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Abstract

In this work, we propose a new two inertial projective forward-backward splitting algorithm for approximating the solution
of the variational inclusion problem in real Hilbert spaces. We prove weak convergence of the sequence generated by our
proposed iterative algorithm. Moreover, we also provide an application to predict osteoporosis in the elderly using a dataset
from the Harvard Dataverse. The comparison of algorithm performance is calculated using accuracy, precision, recall, and
F1-score. Our algorithm’s performance is higher than other comparable algorithms. As a result, our algorithm is an effective
classification technique for identifying osteoporosis.
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1. Introduction

In this article, we consistently assume that H is a real Hilbert space equipped with the norm ‖.‖ and
the inner product 〈., .〉, F : H → H is a single-valued monotone operator, and G : H → 2H is a set-
valued monotone operator. We know that the variational inclusion problem (VIP) can be formulated as
the following problem:

Find an element u ∈ H such that 0 ∈ (Fu+Gu). (1.1)

The variational inclusion problem has garnered significant attention due to its central role in several fun-
damental concepts in applied mathematics, including convex minimization, split feasibility, fixed-point,
saddle point, variational inequality, and equilibrium problems (see [3, 4, 6, 19, 20]). Moreover, it serves as
a model for various problems in applied sciences and engineering disciplines, such as signal processing,
image reconstruction, approximation theory, control theory, biomedical engineering, communications,
and geophysics. For additional references, one can consult [2, 5, 10, 11, 14, 18] and related literature.
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One of the earliest methods for solving equation (1.1) is the forward-backward splitting method de-
fined as follows:

uk+1 = JGλ (u
k − λFuk), ∀k ∈N, (1.2)

where JGλ = (I+ λG)−1 is the resolvent of the operator G and λ ∈ (0, 2
L). The sequences generated by

algorithm (1.2) demonstrate weak convergence towards a solution of (1.1) when G is 1
L -inverse strongly

monotone (or cocoercive). Another viable condition for convergence of (1.2) is requiring similar strong
monotonicity for F+G.

To solve the zero-finding problem for the sum of two monotone operators, the inertial proximal algo-
rithm is used. This algorithm incorporates the inertial technique into the forward-backward algorithm,
resulting in the inertial forward-backward algorithm (IFBA), as proposed by Moudafi and Oliny [15]. Let
x0 and x1 be in H, and let λk be in the interval (0, 2

L), where L is the Lipschitz constant of F, for all k > 1:{
vk = uk + θk(uk − uk−1),
uk+1 = JG

λk
(vk − λkFuk), k > 1.

They established the weak convergence of the iterative sequence by establishing conditions relying on uk

and the parameter θk, which are contingent on the cocoercivity assumption regarding F and the solution
set. In 2015, Lorenz and Pock [13] introduced a modification to the inertial forward-backward splitting
algorithm (IFBSA). Their algorithm is defined as follows:{

vk = uk + θk(uk − uk−1),
uk+1 = JG

λk
(vk − λkFvk), k > 1,

where θk ∈ [0, 1) is an extrapolation factor and λk is a step size parameter in positive real interval. They
proved that the iterative sequence generated by IFBSA converges weakly to a zero of the sum of two
maximal monotone operators F and G.

Iyiola and Shehu [9] introduced and studied the two-point inertial proximal point algorithm (TPIPA)
for monotone operators in Hilbert spaces. They employed the following iterative algorithm to prove a
weak convergence result: {

vk = uk + θk(uk − uk−1) + δk(uk−1 − uk−2),
uk+1 = (1 −αk)vk +αkJG

λk
(vk),

where λk > 0, θk is in [0,∞), and δk is relaxed conditions in (−∞, 0].
Motivated by the abovementioned results, we introduce a new two inertial projective forward-backward

splitting algorithm to approximate the solution of the variational inclusion problem in real Hilbert spaces.
Furthermore, we provide a proof of weak convergence and discuss some consequences of our main result.
We also present an application for predicting osteoporosis and compare the performance of our algorithm
with the literature mentioned earlier in terms of accuracy, precision, recall, and F1- score.

2. Preliminaries

In this section, we denote the weak and strong convergence of a sequence uk to a point u ∈ H as
uk ⇀ u and uk → u, respectively. We are listing some crucial results necessary to prove our main result.

Definition 2.1. An operator F : H→ H is said to be:

(i) monotone if 〈Fu− Fv,u− v〉 > 0, ∀u, v ∈ H;
(ii) L-Lipschitz continuous if there is a constant L > 0 such that ‖Fu− Fv‖ 6 L‖u− v‖, ∀u, v ∈ H, if

L = 1, then F is said to be nonexpansive;
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(iii) firmly nonexpansive if

‖Fu− Fv‖2 6 ‖u− v‖2 − ‖(I− F)u− (I− F)v‖2, ∀u, v ∈ H,

or equivalently
〈Fu− Fv,u− v〉 > ‖Fu− Fv‖2, ∀u, v ∈ H;

(iv) τ-cocoercive or τ-inverse strongly monotone if τF is firmly nonexpansive when τ > 0.

Lemma 2.2 ([7]). Let F : H ⇀ H be a nonexpansive mapping such that Fix(F) 6= Φ. If there exists a sequence {uk}
in H such that uk ⇀ u ∈ H and ‖uk − Fuk‖⇀ 0, then u ∈ Fix(F).

Lemma 2.3 ([12]). Let F : H → H be a τ-cocoercive mapping and G : H → 2H be a maximal monotone mapping.
Then, we have

(i) for λ > 0, Fix(JGλ (I− λF)) = (F+G)−1(0);
(ii) for 0 < λ < λ and x ∈ H, ‖u− JGλ (I− λF)u‖ 6 2‖u− JG

λ
(I− λF)u‖.

Lemma 2.4 ([17]). LetΩ be a nonempty set of H and {uk} be a sequence in H. Assume that the following conditions
hold.

(i) For every u ∈ Ω, the sequence {‖uk − u‖} converges.
(ii) Every weak sequential cluster point of {uk} belongs to Ω.

Then {uk} weakly converges to a point in Ω.

Lemma 2.5 ([16]). Suppose that {γk}, {ξk} and {υk} are sequences in [0,+∞) such that γk+1 6 γk + υk(γk −
γk−1) + ξk, ∀k > 1,

∑∞
k=1 ξ

k < +∞ and there is υ ∈ R with 0 6 υk < υ < 1, ∀k > 1. Then the following
conditions are satisfied:

(i)
∑

[γk − γk−1]+ < +∞, where [r]+ = max{r, 0};
(ii) there exists γ∗ ∈ [0,∞) such that limk→+∞ γk = γ∗.

3. Main results

Throughout the paper, we suppose that E is a nonempty closed and convex subset of H. Let F : H→ H

be a τ-inverse strongly single-valued monotone mapping and G : H → 2H be a maximal set-valued
monotone mapping such that (F+G)−1(0)∩ E 6= ∅.

Algorithm 3.1. Two inertial projective forward-backward splitting algorithm for (VIP).
Initialization: Select arbitrary points u−1,u0, v0 ∈ H, {αk} ⊂ (a,b) ⊂ (0, 1], {λk} ⊂ (c,d) ⊂ (0, 2τ), and
{θk}, {δk} ⊂ (−∞,∞). Set k = 0
Iterative Steps: Compute vk+1 as follows:

Step 1. Calculate uk+1 = (1 −αk)vk +αkJkvk.
Step 2. Calculate vk+1 = PE(u

k+1 + θk(uk+1 − uk) + δk(uk − uk−1)), where Jk = Jk
λk
(I− λkF). Set k :=

k+ 1 and go to Step 1.

Theorem 3.2. Let {vk} be a sequence generated by Algorithm 3.1 which satisfies the following conditions:

(i)
∑∞
k=1 |θ

k|‖vk − uk ‖<∞ and
∑∞
k=1 |δ

k|‖uk − uk−1‖ <∞ ;
(ii) lim infk→∞ αk > 0 ;

(iii) 0 < lim infk→∞ λk 6 lim supk→∞ λk < 2τ.

Then {vk} converges weakly to a solution of (F+G)−1(0)∩ E.
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Proof. Let p ∈ (F+G)−1(0)∩ E. Since Jk is nonexpansive when {λk} ⊂ (0, 2τ) and the projection mapping
PE is also nonexpansive, we have

‖vk+1 − p‖ = ‖PE(uk+1 + θk(uk+1 − uk) + δk(uk − uk−1)) − p‖
6 ‖uk+1 − p‖+ θk‖uk+1 − uk‖+ δk‖uk − uk−1‖
6 (1 −αk)‖vk − p‖+αk‖Jkvk − p‖+ θk((1 −αk)‖vk − uk‖
+αk‖Jkvk − uk‖) + δk‖uk − uk−1‖

6 (1 −αk)‖vk − p‖+αk‖vk − p‖+ θk((1 −αk)‖vk − uk‖+αk‖vk − uk‖) + δk‖uk − uk−1‖
= ‖vk − p‖+ |θk|‖vk − uk‖+ |δk|‖uk − uk−1‖.

By condition (i), it follows from Lemma 2.5 that limk→∞ ‖vk−p‖ exists. This implies that {uk} is bounded.
Since JG

λk
is firmly nonexpensive and PE is nonexpansive, we have

‖vk+1 − p‖2 = ‖PE(uk+1 + θk(uk+1 − uk) + δk(uk − uk−1)) − p‖2

6 ‖uk+1 − p‖2 + 2〈θk(uk+1 − uk) + δk(uk − uk−1),uk+1 + θk(uk+1 − uk)

+ δk(uk − uk−1) − p〉
6 (1 −αk)‖vk − p‖2 +αk‖Jkvk − p‖2 + 2〈θk(vk − uk) + δk(uk − uk−1), vk

+ θk(vk − uk) + δk(uk − uk−1) − p〉
6 (1 −αk)‖vk − p‖2 +αk[‖vk − λkFvk − p+ λkFp‖2

− ‖vk − λkFvk − Jkvk − p+ λkFp+ Jkp‖2] + 2〈θk(vk − uk) + δk(uk − uk−1), vk

+ θk(vk − uk) + δk(uk − uk−1) − p〉
= (1 −αk)‖vk − p‖2 +αk[‖vk − p‖2 − 2λk〈vk − p, Fvk − Fp〉+ (λk)2‖Fvk − Fp‖2]

−αk‖vk − λk(Fvk − Fp) − Jkvk‖2 + 2〈θk(vk − uk) + δk(uk − uk−1), vk

+ θk(vk − uk) + δk(uk − uk−1) − p〉
6 ‖vk − p‖2 +αk(λk)2‖Fvk − Fp‖2 − 2ταkλk‖Fvk − Fp‖2

−αk‖vk − λk(Fvk − Fp) − Jkvk‖2 + 2〈θk(vk − uk) + δk(uk − uk−1), vk

+ θk(vk − uk) + δk(uk − uk−1) − p〉
= ‖vk − p‖2 −αkλk(2τ− λk)‖Fvk − Fp‖2 −αk‖vk − λk(Fvk − Fp) − Jkvk‖2

+ 2〈θk(vk − uk) + δk(uk − uk−1), vk + θk(vk − uk) + δk(uk − uk−1) − p〉.

(3.1)

Again by the conditions (i)-(iii) and (3.1), we have

lim
k→∞ ‖Fvk − Fp‖ = lim

k→∞ ‖vk − λk(Fvk − Fp) − Jkvk‖ = 0.

This implies that limk→∞ ‖vk − Jkvk‖ = 0. Since lim infk→∞ λk > 0, there is λ > 0 such that λk > λ. By
Lemma 2.3 (ii), we obtain

lim
k→∞ ‖vk − JGλ (I− λF)vk‖ 6 lim

k→∞ ‖vk − Jkvk‖ = 0. (3.2)

Since {vk} is bounded, we can let v̂ be a weak sequential cluster point of {vk}. By applying Lemma 2.2
and (3.2), we can get that v̂ ∈ Fix(JGλ (I− λF)) = (F+G)−1(0). Since vk is a sequence in E and E is closed,
it follows that v̂ ∈ (F+G)−1(0)∩ E. By utilizing opial’s lemma (Lemma 2.4), we can obtain that v̂ weakly
converges to an element in (F+G)−1(0)∩ E.
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4. Application

Currently, osteoporosis is the most common bone-weakening disease characterized by decreased bone
mass and deteriorated bone tissue, leading to an increased risk of fractures, especially in the elderly
population. According to the International Osteoporosis Foundation (IOF), more than 200 million people
worldwide suffer from osteoporosis, with 1 in 3 women and 1 in 5 men over the age of 50 years being
affected. In Thailand, the proportion of elderly individuals is steadily rising. Over 1 million people are
living with osteoporosis, and shockingly, 1 in 4 Thais are unaware that osteoporosis can lead to paralysis
and death in its final stage. A first-time fracture due to osteoporosis often leads to second and third
fractures. Early screening of this disease in elderly patients is crucial to preventing undesirable outcomes.
Traditional methods of osteoporosis diagnosis, such as dual-energy X-ray absorptiometry measurements,
have limitations in terms of accessibility and cost-effectiveness, especially in developing countries like
Thailand. Due to these challenges, the opportunity to utilize this approach remains inadequate. To screen
patients quickly and accurately, we used the elderly osteoporosis dataset from the Harvard Dataverse
available on internet website [8]. We employed 1,159 records and 37 attributes and one class to evaluate
the proposed algorithm for training and testing.

Osteoporosis is typically categorized into four stages or levels based on bone density measurements
using a standard called T-scores. These levels are as follows.

(i) Normal: In this stage, bone density is considered normal, and the T-score is above -1.0.
(ii) Osteopenia: Osteopenia is a condition characterized by lower bone density than normal but not low

enough to be classified as osteoporosis. T-scores in this stage typically range from -1.0 to -2.5.
(iii) Osteoporosis: This is the advanced stage of bone loss where bone density is significantly reduced.

T-scores in this stage are typically -2.5 or lower.
(iv) Severe Osteoporosis: In some classifications, there may be a further stage called ”severe osteoporo-

sis,” which typically indicates a T-score below -2.5 with a history of one or more fractures.

It’s important to note that these stages are determined by bone density measurements and don’t
necessarily correlate with the presence or absence of symptoms. A person with osteoporosis or severe os-
teoporosis may not have any noticeable symptoms until they experience a fracture or other complications.
Diagnosis and management of osteoporosis are typically done by healthcare professionals based on bone
density measurements, clinical assessment, and individual risk factors. The osteoporosis data associated
with each feature is detailed in Table 1.

In the process of machine learning data classification, we focused on an extreme learning machine
(ELM), which was defined as follows. Assume we have N distinct samples such that u := {(uk, tk) :
uk ∈ Rn, tk ∈ Rm,k = 1, 2, . . . ,N} is a set of training data, where uk and tk are an input training data
and training target target, respectively. The output function of ELM for a standard single hidden layer
feedforward networks (SLFNs) with M hidden nodes are mathematically modeled as:

Oj =

M∑
i=1

µi
1

1 + e−(wiuj+bi)
,

where A activation function with wi is parameter weight and bi is bias. To find optimal output weight
µi at the i-th hidden node, the above equations can be denoted in the form of matrix as T = Aµ, where

A =


1

1+e−(w1u1+b1)
· · · 1

1+e−(wMu1+bM)

...
. . .

...
1

1+e−(w1uN+b1)
· · · 1

1+e−(wMuN+bM)

 ,

A is called the hidden layer output matrix, T = [t1T , . . . , tM
T
]T represents the training target data matrix,

and µ = [µ1T , . . . ,µM
T
]T represents optimal output weight such that µ = A†T where A† is the Moore-
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Table 1: Overview of osteoporosis dataset.
Attribute Name Max Min Mean Median Standard Deviation

Gender 2 1 1.3794 1 0.48545
Age 99.8 50 64.0635 61.9 00.053

Height 186 141 165.3392 166 8.2434
Weight 113 23 66.9667 67 11.7686

BMI 36.7537 9.2133 24.3976 24.3375 3.2862
L1.4T 6 -3.4 -0.63862 -0.8 1.5679
FNT 2.7 -5.05 -1.3004 -1.4 1.1182
TLT 3 -4.65 -0.92414 -1 1.1563
ALT 181 4 23.1963 19 16.0187
AST 128 10 22.4322 21 9.4318
BUN 69.8 1.79 5.5995 5.18 3.358

CREA 381.2 5.86 74.0888 70.5 27.1017
URIC 745.3 5.46 348.8885 340.8 98.227
FBG 21.67 3.13 5.3225 4.95 1.5172

HDL-C 5.46 0.45 1.2491 1.19 0.38531
LDL-C 6.65 0.14 2.5875 2.54 0.88982

Ca 5.84 1.78 2.2347 2.23 0.17088
P 4.41 0.56 1.0377 1.02 0.21513

Mg 1.73 0.097 0.86274 0.86 0.10066
Calsium 1 0 0.15039 0 0.35761
Calcitriol 1 0 0.16595 0 0.37219

Bisphosph 1 0 0.061366 0 0.2401
Calcitonin 1 0 0.061366 0 0.2401

HTN 1 0 0.54797 1 0.49791
COPD 1 0 0.24201 0 0.42848

DM 1 0 0.33016 0 0.47048
Hyperlipid 1 0 0.39153 0 0.4883

Hyperuricemia 1 0 0.17805 0 0.38272
AS 1 0 0.75194 1 0.43207
VT 1 0 0.01815 0 0.13355
VD 1 0 0.075194 0 0.26382
OP 1 0 0.37597 0 0.48458

CAD 1 0 0.21089 0 0.40812
CKD 1 0 0.038029 0 0.19135

Smoking 1 0 0.25151 0 0.43407
Drinking 1 0 0.22126 0 0.41528
Fracture 1 0 0.015557 0 0.1281

Penrose generalized inverse of A, it may be difficult to find when the matrix A does not exist. Thus,
finding such a solution µ through convex minimization can overcome such difficulty.

We consider regularization of least square problems using techniques like L1 (Lasso) and L2 (Ridge)
regularization. Regularization is a technique commonly used in machine learning and statistics to prevent
overfitting and improve the generalization of models, which can lead to better generalization in classifi-
cation problems. We conduct a series of experiments on a classification problem. The specific details of
these problems are provided below.

(i) Regularization of least square problem by L1 (RLSP-L1) or well-known called the least absolute shrink-
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age and selection operator (LASSO): for λ > 0,

min
µ∈RM

1
2
‖Aµ− T‖2

2 + λ‖µ‖1. (4.1)

(ii) Regularization of least square problem by L2 (RLSP-L2): for λ > 0,

min
µ∈RM

1
2
‖Aµ− T‖2

2 + λ‖µ‖2
2. (4.2)

(iii) Regularization of least square problem by L1 with constrained by convex set L1 (RLSPC-L1): for
λ, ρ > 0,

min
µ∈E

1
2
‖Aµ− T‖2

2 + λ‖µ‖1, (4.3)

where E = {µ ∈ RM : ‖µ‖1 6 ρ}.

(iv) Regularization of least square problem by L2 with constrained by convex set L2 (RLSPC-L2): for
λ, ρ > 0,

min
µ∈E

1
2
‖Aµ− T‖2

2 + λ‖µ‖2
2, (4.4)

where E = {µ ∈ RM : ‖µ‖2
2 6 ρ}.

For applying our algorithms to solve all of the convex minimization problems as above, we set our
operator as in Table 2.

Table 2: Setting operators of our algorithms to solve all of the convex minimization problems (4.1)-(4.4).
Problem Setting operator of our algorithms
RLSP-L1 F(µ) ≡ ∇( 1

2‖Aµ− T‖
2
2), G(µ) ≡ ∂(λ‖µ‖1), E = H

RLSP-L2 F(µ) ≡ ∇( 1
2‖Aµ− T‖

2
2), G(µ) ≡ ∂(λ‖µ‖2

2), E = H

RLSPC-L1 F(µ) ≡ ∇( 1
2‖Aµ− T‖

2
2), G(µ) ≡ ∂(λ‖µ‖1), E = {µ ∈ RM : ‖µ‖1 6 ρ}

RLSPC-L2 F(µ) ≡ ∇( 1
2‖Aµ− T‖

2
2), G(µ) ≡ ∂(λ‖µ‖2

2), E = {µ ∈ RM : ‖µ‖2
2 6 ρ}

We examined four assessment criteria, including accuracy, precision, recall, and F1-score [21], to assess
the effectiveness of the classification algorithms. These metrics are defined as follows:

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
× 100%, Precision =

TP

TP+ FP
× 100%,

Recall =
TP

TN+ FN
× 100%, F1-score =

2× (Precision×Recall)
Precision + Recall

.

In these matrices, TP is the True Positive, TN is the True Negative, FP is the False Positive, and FN is the
False Negative.

The multi-class cross-entropy loss [1] is a metric used in classification tasks to evaluate a model’s ability
to distinguish between multiple classes. This measurement is determined by calculating the following
average:

Loss = −

N∑
i=1

ϕi log ϕ̄i,

where ϕ̄i denotes the i-th scalar value in the model’s output, while ϕi signifies the corresponding target
value associated with that particular scalar. The variable N represents the total count of scalar values
encompassed within the entire model’s output.
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Next, we partition the dataset into 70% for training and 30% for testing. Our parameter settings consist
of λk = 1.99

‖H‖2 , λ = 10−5, and M = 170. We assess and compare the performance of IFBA, IFBSA, TPIPA,
and our algorithm with a comprehensive set of parameters listed in Table 3, where

θk =

{
1

‖vk−uk‖k3 , if vk 6= uk and k > N,

σk, otherwise,
and δk =

{
1

‖uk−uk−1‖k3 , if uk 6= uk−1 and k > N,

εk, otherwise,

where N is the iteration number that we want to stop.

Table 3: Chosen parameters of each algorithm.
Algorithm αk σk εk ρ

IFBA - 1010

‖xk−xk−1‖3+k3+1010 - -
IFBSA - 1

2k+1 - -
TPIPA k

2k+1
1

100k+1
1

2k+1 -
Algorithm 3.1 (RLSP-L1) 0.9k

k+1
1

‖xk−xk−1‖3+k3+23
212

‖xk−xk−1‖3+k3+212 -

Algorithm 3.1 (RLSP-L2) 0.7k
k+1

215

‖xk−xk−1‖3+k3+215
1

2k+1 -

Algorithm 3.1 (RLSPC-L1) 0.9k
k+1

210

‖xk−xk−1‖3+k3+210
1

‖xk−xk−1‖3+k3+23 4

Algorithm 3.1 (RLSPC-L2) 0.9k
k+1

1
100k+1

212

‖xk−xk−1‖3+k3+212 4

Table 4: Comparison of the performance with each algorithm.
Algorithm Iteration No. Training Time Precision Recall F1-score Accuracy
IFBA 681 0.0092 78.88 77.26 78.06 78.30
IFBSA 700 0.0082 79.86 76.95 78.38 78.88
TPIPA 949 0.0115 81.74 75.68 78.59 78.88
Algorithm 3.1 (RLSP-L1) 662 0.0082 81.52 76.29 78.82 79.02
Algorithm 3.1 (RLSP-L2) 572 0.0085 81.22 76.35 78.71 79.02
Algorithm 3.1 (RLSPC-L1) 674 0.0095 81.52 76.29 78.82 79.02
Algorithm 3.1 (RLSPC-L2) 609 0.0086 81.22 76.35 78.71 79.02

Table 4 demonstrates our algorithm’s exceptional precision, recall, F1-score, and accuracy perfor-
mance. It also has the lowest number of iterations. This indicates its superior efficiency, making it the
most likely candidate for accurate osteoporosis classification among the mentioned algorithms.

Next, we compare our method with machine learning methods in terms of accuracy using the same
set of information. The results are presented in Table 5.

Table 5: Highest accuracy of different machine learning methods using bone mineral density dataset.
Algorithm Validation Accuracy
Kernel k-fold cross validation, k = 5 67.20
Ensemble k-fold cross validation, k = 5 57.50
k-nearest neighbors (kNN) k-fold cross validation, k = 10 77.20
Algorithm 3.1 (RLSP-L1) Train (70%), test (30%) 79.02
Algorithm 3.1 (RLSP-L2) Train (70%), test (30%) 79.02
Algorithm 3.1 (RLSPC-L1) Train (70%), test (30%) 79.02
Algorithm 3.1 (RLSPC-L2) Train (70%), test (30%) 79.02
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Table 5 shows that the method studied is the most efficient in accuracy compared to machine learning
methods, thus establishing it as the most accurate predictor of osteoporosis. Next, we will present accu-
racy and loss graphs for both the training and testing data to evaluate the potential for overfitting in our
algorithm.
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Figure 1: Accuracy plots for the iterations of Algorithm 3.1
(RSLP-L1).
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Figure 2: Loss plots for the iterations of Algorithm 3.1
(RSLP-L1).
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Figure 3: Accuracy plots for the iterations of Algorithm 3.1
(RSLP-L2).
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Figure 4: Loss plots for the iterations of Algorithm 3.1
(RSLP-L2).
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Figure 5: Accuracy plots for the iterations of Algorithm 3.1
(RSLPC-L1).
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Figure 6: Loss plots for the iterations of Algorithm 3.1
(RSLPC-L1).
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Figure 7: Accuracy plots for the iterations of Algorithm 3.1
(RSLPC-L2).
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Figure 8: Loss plots for the iterations of Algorithm 3.1
(RSLPC-L2).

Based on Figures 1-8, we can see that the training loss and validation loss values initially decrease until
reaching a certain point, after which they stabilize. Conversely, when we analyze the accuracy graph,
it becomes evident that both training and validation accuracy show an upward trend, with validation
accuracy consistently surpassing training accuracy.

5. Conclusions

This paper introduces a new two inertial projective forward-backward splitting algorithm for solving
variational inclusion problems in real Hilbert spaces. We establish a proof of weak convergence for this
method, subject to certain mild conditions. Furthermore, we leverage our algorithm as a machine learning
technique by incorporating the extreme learning machine model (ELM) to address classification problems.
The study outcomes demonstrate that our algorithm outperforms the machine learning methods outlined
in Table 5 in terms of efficiency. About the accuracy and loss graphs, it becomes evident from Figures 1-8
that our algorithm does not display any signs of overfitting.
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