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Abstract
In the article, we explore a form of generalization of Appell polynomials stemming from fractional differential operators

within the classical sense of Caputo and Riemann-Liuoville. To ascertain its generating function, we used the Mittag-Leffler
function. Additionally, we propose a determinant form for this novel sequence family and derive general properties thereof.
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1. Introduction

The Appell polynomials, denoted as {An(x)}n∈N0 , constitute a significant mathematical sequence in-
troduced by the esteemed French mathematician Paul Appell (see [3]). These polynomials satisfy the
differential equation:

d

dx
An(x) = nAn−1(x), n ∈N, (1.1)

with A0(x) being a non-zero constant. Alternatively, the sequence can be elegantly expressed through the
generating function:

f(t)ext =

∞∑
n=0

An(x)
tn

n!
,

where f is a formal power series in t.
The Appell polynomials exhibit diverse properties that render them invaluable in the realm of mathe-

matical analysis, particularly within the study of differential equations and related fields, as documented
by Adel, Khan et al., and Nemati et al., [9, 11]. Prominent instances of polynomial sequences satisfying
equation (1.1), or equivalently the recursive relations, encompass the well-known polynomials of Bernoulli
and Euler. The exponential generating functions for the geometric polynomials of Bernoulli and Euler are
expressed as follows (refer to [2]):

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π, and

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
, |t| < π. (1.2)
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Recently, Caratelli et al. [6], extended the classical Bernoulli and Euler polynomials substituting the
fractional exponential Eα of order 0 < α 6 1 (a particular case of the two-parameters Mittag-Leffler
function Eα,β) in place of the ordinary exponential in the corresponding classical generating function:

tαEα(x
αtα)

Eα(tα) − 1
=

∞∑
n=0

Bαn(x)
tαn

Γ(nα+ 1)
and

2Eα(xαtα)
Eα(tα) + 1

=

∞∑
ν=0

Eαn(x)
tnα

Γ(nα+ 1)
. (1.3)

We recall Eα(xαtα) ≡ ext, for α = 1. This new generalization is called by the authors of [6] as fractional
Appell-type polynomials of order α. It’s important to note that the designations Appell-type polynomials
actually represent functions rather than conforming strictly to the polynomial definition. However, be-
cause they consist of combinations of monomials with fractional powers, for the authors it is more suitable
to refer to them as polynomials, serving as a convenient shorthand for fractional power polynomials.

In [6, 13], some examples of these generalized mathematical entities were demonstrated. Specifically,
they focused on and provided numerical examples of Bernoulli and Euler numbers (i.e., for x = 0 in (1.3)),
as well as Laguerre-type Bernoulli and Euler numbers. However, many theories and results of classical
polynomials remained unextended. For instance, the theory is not presented abstractly, and there is no
indication regarding the specific type of differential equation, such as equation (1.1), that satisfies this
family of polynomials, among other aspects. Furthermore, they do not present definitions based on the
other specific cases of the Mittag-Leffler function.

In that sense, the objective of this study is to embark on an exploration of fractional Appell-type poly-
nomials in abstract form, building upon the interesting work initiated by researchers Diego Caratelli and
Paolo Emilio Ricci. Our focus lies particularly on incorporating differential operators of arbitrary order,
namely, the Caputo CDαx and Riemann-Liouville RDαx operators into our analysis. This extension signif-
icantly enhances the versatility of our approach, allowing us to introduce novel polynomials termed the
Appell-Caputo sequence {Cn(x)}n∈N0 and the Appell-Riemann sequence {Rn(x)}n∈N0 . These sequences
are defined by the following equations:

CD
α
xCαn (x) = nCαn−1(x), RD

α
xRαn(x) = nRαn−1(x), n ∈N.

We shall demonstrate that the Apple-Caputo and Appell-Riemann type sequences possess captivating
generating functions:

a(t)Eα(x
αt) =

∞∑
n=0

Cαn (x)
tn

n!
and b(t)xα−1Eα,α(x

αt) =

∞∑
n=0

Rαn(x)
tn

n!
,

where a(t) :=
∑
r>0 ar

tr

r! and b(t) :=
∑
r>0 br

tr

r! . Furthermore, we derive various algebraic and dif-
ferential properties of these sequences, predominantly relying on generating function methods. This
comprehensive exploration enhances our understanding and opens avenues for further mathematical in-
quiries.

The article is structured as follows. In Section 2, we delve into the definitions and properties of frac-
tional differential operators, alongside an exploration of the Mittag-Leffler function, and in Section 3 we
introduce the Appell sequences of fractional type, presenting their properties and various representations.

2. Fractional calculus and Mittag Leffler function

To introduce the fractional derivative, we begin by defining the function gα(x) :=
xα−1

Γ(α)
for x > 0 and

α > 0, where Γ is the Euler gamma function. Additionally, we define g0 := δ0, representing the Dirac
measure concentrated at 0. The family (gα)α>0 adheres to the semigroup property:

gα+β = gα ∗ gβ, α,β > 0.
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The Riemann-Liouville fractional integral of order 0 < α < 1 for a locally integrable function u : [0,∞)→
X is expressed as:

Iαxu(x) := (gα ∗ u) (x) :=
∫x

0
gα(t− s)u(s)ds.

For the Caputo fractional derivative of order 0 < α < 1 of a function u, we use the formula:

CD
α
t u(x) := I

m−α
x u(m)(x) =

∫x
0
gm−α(x− s)u

(m)(s)ds,

where m := dαe is the smallest integer greater than or equal to α. When α = n is a natural number,
we recover the classical derivative CDnx := dn

dxn . On the other hand, the Riemann-Liouville fractional
derivative RDαx of u of order α > 0 is given by

RD
α
xu(x) :=

d

dxm

(
Im−α
x u(x)

)
, x > 0.

For k ∈ R and 0 < α < 1, we recall that

CD
α
xx
γ = RD

α
xx
γ =

Γ(γ+ 1)
Γ(γ−α+ 1)

xγ−α, γ > 0. (2.1)

As a particular case, we have that

CD
α
xk = 0 and RD

α
xx
α−1 = 0. (2.2)

For more details about fractional calculus, see [1, 4, 10].
The Mittag-Leffler function, as described in various references (e.g., [12]), is defined as follows:

Eα,β(z) =

∞∑
v=0

zn

Γ(αn+β)
, α > 0, β ∈ C, z ∈ C. (2.3)

We write Eα,1(z) ≡ Eα(z). The Mittag-Leffler function, an entire function, serves as a straightforward
extension of the exponential function E1(z) = e

z and the cosine function E2
(
−z2

)
= cos(z).

The Laplace transform of the Mittag-Leffler function is expressed as (see [5, 8]):∫∞
0
e−λxxβ−1Eα,β (±zxα) dt = λα−β

λα ∓ z
, Re(λ) > |z|1/α.

Utilizing this crucial formula, we derive the following expression for 0 < α 6 2:

CD
α
xEα (zxα) = zEα (zxα) , x > 0, z ∈ C,

and
RD

α
xEα,α (zxα) = zEα,α (zxα) , x > 0, z ∈ C,

where Eα,α (zxα) := xα−1Eα,α (zxα).

3. Appell sequences of fractional type.

Initially, we establish an exploration of the Appell sequences of fractional type within the framework
of the Caputo fractional operator. Through detailed analysis and definition, we delve into the intricate
characteristics and properties of these polynomials, their significance, and applications within fractional
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calculus. Let [
n

r

]
α,µ

:=
n!

(n− r)!Γ(αr+ µ)
.

We write [
n

r

]
α,1

:=

[
n

r

]
α

.

Definition 3.1. Let 0 < α 6 1. Sequences of functions of order α, denoted as {Cαn (x)}n∈N0 , are termed
Appell-Caputo sequences when they adhere to the relationship:

CD
α
xCαn (x) = nCαn−1(x), n ∈N. (3.1)

Remark 3.2. Observe that equation (3.1), when α = 1, yields (1.1) due to the definition of the Caputo
derivative. In other words, the classical Appell polynomials are a particular case of the Appell-Caputo
sequences.

An alternative approach to establish the Appell-Caputo sequences is as follows.

Theorem 3.3. Let 0 < α 6 1 and {an}n∈N0 be a sequence of arbitrary numbers. The sequence of functions
{Cαn (x)}n∈N0 give by

Cαn (x) :=

n∑
j=0

[
n

j

]
α

an−jx
αj, x > 0, (3.2)

satisfying the relation (3.1).
Proof. By (2.1) and (2.2), we have

CD
α
xCαn (x) =

n∑
j=0

[
n
j

]
α

an−jCD
α
x x
αj

=

n∑
j=1

[
n
j

]
α

an−j
Γ(αj+ 1)

Γ (αj−α+ 1)
xαj−α

=

n−1∑
j=0

n!
(n− 1 − j)!Γ(αj+ 1)

an−1−jx
αj

= n

n−1∑
j=0

[
n− 1
j

]
α

an−1−jx
αj = nCαn−1(x).

Now, we establish the generating function of the Appell-Caputo polynomials.

Theorem 3.4. Given the power series

a(t) :=

∞∑
j=0

aj
tj

j!
, a0 6= 0, (3.3)

with aj, j = 0, 1, . . ., real coefficients, a Appell-Caputo sequences {Cαn (x)}n∈N0 is determined by the power series
expansion of the product a(t)Eα(xαt), i.e.,

a(t)Eα(x
αt) =

∞∑
n=0

Cαn (x)
tn

n!
. (3.4)
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Proof. By (2.3), (3.3), and using the following identity (see [7, p. 18, Eq. 0.36]):( ∞∑
v=0

an

)( ∞∑
k=0

bk

)
=

∞∑
n=0

n∑
k=0

an−kbk, (3.5)

we can recognize polynomials Cαn (x), expressed in form (3.2), as coefficients of tj/j!.

Remark 3.5. Observe that in [6], the fractional Appell-type polynomials of order α are defined by the
following generating function:

Gα(x, t) = A(t)Eα(xαtα) =
∞∑
n=0

Rnα(x)
tnα

Γ(nα+ 1)
.

By implementing certain modifications, both generating functions can coincide.

Example 3.6. In (3.4), note that

1. if a(t) :=
t

et − 1
and α = 1, we have Bernoulli polynomials classic;

2. if a(t) :=
2

et + 1
and α = 1, we have Euler polynomials classic.

See the generating functions (1.2).

Example 3.7. Let a(t) :=
t

et − 1
and 0 < α 6 1. Then,

Cα0 (x) = 1,

Cα1 (x) =
xα

Γ(α+ 1)
−

1
2

,

Cα2 (x) =
2x2α

Γ(2α+ 1)
−

xα

Γ(α+ 1)
+

1
6

,

Cα3 (x) =
6x3α

Γ(3α+ 1)
−

3x2α

Γ(2α+ 1)
+

1
2

xα

Γ(α+ 1)
,

Cα4 (x) =
24x4α

Γ(4α+ 1)
−

12x3α

Γ(3α+ 1)
+

2x2α

Γ(2α+ 1)
−

1
30

.

From the generating function, we derive the determinantal form of the Appell-Caputo sequences.

Figure 1: Appell-Caputo sequence of Example 3.7.
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Theorem 3.8. The sequences of Appell-Caputo sequences has the following determinantal representation:

Cα0 (x) =
1
γ0

,

Cαn (x) =
(−1)n

γn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣

Qα0 (x) Qα1 (x) Qα2 (x) · · · · · · Qαn−1(x) Qαn(x)

γ0 γ1
1
2γ2 · · · · · · 1

(n−1)!γn
1
n!γn

0 γ0 γ1 · · · · · · 1
(n−2)!γn−2

1
(n−1)!γn−1

...
...

...
...

...
...

...
0 0 0 · · · · · · γ0 γ1

∣∣∣∣∣∣∣∣∣∣∣∣
,

(3.6)

where Qαn(x) :=
xαn

Γ(αn+ 1)
and [a(t)]−1 =

∑∞
k=0 γk

tk

k! .

Proof. Inverse of a(t) applied to both sides of the generating function (3.4) yields

Eα(x
αt) =

∞∑
k=0

γk
tk

k!

∞∑
n=0

Cαn (x)
tn

n!
.

Applying (3.5), we get ∞∑
n=0

Qαn(x)t
n =

∞∑
n=0

n∑
k=0

γkC
α
n−k(x)

(n− k)!k!
tn.

Equating the coefficients of tn, we have

Qαn(x) =

n∑
k=0

γkC
α
n−k(x)

(n− k)!k!
, n ∈N0.

As a result, the system of equations in the unknown Cαn (x) is as follows:

Qα0 (x) = γ0C
α
0 (x),

Qα1 (x) = γ0C
α
1 (x) + γ1C

α
0 (x),

Qα2 (x) =
1
2
γ0C

α
2 (x) + γ1C

α
1 (x) +

1
2
γ2C

α
0 (x),

...

Qαn(x) =
γ0C

α
n (x)

n!
+
γ1C

α
n−1(x)

(n− 1)!
+
γ2C

α
n−2(x)

2(n− 1)!
+ · · ·+

γnCα0 (x)

n!
.

By using Cramer’s rule and the properties of the determinant of a triangular matrix, we have

Cαn (x) =
1

γn+1

∣∣∣∣∣∣∣∣∣∣∣

γ0 0 0 · · · Qα0 (x)
γ1 γ0 0 · · · Qα1 (x)
1
2γ2 γ1

1
2γ0 · · · Qα2 (x)

...
...

...
...

...
γn
n!

γn−1
(n−1)!

γn−2
(n−2)! · · · Qαn(x)

∣∣∣∣∣∣∣∣∣∣∣
.

Finally, by properties of the transpose of a matrix, we get the specified result.

Utilizing Theorems 3.3, 3.4, and 3.8, we can deduce the subsequent circular theorem.

Theorem 3.9. For the Appell-Caputo sequence, the following statements are equivalent.
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1. {Cαn(x)}n∈N is a the Appell-Caputo sequence.
2. The Appell-Caputo sequence {Cαn(x)}n∈N possess a generating function given by (3.4).
3. The Appell-Caputo sequence {Cαn(x)}n∈N are expressed in a determinantal form given by (3.6).

In the next result, let us consider the following definition:

(x⊕α y)n :=

n∑
r=0

(
n

r

)
α

xryn−r,

where (
n

r

)
α

:=
Γ(αn+ 1)

Γ(α(n− r) + 1)Γ(αr+ 1)
.

Proposition 3.10. The following identity is hold

Cn (x⊕α y) =
n∑
r=0

[
n

r

]
α

Cn−r(x)y
αr.

Proof. Observe that, tn (x⊕α y) = (tx⊕α ty) and Eα (x⊕α y) = Eα (x)Eα (y) . Then,

∞∑
n=0

Cαn (x⊕α y)
tn

n!
= a(t)Eα(x

αt)Eα (yαt)

=

∞∑
n=0

Cαn (x)
tn

n!

∞∑
r=0

tryαr

Γ(αr+ 1)
=

∞∑
n=0

n∑
r=0

Cαn−r (x)
tn

(n− r)!
yαr

Γ(αr+ 1)
.

Comparing the coefficients of
tn

n!
on both sides of the above equation, we obtain the result.

We now introduce the fractional Appell sequences defined under the Riemann-Liouville fractional
derivative operator of order α, where 0 < α < 1.

Definition 3.11. Sequences of functions of order α, denoted as {Rαn(x)}n∈N0 , are termed Appell-Riemann
sequences when they adhere to the relationship:

RD
α
xRαn(x) = nRαn−1(x), n ∈N. (3.7)

Theorem 3.12. Let 0 < α < 1 and {bn}n∈N0 be a sequence of arbitrary numbers. The sequence of polynomials
{Rαn(x)}n∈N0 give by

Rαn(x) :=
n∑
j=0

[
n

j

]
α,α

bn−jx
αj+α−1, x > 0, (3.8)

satisfies the relation (3.7).

Proof. By (2.1) and (2.2), we have

RD
α
xRαn(x) =

n∑
j=0

[
n

j

]
α,α

bn−jRD
α
xx
αj+α−1

=

n∑
j=1

[
n

j

]
α,α

bn−j
Γ(αj+α)

Γ (αj)
xαj−1
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=

n−1∑
j=0

n!
(n− 1 − j)!Γ(αj+α)

bn−1−jx
αj+α−1

= n

n−1∑
j=0

[
n− 1
j

]
α,α

bn−1−jx
αj+α−1 = nRαn−1(x).

Now, we establish the generating function of the Appell-Riemann sequences.

Theorem 3.13. Let 0 < α < 1. Given the power series

b(t) :=

∞∑
j=0

bj
tj

j!
, a0 6= 0, (3.9)

with bj, j = 0, 1, . . ., real coefficients, the Appell-Riemann sequences {Rαn(x)}n∈N0 are determined by the power
series expansion of the product b(t)Eα,α(x

αt), i.e.,

b(t)Eα,α(x
αt) =

∞∑
n=0

Rαn(x)
tn

n!
. (3.10)

Proof. By (2.3), (3.9), and (3.5), we can recognize polynomials Rαn(x), expressed in form (3.8), as coeffi-
cients of tj/j!.

Example 3.14. Let a(t) :=
t

et − 1
, x > 0, and 0 < α < 1. By (3.10), we have

Rα0 (x) =
xα−1

Γ(α)
, Rα1 (x) =

x2α−1

Γ(2α)
−

1
2
xα−1

Γ(α)
,

Rα2 (x) =
2x3α−1

Γ(3α)
−
x2α−1

Γ(2α)
+

1
6
xα−1

Γ(α)
, Rα3 (x) =

6x4α−1

Γ(4α)
−

3x3α−1

Γ(3α)
+

1
2
x2α−1

Γ(2α)
,

Rα4 (x) =
24x5α−1

Γ(5α)
−

12x4α−1

Γ(4α)
+

2x3α−1

Γ(3α)
−

1
30
xα−1

Γ(α)
.

Figure 2: Appell-Riemann sequence of Example 3.14. Figure 3: Appell-Riemann sequence of Example 3.15.
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Example 3.15. Let a(t) :=
2

et − 1
, x > 0, and 0 < α < 1. By (3.10), we have

Rα0 (x) =
xα−1

Γ(α)
, Rα1 (x) =

x2α−1

Γ(2α)
−

1
2
xα−1

Γ(α)
,

Rα2 (x) =
2x3α−1

Γ(3α)
−
x2α−1

Γ(2α)
, Rα3 (x) =

6x4α−1

Γ(4α)
−

3x3α−1

Γ(3α)
+

1
4
xα−1

Γ(α)
,

Rα4 (x) =
24x5α−1

Γ(5α)
−

12x4α−1

Γ(4α)
+
x2α−1

Γ(2α)
.

Theorem 3.16. The sequences of Appell-Caputo sequences has the following determinantal representation:

Rα0 (x) =
1
γ0

xα−1

Γ(α)
,

Rαn(x) =
(−1)n

γn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣

Qα0 (x) Qα1 (x) Qα2 (x) · · · · · · Qαn−1(x) Qαn(x)

γ0 γ1
1
2γ2 · · · · · · 1

(n−1)!γn
1
n!γn

0 γ0 γ1 · · · · · · 1
(n−2)!γn−2

1
(n−1)!γn−1

...
...

...
...

...
...

...
0 0 0 · · · · · · γ0 γ1

∣∣∣∣∣∣∣∣∣∣∣∣
,

where Qαn(x) :=
xα(n+1)−1

Γ(αn+α)
and [b(t)]−1 =

∑∞
k=0 γk

tk

k! .

Proof. The steps of the proof of Theorem 3.8 are followed.

4. Conclusion

The article explores the generalization of Appell polynomials through fractional differential opera-
tors, particularly Caputo and Riemann-Liouville operators. It introduces the concept of Appell-Caputo
and Appell-Riemann sequences, showing their recursive relations and providing generating functions for
these novel sequences. Additionally, the article derives determinantal representations for the sequences,
shedding light on their structural properties.

Through the presented theorems and examples, the article illustrates the versatility and significance of
these fractional Appell-type sequences in fractional analysis. It bridges classical polynomial theory with
fractional calculus, offering a broader framework for studying differential equations of arbitrary orden
and related fields.

In summary, the article contributes to the advancement of fractional calculus by extending classical
polynomial sequences to fractional orders, opening up new avenues for research and applications in
various mathematical disciplines.
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