Γ(kq+ 1)Γ((j− k− γ2)q+ 1)
+ (24 − 4ρ)xj−γ2 + ρyj−γ2 ,

zj = Γ(q(j− γ3) + 1)
j−γ3∑
k=0

xkyj−γ3−h

Γ(kq+ 1)Γ((j− k− γ3)q+ 1)
−βzj−γ3 ,

for j = min(γ1,γ2,γ3), min(γ1,γ2,γ3) + 1, min(γ1,γ2,γ3) + 2, . . . ,M. Now, the M-th order of approxima-
tion for the system is

x(u) =

M∑
i=0

L−1 xi
sqi+1 = x(t− tk−1),

y(u) =

M∑
i=0

L−1 yi
sqi+1 = y(t− tk−1),
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z(u) =

M∑
i=0

L−1 zi
sqi+1 = z(t− tk−1).

Using the same manner in Application 4.1, interval [0, T ] can be divided into equal sub-intervals, and
applying the algorithm to each k sub-interval. By fixing ρ = −1, σ = 10, β = 8

3 , (β1,β2,β3) =

(10, 0, 10),(α1,α2,α3) = (0.99, 0.98, 0.97), q = 1
100 ,h = 0.001, and M = 600, the numerical values of the

solutions and its residual errors are given in Table 3. It is notable that, the error converges to zero. More-
over, we plot the solution attractor in Figure 2. One of the new algorithm’s privileges is to determine
which fractional derivative value makes the system non-chaotic. To answer that we fix α1 = α2 = α3 = α,
T = 20,h = 0.001,M = 3000, and q = 1

1000 . The experimental results show that the solution at α = 0.694
will change the attractors from chaotic to non-chaotic behaviors. The solution attractor at α = 0.695 and
0.694 are presented in Figure 4. Moreover, as ρ = 5 with initial conditions (0.1, 0.2, 0.3), the critical α that
makes the system chaotic is 0.45, which appears in Figure 5. These results follow the published one using
the Adomian decomposition method [30, 44].

Table 3: Numerical simulation and absolute residual error for Lorenz system with (α1,α2,α3) = (0.99, 0.98, 0.97),q = 1
100 ,h =

0.001, ρ = −1, and M = 700.
t x(t) y(t) z(t) |Resx(t)| |Resy(t)| |Resz(t)|

1. -3.97798 1.79595 28.5376 -2.4016×10−12 2.0203×10−11 5.3290×10−12

3. -2.37833 0.949494 24.7188 1.3998×10−12 2.3315×10−12 4.9454×10−12

5. 2.83 1.92956 21.3675 -5.7909×10−13 1.3145×10−13 7.6739×10−13

7. 1.30623 3.29885 19.8692 6.8567×10−13 8.8640×10−13 7.8160×10−14

9. 1.35643 2.68333 16.6818 1.2967×10−13 2.2560×10−13 1.4211×10−14

11. 3.05452 4.23683 16.8376 8.5265×10−14 6.8212×10−13 3.1974×10−14

13. 3.22217 5.43176 16.811 3.0198×10−13 5.5422×10−13 3.2330×10−13

15. -4.24308 -6.9871 16.5961 -4.6896×10−13 8.9528×10−13 1.4051×10−12

Figure 2: Solution attractor for Lorenz system with (α1,α2,α3) = (0.99, 0.98, 0.97),q = 1
100 ,h = 0.001, and M = 600.
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Figure 3: Residual error for the MLPS method with (α1,α2,α3) = (0.99, 0.98, 0.97),q = 1
100 ,h = 0.001, ρ = −1, and M = 600

along x,y and z.
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a. b.

Figure 4: Attractors for Lorenz system with ρ = −1, a. for α = 0.695; and b. for α = 0.694.

a. b.

Figure 5: Attractors for Lorenz system with ρ = 5, a. for α = 0.45; and b. for α = 0.44.

5. Conclusions

This work presents a fast convergent algorithm for a long domain interval approximate continuous
solution of a certain class of non-linear FDEs under the Caputo FD operator, including Riccati and Chaotic
Lorenz models. A simple algorithm with easy computational terms is successfully built with the help of
Laplace transformation and dividing the general domain into subdomains that make the series solution
converge in each one without assuming any unsanctified limitations. Two attractive applications of posed
models are examined to demonstrate the recommended algorithm’s accuracy and convergence. The accu-
racy and the convergence are based on the residual error that comes from substituting the solution in the
equation. In all cases, we reach a higher accuracy and converge to zero. Also, we were able to determine
whether the system is chaotic or non-chaotic. Numeric and graphic simulations were carried out based on
the results gained. In this context, it is obvious that the performed approximation scheme is a significant
contribution to computational intents, it is computer-oriented, a simple methodology that requires low
computational cost to acquire accurate approximate solutions in terms of FOPS, whose coefficients are
established by a recursive formula. In future studies, the recommended algorithm can be employed to
investigate long-domain interval approximate continuous solutions for many fractional problems related
to the propagation of nonlinear phenomena in light of utilizing different kinds of fractional operators.
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