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Abstract

The distinguishing factor between semigroups and ordered semigroups lies in compatibility. Compatibility is a specific form
of polymorphisms, an essential tool in clone theory. In this paper, we apply a generalized version of polymorphisms, known
as constraint, to define a novel algebraic structure called ordered constraint semigroups. It turns out that ordered constraint
semigroups are generalizations of semigroups. We define various ideals in ordered constraint semigroups and examine their
fundamental properties. Specifically, we investigate their generated forms and explore the relationships among these ideals.
Moreover, we focus on the intersection property of quasi-ideals in ordered constraint semigroups.
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1. Introduction

A technique used to study clones theory is a study of Galois connection between the set of finitary
operations OA defined on a nonempty set A and the set of finitary relations RA on A. The concept of
polymorphisms is the main idea applying in such study. Let f : An → A be a function, and σ ⊆ Ak be a
k-ary relation on A. Then f is said to be a polymorphism of σ, denoted by f . σ, if

a11
a12

...
a1k

 , . . . ,


an1
an2

...
ank

 ∈ σ =⇒


f(a11,a21, . . . ,an1)
f(a12,a22, . . . ,an2)

...
f(a1k,a2k, . . . ,ank)

 ∈ σ.

Sometimes we said that f preserves the relation σ. The . preservation relation induces a Galois connection
(Pol, Inv) between the set of finitary operations and relations on a nonempty set. In fact, it is used to
characterize the Galois closed classes of (Pol, Inv) (see [13]). The preservation relation is a concept that is
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not only important in clone theory but also plays a critical role in defining an important algebraic struc-
ture widely used in various mathematics and computer science areas, such as formal language theory,
automata theory, and algebraic geometry, so-called ordered semigroups. An algebraic structure 〈S; ·,6〉
is called an ordered semigroup if 〈S; ·〉 is a semigroup, 〈S;6〉 is a partially ordered set, and · .6, that is, for
any a,b ∈ S, if a 6 b, then a · c 6 b · c and c · a 6 c · b for all c ∈ S.

The study of ideals is a well-known and important topic in investigating ordered semigroups. Ideals
are substructures of ordered semigroups that play a significant role in understanding the structure and
properties of ordered semigroups. Over two decades, many authors have introduced and studied differ-
ent kinds of ideals in ordered semigroups, contributing to a deep and broad understanding of this area of
research. The study of ideals has been pursued in several directions. While ideals have been a subject of
much attention in the study of ordered semigroups, researchers have also explored using more general-
ized concepts of sets to define ideals. These concepts include fuzzy sets, intuitionistic fuzzy sets, bipolar
fuzzy sets, tripolar fuzzy sets, soft sets, and hybrid structures. By applying these more flexible defini-
tions, researchers have expanded their investigations’ scope and opened up a new approach to research
in ordered semigroups (see [2, 6, 7, 9, 14–16, 20–23]).

This paper introduces a novel extension of ordered semigroups, offering a more generalized approach.
We introduce a new concept of algebraic systems called ordered constraint semigroups by considering
the preservation relation hidden in the definition of ordered semigroups. We investigate the fundamental
properties of this new concept. One of the key contributions of this paper is the introduction of ideals in
ordered constraint semigroups. We study the fundamental properties of these ideals and investigate how
they are related. In addition, we examine the intersection property of quasi-ideals in ordered constraint
semigroups. Extending ordered semigroups to ordered constraint semigroups represents a significant
development in the algebraic systems theory.

This paper is organized as follows. In Section 2, we recall the related notions of constraints and
satisfaction relations, which we use to define and study ordered constraint semigroups. We introduce
the concept of ideals in ordered constraint semigroups and explore some of their fundamental proper-
ties. In Section 3, we investigate the connections between different types of ideals in ordered constraint
semigroups. By studying the relationships between these ideals, we gain a deeper understanding of
the behavior and properties of these algebraic systems. Section 4 focuses on a specific class of ordered
constraint semigroups and presents a sufficient and necessary condition for a quasi-ideal to have the inter-
section property. This condition offers a new perspective on quasi-ideals’ behavior in ordered constraint
semigroups and provides a useful tool for analyzing their properties and relationships. Lastly, we focus
on examining the coincidence of different ideals in regular duo ordered constraint semigroups.

2. Ordered constraint semigroups

We begin by recalling the related concepts of constraints and satisfaction relations. These relations
offer a natural extension of the preservation relation commonly studied in clone theory. By understanding
satisfaction relations, we can better understand the relationship between ordered semigroups and our new
algebraic system, ordered constraint semigroups.

Let A and B be nonempty sets. Suppose that R and S are k-ary relations on A and B, respectively.
Then the ordered pair (R,S) is said to be an k-ary A-to-B relational constraint, or simply constraint. An
n-ary function f : An → B is said to satisfy k-ary A-to-B relational constraint (R,S) if

a11
a12

...
a1k

 , . . . ,


an1
an2

...
ank

 ∈ R implies


f(a11,a21, . . . ,an1)
f(a12,a22, . . . ,an2)

...
f(a1k,a2k, . . . ,ank)

 ∈ S
for any k-ary tuple (a11,a12, . . . ,a1k), . . . , (an1,an2, . . . ,ank) onA. This means that we obtain a satisfaction
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relation ≈ between the class of n-ary functions and a constraint. Let f be an n-ary function from A into B
satisfying a constraint (S, T). We can observe that if A = B and S = T , then f is just a polymorphism of
S. This means that the satisfaction relation extends the preservation relation. The concept of satisfaction
relation ≈ was introduced by Pippenger in 2002 (see [17]). It was also extensively studied by many
researchers (see [3–5, 18]).

We can define a new class of algebraic systems by utilizing the satisfaction relation as follows. Let S
be a nonempty set. A binary constraint (61,62) on S is called a binary ordered constraint on S if both 61
and 62 are partial order on S. If the underlying set and the arity are clear from the context, we simply
say (61,62) an ordered constraint.

Definition 2.1. An algebraic system 〈S; ·,61,62〉 of type (2; 2, 2) is called an ordered constraint semigroup
if 〈S; ·,61〉 is an ordered semigroup, (61,62) is an ordered constraint, and · ≈ (61,62), that is, for any
a,b ∈ S, a 61 b implies a · c 62 b · c and c · a 62 c · b for all c ∈ S.

We see that any semigroup 〈S; ·〉 can be regarded as an ordered constraint semigroup 〈S; ·,∆S,∆S〉,
where ∆S is the equality relation. Similarly, any ordered semigroup 〈S; ·,6〉 can be considered as an
ordered constraint semigroup 〈S; ·,6,6〉. This means that ordered constraint semigroups can be thought
as a generalization of semigroups and ordered semigroups.

From now on, we denote an ordered constraint semigroup 〈S; ·,61,62〉 by S the boldface letter of its
underlying set, and we write the product a · b of a and b by ab. Moreover, we denote by S r (61,62)
and S r62 the semigroup 〈S; ·〉 and the ordered semigroup 〈S; ·,61〉, respectively. Let S be an ordered
constraint semigroup, and A and B nonempty subsets of S. Then we define AB := {ab : a ∈ A and b ∈ B}.
Let a ∈ S and B be a nonempty subset of S. We write aB and Ba instead of {a}B and B{a}, respectively.

Example 2.2. Let S = {0, 1, 2, 3}. Define a binary operation · on S as follows.

· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0

Moreover, we define binary relations 61, 62, 63, and 64 on S, respectively, by the following illustrations.

0

31 1

02

3

0

1
3

2 0

1

Then we obtain the following.

1. 〈S; ·,61,62〉 is an ordered constraint semigroup, but 〈S; ·,62〉 is not an ordered semigroup. More-
over, 61 and 62 do not contain each other.

2. 〈S; ·,61,63〉 is an ordered constraint semigroup such that 63 ⊆ 61.
3. 〈S; ·,61,64〉 is an ordered constraint semigroup. We can see that 61 ⊆ 64, but 〈S; ·,64〉 is not an

ordered semigroup.

We can observe that if 〈S; ◦,61〉 is an ordered semigroup, then 〈S; ◦,61,�〉 is an ordered constraint
semigroup for any ordered constraint (61,�) such that 61 ⊆ �. It is known that any ordered semigroup
can be derived from a semigroup. Building upon the previous discussion, we can construct an ordered
constraint semigroup using an ordered semigroup. To further clarify this observation, it is necessary to
introduce the following notion. Let 〈S; ·,61〉 be an ordered semigroup. Define the set

61,compatible := {(ac,bc) : a 61 b and c ∈ A}∪ {(ca, cb) : a 61 b and c ∈ A}.

Then we can construct an ordered constraint semigroup by an ordered semigroup shown as follows.
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Theorem 2.3. Let 〈S; ·,61〉 be an ordered semigroup, and 62 a partial order on S. Then the structure 〈S; ·,61,62〉
is an ordered constraint semigroup if and only if 61,compatible ⊆ 62.

Proof. Suppose that 62 contains 61,compatible. It is clear that (61,62) is an ordered constraint on S. We
need to show that for any a,b, c ∈ S such that a 61 b, we have that ac 62 bc and ca 62 cb. But this is
clear since 61,compatible ⊆ 62. Conversely, suppose that 〈S; ·,61,62〉 is an ordered constraint semigroup.
Let (x,y) ∈ 61,compatible. Without loss of generality, assume that (x,y) ∈ {(ac,bc) : a 61 b and c ∈ A}.
Then x = ac and y = bc for some a,b, c ∈ S with a 61 b. Since 〈S; ·,61,62〉 is an ordered constraint
semigroup, ac 62 bc. This means that (x,y) ∈ 62. Thus, we complete the proof.

The primary objective of this section is to define the concepts of ideals in ordered constraint semi-
groups. However, before establishing these definitions, we introduce an important fundamental compo-
nent of our algebraic system. Furthermore, this component is pivotal in differentiating the concepts of
ordered semigroups and ordered constraint semigroups.

Let S be an ordered constraint semigroup, and A a nonempty subset of S. We denote the sets (A]1 :=
{x ∈ S : x 61 a for some a ∈ A} and (A]2 := {x ∈ S : x 62 a for some a ∈ A}. Let us denote (A] :=
(A]1 ∩ (A]2. This means that (A] = {x ∈ S : x 61 a1 and x 62 a2 for some a1,a2 ∈ A}. It is clear that
A ⊆ (A]i and (A]i = ((A]i]i for all i ∈ {1, 2}.

By the above definition, we obtain the following important lemma.

Lemma 2.4. Let S be an ordered constraint semigroup, A,B nonempty subsets of S, and {Ai}i∈I a family of
nonempty subsets of S. Then the following statements hold.

1. A ⊆ (A] and (A] = ((A]].
2. If A ⊆ B, then (A] ⊆ (B].
3. (A](B] ⊆ (AB].
4. (A]1(B]1 ⊆ (AB]2.
5. (A]∪ (B] ⊆ (A∪B].
6.
(⋂

i∈IAi

]
⊆
⋂

i∈I(Ai].

Proof.

(1) Since 61 and 62 are reflexive, it is clear that A ⊆ (A]. This means that (A] ⊆ ((A]]. Therefore, it
remains to show that ((A]] ⊆ (A]. Let x ∈ ((A]]. Then x 61 a1 and x 62 a2 for some a1,a2 ∈ (A]. Since
a1,a2 ∈ (A], a1 61 t1 and a2 62 t2 for some t1, t2 ∈ A. By the transitivity of 61 and 62, we obtain that
x 61 t1 and x 62 t2. This means that x ∈ (A]. Therefore, (A] = ((A]].

(2) If x ∈ (A] under the presumption that A ⊆ B, then x 61 a1 and x 62 a2 for some a1,a2 ∈ A ⊆ B. This
shows that x ∈ (B]. Hence, (A] ⊆ (B].

(3) Let x ∈ (A](B]. Then x = yz such that y 61 a1, y 62 a2, z 61 b1, and z 62 b2 for some a1,a2 ∈ A and
b1,b2 ∈ B. By the compatibility and transitivity of 61 and 62, we obtain that x = yz 61 a1z 61 a1b1 and
x = yz 62 a2z 62 a2b2. This shows that x ∈ (AB]. Therefore, (A](B] ⊆ (AB].

(4) Let x ∈ (A]1(B]1. Then x = yz such that y 61 a and z 61 b for some a ∈ A and b ∈ B. Since
· ≈ (61,62), we obtain that yz 62 az and az 62 ab. By the transitivity of 62, it turns out that x = yz 62 ab

and so x ∈ (AB]2. Hence, (A]1(B]1 ⊆ (AB]2.

(5) They are directly obtained by (2) that A ⊆ A ∪ B implies (A] ⊆ (A ∪ B] and B ⊆ A ∪ B implies
(B] ⊆ (A∪B]. Hence, (A]∪ (B] ⊆ (A∪B].
(6) Using (2), it is immediately obtained that

(⋂
i∈IAi

]
⊆ (Ai] for all i ∈ I since

⋂
i∈IAi ⊆ Ai for all i ∈ I.

Therefore,
(⋂

i∈IAi

]
⊆
⋂

i∈I(Ai].

The opposite conclusions of Lemma 2.4 (5) and (6) are not true in general as the following example
shows.
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Example 2.5. Let S = {0, 1, 2, 3}. Define a binary operation · on S as follows.

· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 1

Moreover, we define binary relations 61 and 62, respectively, by the following illustrations.

1

0 2

1

3 2

Then S is an ordered constraint semigroup. Consider A = {0}, B = {3}, C = {0, 3}, and D = {1, 3}. Then we
have that (A∪B] = {0, 1, 3} 6⊆ {0, 3} = (A]∪ (B] and (C]∩ (D] = {1, 3} 6⊆ {3} = (C∩D].

Let S be an ordered constraint semigroup. A nonempty subset A of S is said to be a subsemigroup of
S if AA ⊆ A. Verifying that any subsemigroup A of an ordered constraint semigroup S can be used as
the underlying set of an ordered constraint semigroup 〈A; ·|A×A,61|A×A,62|A×A〉 is a straightforward
process.

Now, we are ready to define the notions of ideals.

Definition 2.6. Let S be an ordered constraint semigroup. A nonempty subset A of S such that (A] ⊆ A
is called:

1. a left ideal of S if SA ⊆ A;
2. a right ideal of S if AS ⊆ A;
3. an (two-sided) ideal of S if it is both a left and a right ideal of S;
4. a quasi-ideal of S if (AS]∩ (SA] ⊆ A;
5. a bi-ideal of S if A is a subsemigroup of S and ASA ⊆ A;
6. an interior ideal of S if A is a subsemigroup of S and SAS ⊆ A.

Sometimes the notions of left ideals and right ideals are called one-sided ideals. For any ordered
constraint semigroup S, we can reduce the definitions of the above ideals for an ordered semigroup
S r62 as follows. A nonempty subset A of S such that (A]1 ⊆ A is called: (1) a left ideal of S r62 if
SA ⊆ A; (2) a right ideal of S r62 if AS ⊆ A; (3) an (two-sided) ideal of S r62 if it is both a left and a right
ideal of Sr62; (4) a quasi-ideal of Sr62 if (AS]1 ∩ (SA]1 ⊆ A; (5) a bi-ideal of Sr62 if A is a subsemigroup
of S and ASA ⊆ A; and (6) an interior ideal of S r62 if A is a subsemigroup of S and SAS ⊆ A.

The following examples illustrate the existence of ideals we have presented.

Example 2.7. Let S = {0, 1, 2, 3}. Define a binary operation · on S as follows.

· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 2 3

We define binary relations 61 and 62, respectively, by the following illustrations.

1

0

0

21
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Then S is an ordered constraint semigroup. We obtain that {0, 3} is a left ideal of S, but not a right ideal
of S. Furthermore, {0, 3} is not a left ideal of S r62.

Example 2.8. Let S = {0, 1, 2, 3}. Define a binary operation · on S as follows.

· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 2 2 2 2
3 3 3 3 3

We define binary relations 61 and 62, respectively, by the following illustrations.

1

0

0

31

Then S is an ordered constraint semigroup. We obtain that {0, 3} is a right ideal of S, but not a left ideal
of S. Furthermore, {0, 3} is not a right ideal of S r62.

Example 2.9. Let S = {0, 1, 2, 3}. Define a binary operation · on S as follows.

· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 2 0
3 0 0 0 4

Moreover, we define binary relations 61 and 62, respectively, by the following illustrations.

1

0
1

3

0 2

Then S is an ordered constraint semigroup. We obtain that {0} is an ideal of S. Furthermore, {0} is not an
ideal of S r62.

Example 2.10. Let S = {0, 1, 2}. Define a binary operation · on S as follows.

· 0 1 2
0 0 0 2
1 0 0 2
2 2 2 2

Moreover, we define binary relations 61 and 62, respectively, by the following illustrations.

1

0

0

1 2

Then S is an ordered constraint semigroup. We obtain that {0} is a quasi-ideal of S. Furthermore, {0} is
not a quasi-ideal of S r62.

Example 2.11. Let S = {0, 1, 2, 3}. Define a binary operation · on S as follows.
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· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 1
3 0 0 1 2

Moreover, we define binary relations 61 and 62, respectively, by the following illustrations.

1

0

2

3

1

Then S is an ordered constraint semigroup. We obtain that {0, 2} is both a bi-ideal and an interior ideal of
S. Furthermore, {0, 2} is neither a bi-ideal nor an interior ideal of S r62.

For any ordered constraint semigroup S, based on the definition of ideals in ordered constraint semi-
groups, it is evident that any ideal A of S r62 is also an ideal of S. However, the converse is not always
true, as demonstrated in Examples 2.7, 2.8, 2.9, 2.10, and 2.11. Hence, it is reasonable to inquire about
the conditions under which any ideal A of S is an ideal of S r62. The following theorem addresses this
question.

Theorem 2.12. Let S be an ordered constraint semigroup, and A a nonempty subset of S such that (A]1 ⊆ (A]2.
Then the following statements are equivalent.

1. A is a left (resp., right, two-sided, quasi-, bi-, and interior) ideal of S r62.
2. A is a left (resp., right, two-sided, quasi-, bi-, and interior) ideal of S.

Proof. The proof can be obtained by observing that (A] = (A]1.

According to Theorem 2.12, we can construct an ordered constraint semigroup S in which its ideals
differ from those of ordered semigroup S r62. Furthermore, since 61 ⊆ 62 implies (A]1 ⊆ (A]2 for any
subset A of S, an ordered constraint semigroup S in which 61 ⊆ 62 is not considered interesting. Hence,
we typically focus on ordered constraint semigroups where 62 does not contain 61.

The following lemma is useful for the subsequent study of ideals in ordered constraint semigroups.

Lemma 2.13. Let S be an ordered constraint semigroup, and {Ai}i∈I a family of left (resp., right, two-sided, quasi-,
bi-, and interior) ideals of S. Then

⋂
i∈IAi is a left (resp., right, two-sided, quasi-, bi-, and interior) ideal of S if⋂

i∈IAi 6= ∅.

Proof. We demonstrate the proof for the case of bi-ideals, and the other cases can be established similarly.
Let {Ai}i∈I a family of bi-ideals of S such that B :=

⋂
i∈IAi 6= ∅. Since (B] =

(⋂
i∈IAi

]
⊆
⋂

i∈I(Ai] ⊆
(Ai] ⊆ Ai for all i ∈ I, we have that (B] ⊆ B. Since BB ⊆ AiAi ⊆ Ai for all i ∈ I, we have that BB ⊆ B.
This means that B is a subsemigroup of S. Since BSB ⊆ AiSAi ⊆ Ai for all i ∈ I, we have that BSB ⊆ B.
Therefore, B is a bi-ideal of S.

Let S be an ordered constraint semigroup. We define unary functions L, R, J, Q, B, and I on the set
P∗(S) of all subsets of S without the empty set by:

1. L(A) :=
⋂
{B : B is a left ideal of S such that A ⊆ B};

2. R(A) :=
⋂
{B : B is a right ideal of S such that A ⊆ B};

3. J(A) :=
⋂
{B : B is an ideal of S such that A ⊆ B};

4. Q(A) :=
⋂
{B : B is a quasi-ideal of S such that A ⊆ B};
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5. B(A) :=
⋂
{B : B is a bi-ideal of S such that A ⊆ B};

6. I(A) :=
⋂
{B : B is an interior ideal of S such that A ⊆ B};

for all A ⊆ S. By Lemma 2.13, the functions L, R, J, Q, B, and I are well-defined.

Example 2.14. According to an ordered constraint semigroup S defined in Example 2.7, we have that
{{0, 3}, {0, 1, 3}, {0, 2, 3},S} are the set of all left ideals of S containing {3}. Then, L({3}) = {0, 3} ∩ {0, 1, 3} ∩
{0, 2, 3}∩ S = {0, 3}.

The computation illustrated in the previous example becomes increasingly inconvenient when dealing
with ordered constraint semigroups with a large cardinality. Hence, it is natural to find formulae to
simplify the computation of L(A), R(A), J(A), Q(A), B(A), and I(A). The following theorem offers a more
convenient method for calculation.

Theorem 2.15. Let S be an ordered constraint semigroup, and A a nonempty subset of S. Then the following
statements hold.

1. L(A) = (A∪ SA].
2. R(A) = (A∪AS].
3. J(A) = (A∪AS∪ SA∪ SAS].
4. Q(A) = (A∪ ((AS]∩ (SA])].
5. B(A) = (A∪A2 ∪ASA].
6. I(A) = (A∪A2 ∪ SAS].

Proof. We give a proof only for (3), (4), and (5).

(3) Clearly, A ⊆ (A∪AS∪ SA∪ SAS]. We consider

S(A∪AS∪ SA∪ SAS] ⊆ (S](A∪AS∪ SA∪ SAS]
⊆ (S(A∪AS∪ SA∪ SAS)] ⊆ (AS∪ SA∪ SAS] ⊆ (A∪AS∪ SA∪ SAS].

Similarly, (A ∪AS ∪ SA ∪ SAS]S ⊆ (A ∪AS ∪ SA ∪ SAS]. Obviously, (A ∪AS ∪ SA ∪ SAS] = ((A ∪AS ∪
SA ∪ SAS]]. Now, (A ∪AS ∪ SA ∪ SAS] is an ideal of S containing A. Let K be an ideal of S such that
A ⊆ K. We obtain that (A∪AS∪ SA∪ SAS] ⊆ (K∪KS∪ SK∪ SKS] ⊆ (K∪K∪K∪K] = (K] ⊆ K. Therefore,
(A∪AS∪ SA∪ SAS] is the smallest ideal of S containing A. That is, J(A) = (A∪AS∪ SA∪ SAS].
(4) Clearly, A ⊆ (A∪ ((AS]∩ (SA])] and ((A∪ ((AS]∩ (SA])]] = (A∪ ((AS]∩ (SA])]. Consider

((A∪ ((AS]∩ (SA])]S]∩ (S(A∪ ((AS]∩ (SA])]] ⊆ ((A∪ (AS]]S]∩ (S(A∪ (SA]]]
⊆ ((AS∪ (ASS]]]∩ ((SA∪ (SSA]]]
⊆ ((AS∪ (AS]]]∩ ((SA∪ (SA]]]
⊆ (((AS]]]∩ (((SA]]] = (AS]∩ (SA] ⊆ (A∪ ((AS]∩ (SA])].

Let K be a quasi-ideal of S such that A ⊆ K. Then (A ∪ ((AS] ∩ (SA])] ⊆ (K ∪ ((KS] ∩ (SK])] ⊆ (K ∪ K] =
(K] ⊆ K. Therefore, (A ∪ ((AS] ∩ (SA])] is the smallest quasi-ideal of S containing A. That is, we obtain
our claim.

(5) Clearly, A ⊆ (A∪A2 ∪ASA] and ((A∪A2 ∪ASA]] = (A∪A2 ∪ASA]. We obtain that

(A∪A2 ∪ASA](A∪A2 ∪ASA] ⊆ ((A∪A2 ∪ASA)(A∪A2 ∪ASA)] ⊆ (A2 ∪ASA] ⊆ (A∪A2 ∪ASA]

and

(A∪A2 ∪ASA]S(A∪A2 ∪ASA] ⊆ (A∪A2 ∪ASA](S](A∪A2 ∪ASA]
⊆ (AS](A∪A2 ∪ASA] ⊆ (ASA] ⊆ (A∪A2 ∪ASA].
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If B is a bi-ideal of S such that A ⊆ B, then (A ∪A2 ∪ASA] ⊆ (B ∪ B2 ⊆ BSB] ⊆ (B ∪ B ∪ B] = (B] ⊆ B.
Therefore, (A∪A2 ∪ASA] is the smallest bi-ideal of S containing A. That is, B(A) = (A∪A2 ∪ASA].

Example 2.16. Applying the above theorem to Example 2.14, we see that

L({3}) = ({3}∪ S{3}] = ({3}∪ {0, 3}] = ({0, 3}] = {0, 3}.

Theorem 2.15 proves to be highly advantageous in terms of convenience compared to Example 2.14,
particularly when finding the smallest ideal containing a nonempty set. It provides significant assistance
in simplifying the process, as seen in Example 2.16.

3. Connections among ideals in ordered constraint semigroups

In this section, we provide connections among various ideals introduced in Section 2. Let S be an
ordered constraint semigroup. For our convenience, we use:

1. L(S) to denote the set of all left ideals of S;
2. R(S) to denote the set of all right ideals of S;
3. J(S) to denote the set of all ideals of S;
4. Q(S) to denote the set of all quasi-ideals of S;
5. B(S) to denote the set of all bi-ideals of S;
6. I(S) to denote the set of all interior ideals of S.

The following connection between one-sided ideals and ideals is straightforward to establish.

Theorem 3.1. Let S be an ordered constraint semigroup. Then we have J(S) ⊆ L(S) and J(S) ⊆ R(S).

However, it should be noted that the converse of the above theorem does not hold, as shown in
Examples 2.7 and 2.8.

Below, we present the connections between one-sided ideals and quasi-ideals.

Theorem 3.2. Let S be an ordered constraint semigroup. Then we have L(S) ⊆ Q(S) and R(S) ⊆ Q(S).

Proof. We prove only that L(S) ⊆ Q(S). Let A be a left ideal of S. It is clear that (A] ⊆ A. Consider
(AS]∩ (SA] ⊆ (SA] ⊆ (A] ⊆ A. This means that A is a quasi-ideal of S. Therefore, L(S) ⊆ Q(S).

However, Example 2.10 demonstrates that the converse of Theorem 3.2 is not true. More precisely, {0}
is not a left and a right ideal of S.

The following theorem establishes a connection between quasi-ideals and bi-ideals in ordered con-
straint semigroups.

Theorem 3.3. Let S be an ordered constraint semigroup. Then we have Q(S) ⊆ B(S).

Proof. Let A be a quasi-ideal of S. It is clear that (A] ⊆ A. Since AA ⊆ AS ⊆ (AS] and AA ⊆ SA ⊆ (SA],
we have that AA ⊆ (AS] ∩ (SA] ⊆ A. This means that A is a subsemigroup of S. Lastly, since ASA ⊆
AS ⊆ (AS] and ASA ⊆ SA ⊆ (SA], we obtain that ASA ⊆ (AS] ∩ (SA] ⊆ A. This illustrates that A is a
bi-ideal of S.

In general, the converse of the above result does not hold by Example 2.11. Indeed, ({0, 2}S]∩ (S{0, 2}] =
{0, 1} 6⊆ {0, 2}.

Theorem 3.4. Let S be an ordered constraint semigroup. Then we have J(S) ⊆ I(S).

Proof. Let A be an ideal of S. It is clear that (A] ⊆ A and A is a subsemigroup of S. Since SAS ⊆ AS ⊆ A,
we obtain that A is an interior ideal of S.
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It can be stated that the converse of the above theorem does not hold, as illustrated by Example 2.11.
Indeed, S{0, 2} = {0, 2}S = {0, 1} 6⊆ {0, 2}. This shows that {0, 2} is neither a left ideal nor a right ideal of S.

Now, we summarize connections among types of ideals in ordered constraint semigroups, as illus-
trated in Figure 1.

J(S)

I(S)R(S) L(S)

Q(S)

B(S)

Figure 1: Relationships among ideals in an ordered constraint semigroup S.

Furthermore, a connection between one-sided ideals and quasi-ideals can be provided in terms of the
intersection as follows.

Proposition 3.5. The intersection of a left and a right ideal of an ordered constraint semigroup is a quasi-ideal.

Proof. Let L and R be a left and a right ideal of an ordered constraint semigroup S, respectively. Then
((L ∩ R)S] ∩ (S(L ∩ R)] ⊆ (RS] ∩ (SL] ⊆ (R] ∩ (L] = R ∩ L. Since (L ∩ R] ⊆ (L] = L and (L ∩ R] ⊆ (R] = R,
(L∩ R] ⊆ L∩ R. Hence, L∩ R is a quasi-ideal of S.

Generally, a quasi-ideal of an ordered constraint semigroup could not be the intersection of a left and a
right ideal. We give the following notion to define the property that a quasi-ideal of an ordered constraint
semigroup can be written in the form of the intersection of a left and a right ideal. Prior research on the
algebraic structure of ordered semigroups can be found in various sources, including references [1, 12, 19].

Definition 3.6. A subsemigroup A of an ordered constraint semigroup S has intersection property if A is
the intersection of a left ideal and a right ideal of S.

The following theorem comprises a condition that a quasi-ideal of an ordered constraint semigroup
satisfies the intersection property.

Theorem 3.7. Let Q be a quasi-ideal of an ordered constraint semigroup S. Then Q has the intersection property if
and only if Q = L(Q)∩R(Q).

Proof. Let Q be a quasi-ideal of an ordered constraint semigroup S. If Q = L(Q) ∩ R(Q), it is clear that
Q satisfies the intersection property. Hence, we remain to show that if Q has the intersection property,
then Q = L(Q) ∩ R(Q). Assume that Q has the intersection property. Obviously, Q ⊆ L(Q) ∩ R(Q). By
assumption, there exist a left ideal A and a right ideal R of S such that Q = A∩B. So, Q ⊆ A and Q ⊆ B.
Consequently, L(Q) = (Q ∪ SQ] ⊆ (A ∪ SA] ⊆ (A ∪A] = (A] = A and R(Q) = (Q ∪QS] ⊆ (B ∪ BS] ⊆
(B∪B] = (B] = B. Hence, L(Q)∩R(Q) ⊆ A∩B = Q. Therefore, Q = L(Q)∩R(Q).

4. Regular ordered constraint semigroups

In the preceding section, we provide links between various types of ideals in ordered constraint semi-
groups. Now, we investigate the notions of regular ordered constraint semigroups. Furthermore, it is
demonstrated in this study that the converse statements of various theorems and propositions presented
in the preceding section can hold true within regular ordered constraint semigroups. Prior research on the
algebraic structures of ordered semigroups can be found in various sources, including references [10, 11].

The regularity of ordered constraint semigroups can be defined as follows.
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Definition 4.1. An ordered constraint semigroup S is regular if for any a ∈ S, we have a ∈ (aSa].

We observe that if S is regular, then S r62 is also regular but not conversely.

Example 4.2. Let S = {0, 1, 2}. Define a binary operation · on S as follows.

· 0 1 2
0 0 0 0
1 1 1 1
2 1 1 1

Moreover, we define binary relations 61, 62, and 63, respectively, by the following illustrations.

2

1

0

1

2

2

1 0

Then 〈S; ·,61,62〉 and 〈S; ·,61,63〉 are ordered constraint semigroups. It is not difficult to calculate that
the ordered semigroup 〈S; ·,61〉 and the ordered constraint semigroup 〈S; ·,61,63〉 are regular. However,
〈S; ·,61,62〉 is not regular because there does not exist x ∈ S such that c 62 cxc.

We know already that, from Theorem 3.3, any quasi-ideal is a bi-ideal. One may ask which class of
ordered constraint semigroups makes such two concepts coincide. The following proposition addresses
this question.

Theorem 4.3. Let S be a regular ordered constraint semigroup. Then we have Q(S) = B(S).

Proof. By Theorem 3.3, every quasi-ideal of S is a bi-ideal of S. Let B be a bi-ideal of S. If x ∈ (BS]∩ (SB],
then x ∈ (xSx] ⊆ ((BS]S(SB]] ⊆ ((BSB]] = (BSB] ⊆ (B] ⊆ B. Hence, B is a quasi-ideal of S.

The converse of Theorem 3.4 can be true in a regular ordered constraint semigroup as follows.

Theorem 4.4. Let S be a regular ordered constraint semigroup. Then we have J(S) = I(S).

Proof. By Theorem 3.4, every ideal of S is an interior ideal of S. Let I be an interior ideal of S. If x ∈ SI,
then we obtain that x ∈ (xSx] ⊆ (xS] ⊆ (SIS] ⊆ (I] = I. So, SI ⊆ I. Similarly, we also get IS ⊆ I. Hence, I
is an ideal of S.

We summarize connections among various types of ideals in regular ordered constraint semigroups,
as illustrated in Figure 2.

J(S) = I(S)

R(S) L(S)

Q(S) = B(S)

Figure 2: Relationships among ideals in a regular ordered constraint semigroup S.

In the following results, we illustrate that the converse of Proposition 3.5 holds in the class of regular
ordered constraint semigroups.

Lemma 4.5. Let S be a regular ordered constraint semigroup, and A a nonempty subset of S. Then L(A) = (SA]
and R(A) = (AS].



P. Palakawong na Ayutthaya, N. Lekkoksung, J. Math. Computer Sci., 37 (2025), 201–213 212

Proof. Assume that S is regular. Obviously, (SA] ⊆ (A ∪ SA] = L(A). By assumption, we get that for any
a ∈ A, a ∈ (aSa] ⊆ (ASA] ⊆ (SA] implies A ⊆ (SA]. It follows that L(A) = (A∪SA] ⊆ ((SA]∪SA] = (SA].
The case of R(A) = (AS] can be proved analogously.

Proposition 4.6. Let S be a regular ordered constraint semigroup. Then, every quasi-ideal of S is the intersection
of a left and a right ideal of S.

Proof. LetQ be a quasi-ideal of S a regular ordered constraint semigroup. It is clear thatQ ⊆ L(Q)∩R(Q).
Using Lemma 4.5, we obtain that L(Q)∩R(Q) = (SQ]∩ (QS] ⊆ Q. Hence, Q = L(Q)∩R(Q).

Based on the result above, we can conclude that every quasi-ideal has the intersection property in
regular ordered constraint semigroups.

An ordered constraint semigroup S is said to be commutative if xy = yx for all x,y ∈ S. It is obvious
that J(S) = R(S) = L(S) if S is commutative.

Nevertheless, it is possible for us to provide the notion of duo ordered constraint semigroups, which is
a broader concept than a commutative ordered constraint semigroup, by utilizing the following definition.

Definition 4.7. An ordered constraint semigroup S is said to be duo if every one-sided ideal is a two-sided
ideal.

It is clear by the above definition that J(S) = R(S) = L(S) if S is a duo ordered constraint semigroup.
Moreover, it is obvious that every commutative ordered constraint semigroup is duo. This illustration
serves to demonstrate that there exists a duo ordered constraint semigroup which fails to exhibit the
commutativity.

Example 4.8. Let S = {0, 1, 2, 3}. Define a binary operation · on S as follows.

· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 1 0
3 0 0 1 1

We define binary relations 61 and 62, respectively, by the following illustrations.

1

0

0

21

Then S is an ordered constraint semigroup. Clearly, S is not commutative. We obtain that {0}, {0, 1},
{0, 1, 3}, {0, 1, 2}, and S are all one-sided ideals of S. It is not difficult to show that every one-sided ideal of
S is a two-sided ideal. Hence, S is a duo ordered constraint semigroup.

In regular duo ordered constraint semigroups, all types of ideals mentioned in this work, namely,
ideals, left ideals, right ideals, quasi-ideals, bi-ideals, and interior ideals are coincidence as the following
corollary which is directly obtained by Theorem 4.3, Theorem 4.4, Proposition 4.6, and Definition 4.7.

Corollary 4.9. Let S be a regular duo ordered constraint semigroup. Then J(S) = L(S) = R(S) = Q(S) = B(S) =
I(S).

5. Conclusion

This paper presents the concept of ordered constraint semigroups, which represents an extension of
ordered semigroups. The introduction of this new algebraic system incorporates an expanded notion of
compatibility. Various types of ideals in ordered constraint semigroups are introduced and examined,
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focusing on exploring their interconnections in specific classes of ordered constraint semigroups. Addi-
tionally, the paper considers the intersection property of quasi-ideals. The utilization of ideals in ordered
constraint semigroups holds great promise for delving deeper into the study of this algebraic structure. By
employing the notion of ideals, researchers can explore various aspects of ordered constraint semigroups,
such as their characterization, the investigation of ideals purity, the analysis of primitive ideals, and the
examination of radical ideals. These avenues of research have the potential to provide valuable insights
into the properties and behavior of ordered constraint semigroups, contributing to a more comprehensive
understanding of this mathematical framework.
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