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Abstract

This paper contributes some new outcomes about the oscillation of a forced fractional order sum-difference equation of the

form
—1

Aﬁy(t) + Z Ty, 2)¥(r,y(>) =¢€(1), 0< P <1, L€ Ng,

»=a

with AB~1y(0) = yo € R. Here T,V¥, ¢ are well-defined functions along with continuity and AP and AP~ represent the
Riemann-Liouville (R-L) fractional order difference and sum operators, respectively. Suitable examples are delivered to clarify
the strength of the theoretical consequences.
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forcing term.
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1. Introduction

Fractional calculus, which is an evolving field of applied mathematics, considers integrals and deriva-
tives of an arbitrary order. Greater part of the mathematical theory pertinent to the study of fractional
calculus was put forward before the commencement of 20" century. Fractional derivative is not a local
property, making it unique in its behaviour and thus opening new paths and avenues for exploration and
application. But in the recent decades it has emerged as one of the significant interdisciplinary subjects
both in Physical & Biological Sciences and Engineering. Moreover, fractional calculus has applications in
several fields, including visco-elasticity, electrochemical dynamics, physics, porous media, control, elec-
tromagnetism, and so forth; see [3, 10, 11, 16, 23] and the references therein.
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Fractional order difference equations, the discrete version of fractional differential equations has
started gaining popularity among researchers. The delta operator (A) is termed as the forward differ-
ence operator while the nabla operator (V) is called as the backward difference operator. Much research
has been pursued to develop the properties of discrete fractional operators, both delta and nabla opera-
tors [8, 12]. In 1956, Kuttner mentioned for the first time the differences of fractional order [21]. Diaz and
Osler presented discrete fractional operator defined as an infinite series [15] in 1974. In 2007, Atici and
Eloe formulated the Riemann-Liouville like fractional difference operator by means of the notion of frac-
tional sum [7]. In 2011, Holm advanced further research in this area and employed the tools of discrete
fractional calculus to the arena of fractional difference equations [19].

Fractional discrete models have a major advantage over their conventional counterparts due to the
infinite memory. The applications using discrete fractional calculus have gained much attention during
the last few years. In recent years the study of qualitative properties like stability, positive solution,
dynamic equations on timescales, non-oscillatory of fractional difference equations has been paid much
attention, especially oscillation theory regarding fractional difference equations became a very interesting
topic [1, 4-6, 13, 14, 20, 22, 24-29] and the references therein.

In this paper, oscillation for forced discrete fractional order sum-difference equation of the form

U+ i T(y, )W, y(s) =€), 0<pPp <1, teNg={a,a+1,a+2,...}, (1.1)

with AP~1y(0) = yo € R is discussed. Here T,¥, ¢ are well-defined continuous functions and AP and
AP~ represent the Riemann-Liouville fractional order difference and sum operators, respectively. The
design of equation (1.1) is so broad that it addresses a wide range of specific situations. Following
assumptions are useful in the discussion.

(A1) e:la,00) > Rand T : [a, o) X [a,00) — R are continuous functions with T(t, ») > 0 for all t > s.

(An) There exists continuous functions p, ¢ : [a,00) — [0, 00) such that T(t, ) < p(1)@(t) for all ¢ >

(Az) ¥ : [a,00) x R — R with ¥Y(,,y) := ¥1(,,y) — ¥2(1,y) is continuous and there exists continuous
functions W1, ¥, : [a, 00) x R — R such that y¥;(,y) >0,(i=1,2), fory #0 and « > a.

(A4) There exists real constants A, 11 and continuous functions p1, 2 : [a, 00) — [0, 00) such that W1 (i, y) >
p1(Vy* and W2 (L, y) = p2(Uy", y #0, L > a.

The rest of the paper is structured as follows. Section 2 contains the basic definitions and lemmas which
are the foundation for the work supported in this paper. Oscillation results for fractional order sum-
difference forced equations are established by using properties of R-L & Caputo difference operators and
Hardy inequalities in Section 3. Suitable examples of the fractional order sum-difference equation (1.1)
are demonstrated in Section 4.

2. Preliminaries

The growth of fractional discrete calculus is quite rapid and it is only during the past decade, that the
researchers have been shaping a complete framework for the subject. This section holds basic foundation
of definitions and lemmas for the work sustained in this paper.

Definition 2.1 ([17]). A solution {y(t)} is said to be oscillatory if the terms of the solution are neither
eventually positive nor eventually negative. Otherwise, the solution is called nonoscillatory.

Definition 2.2 ([7]). Let p > 0. The B-th fractional sum A=F : Ny, — Ny p of y is defined by

—B
1 L
A~ B —BZ t—x—1) (B— 1)y(%), for 1€ Nagp,
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where y is defined for » = amod(1) and A~ Py is defined for t = (a + ) mod(1) and the falling function

is
(B) _ Me+1)

TT—p+1)

where T is the Gamma function.
Definition 2.3 ([7]). The RL B-order fractional difference AP is expressed by

ABy(1) = A*AT(Bly (1), L€ Njop,

and so
A L—a+f3
APy() = s Y (== DY, Le N,
MNa—p) =

Also for the fractional sum, the law of exponent is
ATRATY)] = AT BTy () = ATV[ATPy(u).

Lemma 2.4 ([9]). For the fractional sum and difference operators, commutative property is as follows. For any
B > 0, the below equality holds

A_BAU(L) :AA_By(L)— rB)

y(a).

Lemma 2.5 ([18]). If U and V are non-negative, then

(i) UM —AUVA1 — (1—A)VA >0, A > 1;
(i) UM =AUV — (1 —A)VA <

where the equality holds iff U = V.

3. Oscillation results of R-L difference

This section forms a new condition for the oscillation of fractional order sum-difference equation (1.1)
based on the properties of R-L derivatives and Hardy inequalities.

Theorem 3.1. Let conditions (A1)-(A3z) be hold with WY, = 0. If for every constant & > 0 such that

lim sup AP le(1) +8p(1)] = 400,

L—00

liminf AP e(1) + 8p(1)] = —o0, (3.1)

L—00

then every solution of (1.1) is oscillatory.

Proof. Let y(1) be non-oscillatory solution of (1.1) with ¥, = 0. Suppose that y(1) > 0 for 1 >y and ; > a.
From equation (1.1), we have

1—1 11—1 1—1
APY() =e() — Y T, )W0ry(a) = e() = Y Tt 5)W0ey() — Y Tt 52)¥(52,y(54))

L1—1

el = D Ty )15,y (32) +Wals¢,y ().

x=a
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Since ¥, = 0, we get

L1—1

APy(1) <e(1) — Z T (v, 5)¥1(5,y(5)). 3.2)
Letting
o=min{¥(Ly(V);j=12 telaul} <0
and

Llfl
S§=—0) (x>
x=a
Using condition (Ajy), equation (3.2) can be rewriten as

Llfl (% 1

APY() <e()— ) pl)@(se) W1 (56, y(») )—o Z p(se APy(1) < e(d) +8p(u).

x=a
Therefore applying A~F on both-sides leads to
AP APY(1) <ATPle(1) +8p(1).
Using Lemma 2.4 yields

(t—a)B-D
r(p)

Taking limit as 1 — oo, we obtain

(L—a)B-1)

APATPy( - F(p)

yla) <A PLe() +8p(1)], y(u) < b1+ A Ple(1) + 8p()],

(L—a)B-1)
liminfy(t) < liminf | ———————b; + A Ple() + 5p(V)]],
L1—00 L—00 I'p)
or
liminfy(1) < liminf |—————b; 4+ A Pe(1) +8p(1)]| = —o0,
L—00 L1—00 F(B)
which is obviously a contradiction to y(t) > 0 eventually. The case when y(1) < 0 eventually is similar,
therefore concludes the proof. O

Theorem 3.2. Let conditions (A1)-(A4) be valid with A > 1 and n = 1. In addition to conditions of Theorem 3.1,

Zf 1 —p3 ) —1 1 A
nggofﬁ) ;Q(L—e—n(ﬁ— >;1T(e, 2)pi N (3)p) T (30) < o0, (3.3)

then every solution of (1.1) is oscillatory.

Proof. Let y(1) be non-oscillatory solution of (1.1) with y(t) > 0 eventually for ¢ > ;. From conditions
(Az)-(Ag) with A > 1 and 1 =1, we get

1—1
APy(1) Z T(1, 30)¥ Z T(1, 3)¥(56,y(5) — D Tl 2)¥(5,y(5)).

=a »=\
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From Theorem 3.1, we have

ie.,

Using Lemma 2.5 leads to
p2y —pry" < (A—1ATxp;
Applying the above inequality in (3.4), we have

—1 1
APy (1) < e() +8p(1 —i—ZTL%(?\ 1)?\% e

n=\

Multiply Bt fractional sum on both-sides to (3.5), we obtain

1—1 1A
APAPY() SATP e +8p()+ Y T(y5)(A—1ATxp] p2"1] :

x=\1
Using Lemma 2.4 yields

(t—a)B-D 1
APAPY() = gy (@) S AP Le() + Sp(u]) + AP

=\

or

Taking limit inferior on both-sides of (3.6) as t — oo and using (3.1) and (3.3), we have

)(B*)

_ 1
liminfy(t) < liminf [(Lr(tbl + AP e(y) +5p(Lﬂ]

L—00 L—00 B)
1 <P L
+lin_1>inf —B § (L—¢—1)(B-1) Z T(L, 52) DA T (3¢
L o
{=a x=

3 T(y, ) (A—1AFp 7

(3.4)

(3.5)

(3.6)
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ie.,

hgg}fy(t) = —00,

a contradiction with y(1) > 0 eventually. The case when y(1) < 0 eventually is similar, therefore concludes
the proof. O

Theorem 3.3. Let conditions (A1)-(As) and Theorem 3.1 hold with A =1 andn < 1, if

—p3 £—1 B
limlﬁz (1= =1 S T(L,s)p] " ()p] 7 (54) < o0, (3.7)
L—00

{=a »=4

then every solution of (1.1) is oscillatory.

Proof. Let y(1) be non-oscillatory solution of (1.1) with y(1) > 0 eventually for v > ;. Form conditions
(Az)-(Ag) withA =1and 1 < 1, we get

—1
APy(1) =e() — ) T(y,)¥(3,y(5))

11—1 1—1
— Y (50 Wa 56,y (50) = Waloe,y ()] — D T, 56) [ (56, (5¢)) — Wa 56, y(52))].

From Theorem 3.1, we have

1) + 5p(1) ZTL% p1(50)y™ — pa(5e)y"]

1
e()+8p()+ Y T(1,5) [pa(se)y™ — pr(sey?],

x=\1
since A = 1 leads to

—1
APy(1) < e(U+8p(U+ D Ty ) [p2(s)y™ — p1 (3] (3.8)

x=\
Using Lemma 2.5 leads to
_n
P22 )y —p1(3)y < (1—mnTapf 'p, .
Applying the above inequality in (3.8), we have

1—1 L
APy() <e()+8p()+ Y T(,s)(1—nnTap] Tp, . (3.9)

=1
Multiply Bt fractional sum on both-sides to (3.9), we obtain

—1 BN L
APAPY() <ATP |e(0+8p()+ Y T(,5)(1—nnTrp] o) "

=\
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Using Lemma 2.4 yields

. (1—a)B D . . I R
APA By(t)—wy(aKA Ple()+8p(l+A P | > T(,s)(—nn™p] oy " |,
x=\
or
(t—a)B-D 1 & )8_1 Aoy
y( < Wbl—i-A*ﬁ‘ [e(L) 4+ 6p(1) —B Z Z T, ) (1—mnTnpy 'p, ".
L=a =\
Taking limit inferior on both-sides of (3.6) as t — oo and using (3.1) and (3.7), we have
timinfy() < timinf [ U= 0, 4 A8 (e 1 5p(u)
1Lrgg1yL\1Lrg1o£1 (B 1+ e(t)+oplt
1 —p3 )E—l N Ll %
3 3 T—Fm AN -n
+lim inf —BZ (l—C— ZLT(e,%)u_n)nl ol ol
{=a w=
ie.,
liminfy(t) = —oo,

L—00

a contradiction with y(1) > 0 eventually. The case when y(t) < 0 eventually is similar, therefore concludes
the proof. O

Theorem 3.4. Let conditions (A1)-(A4) and Theorem 3.1 be hold with A > 1 and n) < 1, suppose that there exists a
continuous function X : R — [0, co) such that

B -1
1 B \
im —— _p_1)B-1) T A
m r(B) (’,:a(L t-1) ;lT(f, #)py " ()X 3T (3) < o0, (3.10)
d
an . » n N
im o5 > (= =T Y T s ey 7 () < oo, (3.11)
8:(1 x=1q

then every solution of (1.1) is oscillatory.

Proof. Let y(1) be non-oscillatory solution of (1.1) with y(t) > 0 eventually for « > ;. Form conditions
(Az)-(Ag) with A >1and n < 1, we get

1—1
APy() =€) — ) T(y)¥(5,y(x)
J::Cll 1—1
=e()— ) T(y2)¥1(56y(2) —W2ls5,y(3))] — D T(y, 2)W1(5¢,y(5¢)) — Wal32,y ().

From Theorem 3.1, we have

1—1
APy (1) < e(U+8p(0)— D Ty 2)[¥1(3,y(30)) — a6,y ()],

»=\



J. Alzabut, A. G. M. Selvam, R. Janagaraj, ]. Math. Computer Sci., 37 (2025), 214-225 221

Using Theorems 3.2 and 3.3 leads to

1—1
APy() < el +8p()+ Y T(y ) [palse)y — pr(sey?] + Z T(y, ) (02" — pa(se)yl.  (3.12)

=\ »=\

Taking pa(s) = p1(5¢) = x(22), (3.12) yields

APy(1) < (1) +8p(t +ZTL% Jx(3¢) — p1 (¢ +ZTL% p2(2)y" —y(3)x ()]

=\ x=U
Using Lemma 2.4, we obtain

1—1 1 1—1 BN
APyY() < e()+8p()+ Y T(y ) A= DATR I X1 (5 + Y Tt 5)(1—nIn™ixa (s2)py " (3.13)

=\ x=\

Multiplying B fractional sum on both-sides to (3.13), we obtain

1—1 1
- ZT(L,%)(l—n)nnﬂx*f(%)pi”]
Using Lemma 2.4 yields
(L—a)(ﬁ_l) " A A
APA=By() — e (@) KA PLe()+8p()]+A7F | > T(y,s)(A— DATA P %31 (32)
—1 _nl 1
+A P Y T(,)(l—mnTrp pﬁ”] ,
or
(0 A le(1) + p(0)
y(u < 8 1+ e(t) +8p(1)
1 L et A 1 A
gy 2 P Y T (- DA e X (3.14)
{=a n=1
1 < 0 i
ripy 2 (DY ) T LT )y !
{=a =

Taking limit inferior on both-sides of (3.14) as 1 — oo and using (3.1), (3.10), and (3.11), we have

_q)(B—1)
liminfy(t) < liminf [(Lra()bl + AP le() + 6p(L)]]

(=00 (—00 B)
1 —p —1 N N
1 - _ (B—1) _ a0l Ay -1
—i—hlrgloglf !F(B) : (L—€—1) ZL T (€, 2) (A —1)ATxp; A x 3T ()
=qQa =\l
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1 —p £—1 1
—i—lirginf —BZ (L—¢—1)B-1) ZTE%(l nn 17)(71(%)9217]1 /
L o
l=a =
ie.,
liminfy(t) = —oo,

L—00

a contradiction with y(1) > 0 eventually. The case when y(1) < 0 eventually is similar, therefore concludes
the proof. O

3.1. Results for Caputo-like fractional difference operator

If we interchange the Caputo-like fractional difference operator by Reimann-Liouville fractional dif-
ference operator well-defined by

1-(n—p)
(n— 1 _p—
CABUU):CA (n B)Any(l):m z (L—%—l)(n P 1)Any(%)/ t € Nayn—p,

z=aQa
equation (1.1) changes into

—1
CAPY(+ Y T(,2¥(5y(x) =e(t), n—1< P <m, L€Ng, (3.15)

»x=aQa

with Aly(a) =b; € R,i=0,1,2,...,n—1. The following lemma is essential for providing the result for
(3.15).

Lemma 3.5 ([2]). Assume 3 > 0 andy from INy and Ny,. Then

n— 1

A~BCABYy( Z

=0

Theorem 3.6. Let conditions (A1)-(A4) hold with W, = 0. If for every constant & > 0 such that

lim sup AP le(1) +8p(1)] = 400,

L—00

and
lim inf AP e(1) + 8p(1)] = —oo, (3.16)

then every solution of (3.15) is oscillatory.

Proof. Let y(1) be non-oscillatory solution of (3.15) with ¥, = 0. Suppose that y(1) > 0 for « > ; and
1 > a. From equation (3.15) and proceeding as in the proof of Theorem 3.1, we have

CAPy(1) < (1) +8p(v).
Multiplying A~P on both-sides of inequality (3.16) leads to
ATPEABY (1) < ATPe(1) + 8p(1)].

Using Lemma 3.5 yields

n—1 n— 1
—Z(L_ (a) < A PLe(v) +8p(1) Z (@) + A Ple(u) + dp(u)].
2=0 2=0
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Taking limit as 1 — oo, we obtain

n— 1

liminfy(t) < liminf (@) + A Ple(V) +8p(1)]]| = —o0,

L—00 L—00

=0

which is clearly contradiction to y(t) > 0 eventually. The case when y(t) < 0 eventually is similar,
therefore concludes the proof. O

The proofs of the remaining theorems are removed since their arguments are similar to those of the
R-L difference operator.

4. Examples

In this section, appropriate examples are presented to clarify the validity of the above results attained
in Section 3. It is noteworthy to notice that no results in the previous literature can explain the oscillation
of equations (4.1) and (4.2).

SR 0
—= + -, a=4y,
r@ 3

1
and fractional order 3 = 5 Thus the discrete fractional order sum-difference equation (1.1) is replaced
by

Example 4.1. In equation (1.1), we set T(t,3c) = 1, ¥1(L,y) =y, ¥2(L,y) = y? e(t) =

1—1 2
1 y(x) (3
Az2y(L) + L {y(%)—i— } = —i—— 0< B <1 te Ny, (4.1)
2 S O
1
with A_%y(O) = b; = 0. Obviously assumptions (A1)-(A4) hold. Moreover, A =2, =1, p1(1) = Y and
p2(t) = . Now,
(= —1)B 1= (1D <y t=12,...,1—1,
and
1 A
T(L, 2)pl ™ (3)p3 " (5¢) = e x 3 X 3% = U3¢
Hence
— -1 1 N L*z
_0_ f3 1) JEN A1
L_mo Z t—4£ ZL T(€, 2)p; " (52)py ' (22) < LllH)lor Z\f ZL 0% < .
{=a x=1 x=l

Thus condition (3.3) is satisfied. We deduce that every solution of equation (4.1) is oscillatory from
Theorem 3.2.

5

2
Example 4.2. In equation (1.1), we set T(, ) = i, Yi(L,y) =y% ¥a(L,y) = % e(L) = \}2 + L4 =0, and
fractional order 3 = % Thus the discrete fractional order sum-difference equation (1.1) is replaced by
L y() 20 P8
Al =4 — 1 42
2y Z%[ L2:| Jmta 0<B<1l 1N (4.2)
. 1 . . 1 1
with A2y(0) = by = 0. Obviously assumptions (A1)-(A4) hold. Moreover, A = 2, n = 5 p1(1) = v
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p2(1) = (2, and the continuous function x(t) = .. Now,

(——1)B 1= —¢—1)) < r<3),e:1,2,...,t—1,

2
and
1 A L
T(L, 5)p; " ()X 1 (3) = — x 3¢ % 2 =5,
»
n_ % | 4
T (L, 5e)x 7T (3)pg " (5¢) = — x — x 3 = 02,
» x
1 . ( ) 1 1 A 1 Li% 3 —1
im —— —p—1)B-1 == A . 3 3
lim s ) (= 0=1P ) (e ey (x 1 () < lim Sora (2> Y 6l <o,
=a n=\ 2 =0 —ty
and
1 = N S e
E—— _¢_1)B-1) N f— ) 3
i, gy 2~ T T o) < iy T8 (5) 3 0 <o

Thus conditions (3.10) and (3.11) are satisfied. We deduce that every solution of equation (4.2) is oscillatory
from Theorem 3.4.

5. Conclusion

This work presents oscillation theorems for fractional order sum-difference forced equations, utilizing
R-L and Caputo difference operators and Hardy Inequalities. The main equation is structured in a broad
manner, thus it encompasses many of the specific circumstances. Suitable examples are obtained to
demonstrate the validity of the theoretical results. Our future research will focus on the forced oscillation
criteria for fractional order partial difference equations.
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