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Abstract

In this paper, the moving least square (MLS) approximation is implemented for the numerical solution of time fractional
partial integro-differential equation (TFPIDE) on a bounded domain. To establish the scheme, we apply the finite difference
scheme to approximate the time Caputo fractional derivative, and we employ the composite trapezoidal quadrature rule for
estimating integrals. This approach is very convenient for solving TFPIDE since it does not require any need for mesh con-
nectivity. Then, the problem solving turns into solution of a linear system. The applicability and the validity of this method
is investigated. Furthermore, the error estimate of the proposed method is provided. Finally, several numerical problems are
solved which confirmed the theoretical findings.
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1. Introduction

The time fractional partial integro-differential equations occur as reformulations from some mixed
value problems arising in many scientific fields such as dynamics of the population growth model with
fractional temporal evolution [25], fractional order state equations for the control of viscoelastic structures
[8], control strategy of the outbreak of dengue fever [17], the dynamics of motion for an accelerated
mass-spring system within the framework of fractional calculus [9], a new mathematical model within
a generalized fractional framework for investigating the dynamics of HIV/AIDS transmission [6], an
efficient mathematical model to investigate the dynamics of COVID-19 within a generalized fractional
framework [5], and the fractional modeling of diabetes and tuberculosis co-existence [18].

However, only limited problems with simple boundary conditions have analytical solutions and due
to the mathematical complexities, the majority are generally difficult to be solved analytically. Therefore,
numerical approaches become indispensable tools for numerical solutions of this kind of equations. For
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instance, a few numerical approaches have been applied to solve different types of the time fractional par-
tial integro-differential equations. Ziyang Luo proposed a new numerical scheme based on compact finite
difference [23], Atta and Youssri developed an approximate spectral method based on shifted first-kind
Chebyshev polynomials [4], and Fakhar-Izadi combined the Galerkin approximation with the Legendre
polynomials as a basis [14].

Generally, the above-mentioned mesh methods are today the most powerful tool for solving this type
of problem, the conditional stability of explicit finite difference procedures and the need to use a large
amount of CPU time in implicit finite difference schemes limit the applicability of these methods. As
well, these approaches provide the solution of the problem on mesh points only, and the efficiency of the
methods is reduced in non-smooth and irregular domains.

To overcome the mesh problems, the mesh-free methods have been proposed and achieved remarkable
progress in recent years. The collocation-based meshless method is more efficient since no background
meshes and integration are needed. In this work, we consider a meshless method based on moving least
square approximation (MLS) for solving the time fractional partial integro-differential equation (TFPIDE)
of Volterra type:

C
0 Dαt u (x, t) − a (x)∂2

xu (x, t) + λ
∫t

0 k (x, t− s)u (x, s)ds = f (x, t) , (x, t) ∈ Ω, α ∈ (0, 1),
u (x, 0) = g (x) , x ∈ [0,L],
u (0, t) = h1 (t) and u (L, t) = h2 (t) , t ∈ (0, T ],

(1.1)

where Ω := (0,L)× (0, T ], λ is a positive constant, C0 Dαt is the Caputo fractional differential operator of
order α for t > 0, a is continuous function on Ω, and there exist a0 > 0 such that a(z) > a0, ∀z ∈ [0,L],
the functions k and f are sufficiently smooth functions on Ω, also, g is smooth function on [0,L], h1 and
h2 are smooth functions on [0, T ].

Actually, the meshless methods have gained more attention, particularly the moving least squares
method, it was introduced first in the late of 1968s by Shepard [30] and then developed by Lancaster and
Salkauskas [19].

The moving least squares (MLS) approach is discussed in this work [31], along with its application,
flexibility, limitations with field discontinuities, and various optimization options. The MLS method
does not require domain elements or background cells. This method allows an easy adaptation of the
nodal density, then the distribution of nodes could be chosen regularly or randomly in the consideration
domain. MLS method is ideal for complex geometries and moving boundaries because it provides smooth
and accurate approximations (see [22]). It has been applied in many branches of modern sciences, such
as surface construction [1], function approximation [20], numerical solution of integral and a class of
nonlinear fractional Fredholm integro-differential equations [11–13, 16].

However, as local systems need to be resolved at each point, this requires a complex and computa-
tionally expensive implementation (see [7]). Finite difference method (FDM) and finite element method
(FEM) are easier to implement but have difficulty handling complex geometries, MLS offers superior
adaptability. Spectral and Radial Basis Function (RBF) methods offer high accuracy but can be compu-
tationally intensive. For large-scale problems, the MLS method’s computational cost and memory usage
are significant, and efficient parallelization remains challenging.

The error analysis of the MLS method in several-dimensional spaces is well documented in the liter-
ature, Davoud and Armentano provided error analysis for the moving least squares approximation for
functions in Sobolev spaces of fractional order [2, 24], Zuppa obtained error estimates for MLS approx-
imations for the function and its derivatives [33] and The authors of [3, 28] obtained error estimates for
MLS approximations in the one-dimensional and two-dimensional cases.

In this work we establish the new error analysis and the rate of convergence for MLS method when
it is used for solving problem (1.1) numerically. The numerical technique used the composite trapezoidal
quadrature rule for approximating integrals, and the finite difference scheme to approximate the first
order time derivative, where the time derivative is defined in Caputo sense. Such problem exhibits a mild
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singularity at the initial time t = 0. For that we introduced the finite difference scheme to get rid of such
singularity on a uniform mesh. Finally, the convergence of the used scheme is tested in various examples,
which demonstrates the theoretical error estimates.

The structure of the present paper is as follows. In Section 2 we introduced some necessary definitions
and theorems to prove the existence and uniqueness of the solution of the TFPIDE. In Sections 3 and 4
the MLS method is presented and discussed. In Section 5 the convergence analysis of the MLS method is
investigated. Various examples are tested in Section 6. Finally, we conclude our results in Section 7.

2. Preliminaries on fractional calculus

In this section, we utilize the most common definitions and properties of operators in fractional cal-
culus, specifically the Riemann-Liouville fractional derivative and the Caputo derivative [10, 27]. We then
discuss the existence and uniqueness of solution using various definitions and theorems from analytical
calculus [15, 29].

Definition 2.1. Let u be continuous on Ω̄. The Riemann-Liouville fractional integral of the function u(x, t)
is defined by:

Iαau(x, t) =
1
Γ(α)

∫t
s=a

(t− s)α−1u(x, s)ds,

where α is a positive real number, be the order of the integral.

Definition 2.2. The Caputo fractional derivative of the function u(x, t) is defined by:

C
aD

α
t u(x, t) =

[
In−αa

(
∂nu

∂tn

)]
(x, t), for (x, t) ∈ Ω,

where α ∈ R+is the order of the derivative and n = dαe, the smallest integer which is greater than or
equal to α.

We now impose three properties of fractional integrals and its derivatives as follows. We have for all
t > a:

1. CaDαt u = 0 for all u = c ∈ R;
2. for α ∈ (0, 1), we have CaDαt Iαau(x, t) = u(x, t) but IαaCaDαt u(x, t) = u(x, t) − u (x,a+).
3. Fractional integrals and derivatives satisfy the linearity property:

(a) Iαa {C1u1 ±C2u2} = C1Iαau1 ±C2Iαau2;
(b) CaDαt {C1u1 ±C2u2} = C1

C
aD

α
t u1 ±C2

C
aD

α
t u2,

C1,C2 are some positive constants.

2.0.1. Existence and uniqueness of solution
Definition 2.3. ([26]). Let E,S be two normed vector spaces over R or C. A linear operator L : E → S is
said to be bounded if there exists a positive constant c such that

‖Le‖S 6 c‖e‖E, ∀e ∈ E.

Theorem 2.4. Let E,S be normed vector spaces. The linear operator L : E → S is bounded if and only if L is
continuous everywhere in E.

Definition 2.5. Let Ω ⊆ Rd. The mapping H : Ω → Ω is a contraction mapping if there exists a positive
constant c ∈ [0, 1) such that ‖H(x) − H(y)‖ 6 c‖x − y‖, ∀x, y ∈ Ω.

Theorem 2.6. Suppose Ω ⊆ Rd be complete and H : Ω→ Ω is a contraction mapping, then H has a unique fixed
point x∗ in Ω.
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Theorem 2.7. If the assumptions

1. the partial derivatives ∂`xu(., t) are continuous for all ` = 1, 2 and t > 0;

2. k is a continuous function and ‖k‖ 6 C0, where (C0 > 0),

are satisfies and [(α+1)C‖a‖+λC0T ]T
α

Γ(α+2) < 1, then there exists a unique solution u(x, t) ∈ Ω̄ of Eq. (1.1) ((C > 0) is
an arbitrary constant which can take different values at different places).

Proof. Now applying Iα0 to both sides of Eq. (1.1), we get u(x, t) = Hu(x, t), ∀(x, t) ∈ Ω̄, where Hu(x, t) is
defined by:

Hu(x, t) = g(x) + Iα0 f(x, t) + a(x)Iα0 ∂
2
xu− λIα0

{∫t
0
k(x, t− s)u(x, s)ds

}
.

Let u1,u2 ∈ C(Ω̄), using integration by parts for all (x, t) ∈ Ω̄, we have

Hu1(x, t) − Hu2(x, t) =
a(x)

Γ(α)

∫t
0
(t− s)α−1∂2

x (u1 − u2) (x, s)ds

−
λ

Γ(α)

∫t
0
(t− ρ)α−1

∫ρ
0
k(x, ρ− s) (u1 − u2) (x, s)dsdρ

=
a(x)

Γ(α)

∫t
0
(t− s)α−1∂2

x (u1 − u2) (x, s)ds−
λk(x, 0)
Γ(α)

∫t
0

(t− ρ)α

α
(u1 − u2) (x, ρ)dρ.

Applying the norm and the triangle inequality

‖Hu1 − Hu2‖ 6
∥∥∥∥a(x)Γ(α)

∫t
0
(t− s)α−1∂2

x (u1 − u2) (x, s)ds
∥∥∥∥+ ∥∥∥∥λk(x, 0)

Γ(α)

∫t
0

(t− ρ)α

α
(u1 − u2) (x, ρ)dρ

∥∥∥∥
6
‖a‖
Γ(α)

∫t
0
(t− s)α−1 ∥∥∂2

x (u1 − u2) (x, s)
∥∥ds+ λC0

Γ(α)

∫t
0

(t− ρ)α

α
‖(u1 − u2) (x, ρ)‖dρ.

Using Definition 2.3 and Theorem 2.4, we obtain

‖Hu1 − Hu2‖ 6
C ‖a‖
Γ(α)

∫T
0
(T − s)α−1ds ‖u1 − u2‖+

λC0

αΓ(α)

∫T
0
(T − ρ)αdρ ‖u1 − u2‖

6

[
C ‖a‖ Tα

Γ(α+ 1)
+
λC0T

α+1

Γ(α+ 2)

]
‖u1 − u2‖ 6

[
[(α+ 1)C ‖a‖+ λC0T ] T

α

Γ(α+ 2)

]
‖u1 − u2‖ .

Hence the operator H is a contraction if [(α+1)C‖a‖+λC0T ]T
α

Γ(α+2) < 1 on the Banach space (C(Ω̄), ‖ · ‖), then
by using Theorem 2.6 one can conclude that Eq. (1.1) has a unique solution u(x, t) in Ω̄.

3. The MLS method in Rd (d ≥ 1)

The MLS method is one of the most effective meshless techniques that allows an easy adaptation of the
nodal density in the geometric domain, it does not require domain elements or background cells. Then,
it can be easily generalized to the higher problems.

Let X := {x1, x2, . . . , xN} be a set of all nodes in the bounded domain Ω on Rd. Let a point x in
Ω, the neighborhood of this point x is denoted by Ωx. Let nx be the number of nodes in Ωx given by
{xi, i = 1, . . . ,nx}, see the Fig. 1 for more details.
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Reference node

Suppording nodes {xi−1, xi, xi+1} and nx = 3

Neglected node

r is the radius

Neglected node

For one dimensional Ωx

Border node Border node

x1 xNxi−1 x = xi xi+1

r

x

Ωx

For d−dimensional (d > 2), where Ω ⊂ R2

Ω

Neglected nodes

Supporting nodes xi and nx = 6

Border nodes

Reference node x

r is the radius of Ωx

x5

x4

x3

x2

x1

r

Figure 1: The construction of neighborhood of point x in Rd, d = 1, 2.

The MLS approximation of the unknown function u in Ωx is written as follows:

∀x ∈ Ωx, ur(x) =
m∑
j=1

pj(x)λj(x) = pT (x)λ(x), (3.1)

where x = [x1, . . . , xd]T , p(x) = [p1(x),p2(x), . . . ,pm(x)]T is a complete monomial basis function, m is the
number of the basis and λ(x) is the unknown vector containing coefficients λj(x) with j = 1, . . . ,m. The
relation between the term m and the largest degree m̂ of pm(x) is m =

(m̂+d)!
m̂!d! see [21].

For example in one dimensional we have x = [x1] = [x], the linear basis is given by p(x) = p(x) = [1, x]T

and the quadratic basis is given by p(x) = p(x) = [1, x, x2]T .

Now the coefficient vector λ(x) is determined by minimizing a weighted discrete L2 norm defined by:

F(x) =
nx∑
j=1

wrj (x)
[
pT (xj)λ(x) − uj

]2
, (3.2)

where uj = u(xj), j = 1, . . . ,nx, wrj (x) = w

(
‖x−xj‖
r

)
is the weight function associated with the node j

and r is the size of support domain. Then we introduce some weights functions w. The cubic weight
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function is as

w(z) =


2
3 − 4z2 + 4z3, if 0 6 z 6 1

2 ,
4
3 − 4z+ 4z2 − 4

3z
3, if 1

2 < z 6 1,
0, if z > 1.

The quartic weight function is

w(z) =

{
1 − 6z2 + 8z3 − 3z4, if 0 6 z 6 1,
0, if z > 1.

The Gaussian weight function (GWF) is

w(z) =


exp

(
−
(
z rµ

)2
)
− exp

(
−
(
r
µ

)2
)

1 − exp
(
−
(
r
µ

)2
) , if 0 6 z < 1,

0, if z > 1,

where µ is a constant to control the shape function. The Eq. (3.2) can be rewritten as

F(x) =
nx∑
j=1

wrj (x)

[
m∑
`=1

p`(xj)λ`(x) − uj

]2

.

So the partial derivative of F for all k = 1, . . . ,m is given by:

∂F(x)
∂λk

= 2
nx∑
j=1

wrj (x)pk(xj)
[
pT (xj)λ(x) − uj

]
= 2

 nx∑
j=1

wrj (x)pk(xj)p
T (xj)λ(x) −

nx∑
j=1

wrj (x)pk(xj)uj

 . (3.3)

Define the matrices A(x), C(x), and the column vector u as follows:

A(x) =
nx∑
j=1

wrj (x)p(xj)p
T (xj), C(x) =

[
wr1(x)p(x1), . . . ,wrnx

(x)p(xnx)
]

, and u = [u1, . . . ,unx ]
T . (3.4)

Then, Eq. (3.3) can be rewritten by:

∂F

∂λ
= 2[A(x)λ(x) − C(x)u].

The unknown vector λ(x) can be determined by solving the linear system ∂F
∂λ = 0. Hence we obtain:

λ(x) = A−1(x)C(x)u if A(x) is non-singular. Now replacing λ(x) in Eq. (3.1) for all x ∈ Ωx we get:

ur(x) = pT (x)λ(x) = pT (x)A−1(x)C(x)u = pT (x)A−1(x)
nx∑
`=1

wr`(x)p(x`)u` =
nx∑
`=1

ψ`(x)u`,

where ψ`(x) = wr`(x)p
T (x)A−1(x)p(x`), ur(x) is the MLS approximation in this subdomain Ωx of Ω. The

global MLS approximation is given as

∀x ∈ Ω, ur(x) =
N∑
`=1

ψ`(x)u`,
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where N = nx is the number of nodes in Ω, ψ`(x) = wr`(x)p
T (x)A−1(x)p(x`) is the shape function of

this MLS method, the first and the second derivatives are obtained by the following expressions for all
i = 1, . . . ,d, ` = 1, . . . ,N:

∂xi(ψ`(x)) = ∂xi(w
r
`(x))p

T (x)A−1(x)p(x`) +wr`(x)∂xi(p
T (x))A−1(x)p(x`) +wr`(x)p

T (x)∂xi(A
−1(x))p(x`),

∂2
xi
(ψ`(x)) = ∂2

xi
(wr`(x))p

T (x)A−1(x)p(x`) +wr`(x)∂
2
xi
(pT (x))A−1(x)p(x`)

+wr`(x)p
T (x)∂2

xi
(A−1(x))p(x`)2

[
∂xi(w

r
`(x))∂xi(p

T (x))A−1(x)p(x`)

+ ∂xi(w
r
`(x))p

T (x)∂xi(A
−1(x))p(x`)

]
+ 2wr`(x)∂xi(p

T (x))∂xi(A
−1(x))p(x`),

(3.5)

where

∂xi(A
−1(x)) = −A−1(x)∂xi(A(x))A−1(x),

∂2
xi
(A−1(x)) = −

[
∂xi(A

−1(x))∂xi(A(x))A−1(x) + A−1(x)∂2
xi
(A(x))A−1(x) + A−1(x)∂xi(A(x))∂xi(A

−1(x))
]

.

In the MLS approximation, the function ψ`(.) is usually called the shape function corresponding to the
nodal point x` for all ` = 1, . . . ,N and we have ψ`(xk) 6= δ`,k, where δ`,k is the Kronecker symbol.

4. Numerical approximation

LetN be a fixed positive integer, we define the grid points in the time interval n = 0, . . . ,N as tn = nδt,
where δt = T

N is the time step size. Then the mesh {tn,n = 0, . . . ,N} is uniform direction. Let {u(x, tn)}Nn=0
be the exact solution and denote {un}Nn=0 as the approximate solution at each (x, tn) of Eq. (1.1), where
x ∈ (0,L). For all n = 0, . . . ,N− 1 the Caputo fractional derivative of the function u at each (x, tn+1),
where x ∈ (0,L) is given as:

C
0 Dαt u(x, tn+1) :=

1
Γ(1 −α)

∫tn+1

0
(tn+1 − s)−α∂su(x, s)ds =

1
Γ(1 −α)

n∑
j=0

∫tj+1

tj
(tn+1 − s)−α∂su(x, s)ds.

Now, we need to approximate the first order time derivative by finite difference scheme:

C
0 Dαt u

(
x, tn+1) = 1

Γ(1 −α)

n∑
j=0

[
uj+1 − uj

δt
+O(δt)

] ∫tj+1

tj

(
tn+1 − s

)−α
ds. (4.1)

Simplifying the integral in Eq. (4.1), we get

∫tj+1

tj

(
tn+1 − s

)−α
ds =

[
−
(
tn+1 − s

)1−α

1 −α

]tj+1

tj

=
dα(n− j)

(1 −α)(δt)α−1 , (4.2)

where dα(j) = (j+ 1)1−α − (j)1−α for j > 0. Consequently, by substituting the Eq. (4.2) into Eq. (4.1), we
obtain

C
0 Dαt u

(
x, tn+1) = 1

Γ(1 −α)

n∑
j=0

[
uj+1 − uj

δt
+O(δt)

]
dα(n− j)

(1 −α)(δt)α−1

=
1

(δt)αΓ(2 −α)

n∑
j=0

(
uj+1 − uj

)
dα(n− j) +O((δt)2−α).
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Now, we can reformulate the above equality as

C
0 Dαt u

(
x, tn+1) = γαun+1 + γα

n∑
j=0

[dα(j+ 1) − dα(j)]un−j − γαdα(n+ 1)u0 +O((δt)2−α), (4.3)

for all x ∈ (0,L), n = 0, . . . ,N− 1, where

γα =
1

(δt)αΓ(2 −α)
.

In the integral part, we apply the composite trapezoidal approximation at each (x, tn+1), x ∈ (0,L), n =
0, . . . ,N− 1, we obtain:∫tn+1

0
λk (x, tn+1 − s

)
u (x, s)ds = λ

n∑
j=0

∫tj+1

tj
k
(
x, tn+1 − s

)
u (x, s)ds

=
λδt

2

n∑
j=0

[
k
(
x, tn+1 − tj+1

)
uj+1 + k

(
x, tn+1 − tj

)
uj
]
+O(δt)

=
λδt

2

[
n+1∑
`=1

k (x, (n− `+ 1)δt)u` +
n∑
`=0

k (x, (n− `+ 1)δt)u`
]
+O(δt)

=
λδt

2

[
k(x, 0)un+1 + 2

n∑
`=1

k (x, (n− `+ 1)δt)u` + k (x, (n+ 1)δt)u0

]
+O(δt)

=
λδt

2

[
k(x, 0)un+1 + 2

n∑
`=0

k (x, (n− `+ 1)δt)u` − k (x, (n+ 1)δt)u0

]
+O(δt).

Using the transformation ` = n− j, we get∫tn+1

0
λk (x, tn+1 − s

)
u (x, s)ds =

λδt

2
k(x, 0)un+1 + λδt

n∑
j=0

k (x, (j+ 1)δt)un−j

−
λδt

2
k(x, (n+ 1)δt)u0 +O(δt).

(4.4)

From the Eqs. (4.3) and (4.4) into Eq. (1.1), we obtain the following recurrence relation for x ∈ (0,L), n =
0, . . . ,N− 1:

γαu
n+1 − a (x)∂2

xu
n+1 +

λδt

2
k(x, 0)un+1 =

n∑
j=0

[γα(dα(j) − dα(j+ 1)) − λδtk (x, (j+ 1)δt)]un−j

+

[
γαdα(n+ 1) +

λδt

2
k(x, (n+ 1)δt)

]
u0 + fn+1,

(4.5)

where fn+1 = f(x, tn+1). Then, we use MLS shape functions to approach un(x), x ∈ (0,L). Let M be a
positive integer, define the grid of space by xm = (m− 1)δx for m = 1, . . . ,M, where the spatial step size
of direction x is defined by δx = L

M−1 . Hence the approximate solution un(x) at n = 0, . . . ,N− 1 can be
given by:

un(x) =

M∑
j=1

cnj ψj(x), (4.6)
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where ψj(x), j = 1, . . . ,M are the shape functions of the MLS approximation and {cnj , j = 1, . . . ,M} are
unknown coefficients which need to be determined. Replacing M collocation points, thus we determine
the values of coefficients {cnj , j = 1, . . . ,M} and we get the following system:

un (xi) =

M∑
j=1

cnj ψj (xi) , i = 1, . . . ,M. (4.7)

Rewritten Eq. (4.7) in a matrix form:

Un = ΨCn, n = 0, . . . ,N− 1, (4.8)

where Un =
[
un1 ,un2 , . . . ,unM

]T , Cn =
[
cn1 , cn2 , . . . , cnM

]T and Ψ is an M×M matrix given by:

Ψ =
[
ψij
]
=

 ψ11 · · · ψ1M
...

. . .
...

ψM1 · · · ψMM

 , (4.9)

where ψij = ψj (xi). In the Eq. (1.1) we have two boundary points and M− 2 internal points. Thus we
need to split the matrix Ψ by this form: Ψ = T + S, where T and S are defined by:

T =
[
tij
]
=

{
Ψij, i = 2, . . . ,M− 1, j = 1, . . . ,M,
0, otherwise,

S =
[
sij
]
=

{
Ψij, i = 1,M, j = 1, . . . ,M,
0, otherwise.

Using Eq. (4.6), we discrete uxx = d2u
dx2 at {tn, n = 1, . . . ,N} by MLS approximation method:

unxx(x) =

M∑
j=1

cnj
d2ψj

dx2 (x), (4.10)

where d2ψj
dx2 is obtained from Eq. (3.5) for all j = 1, . . . ,M. Substituting M− 2 collocation points into Eq.

(4.10), we have:

unxx (xi) =

M∑
j=1

cnj
d2ψj

dx2 (xi), i = 2, . . . ,M− 1. (4.11)

Then Eq. (4.11) can be rewritten as
Unxx = DCn, (4.12)

where Unxx =
[
uxx

n
1 ,uxxn2 , . . . ,uxxnM

]T and D is an M×M matrix given by:

D =
[
dij
]
=

{
d2ψj
dx2 (xi), i = 2, . . . ,M− 1, j = 1, . . . ,M,

0, i = 1,M, j = 1, . . . ,M.

Now replacing M− 2 internal collocation points in Eq. (4.5) and using Eqs. (4.8) and (4.12) together with
boundary conditions in Eq. (1.1), we obtain the following recurrence relation:

LCn+1 =

n∑
j=0

B(j)Cn−j + E(n+ 1)U0 + Fn+1 + Hn+1, (4.13)
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where

L = γαT − AD +
λδt

2
K(0)T + S, (4.14)

A =



0 0 0 . . . 0 0
0 a(x2) 0 . . . 0 0

0 0
. . . . . .

...
...

...
...

. . . . . . 0 0
0 0 . . . 0 a(x

M−1) 0
0 0 . . . 0 0 0


, K(s) :=



0 0 0 . . . 0 0
0 k(x2, s) 0 . . . 0 0

0 0
. . . . . .

...
...

...
...

. . . . . . 0 0
0 0 . . . 0 k(x

M−1 , s) 0
0 0 . . . 0 0 0


,

B(s) : = [γα(dα(s) − dα(s+ 1))I − λδtK ((s+ 1)δt)]T, E(s) := γαdα(s)I +
λδt

2
K(sδt), (4.15)

I =



0 0 0 . . . 0 0
0 1 0 . . . 0 0

0 0
. . . . . .

...
...

...
...

. . . . . . 0 0
0 0 . . . 0 1 0
0 0 . . . 0 0 0


, (4.16)

Fn+1 =
[
0, f(x2, tn+1), . . . , f(x

M−1 , tn+1), 0
]T

, Hn+1 =
[
h1(x1, tn+1), 0, . . . , 0,h2(xM , tn+1)

]T
,

and in which I is an M×M matrix. Rewriting Eq. (4.13) by this form:

Cn+1 =

n∑
j=0

L−1B(n− j)Cj + L−1E(n+ 1)U0 + L−1 (Fn+1 + Hn+1) . (4.17)

Finally, the approximate solution can be determined by this scheme at any time tn, n = 0, . . . ,N− 1.

5. Convergence analysis

In this section, we show respectively the rate convergence of time fractional derivative, the trapezoidal
approximation and the MLS method. We start by the formula expressed in Eq. (4.1), the time fractional
derivative in Eq. (4.1) is approximated by the finite difference scheme, so the rate convergence of Eq. (4.3)
is O

(
(δt)2−α

)
.

Lemma 5.1. Assume that the solution u(., .) of Eq. (1.1) and the kernel k(., .) satisfied
∣∣∂`tu∣∣ 6 C′` (1 + tα−`

)
and∣∣∂`yk∣∣ 6 C`, where C′` > 0 and C` > 0 for ` = 0, 1, respectively. Let x ∈ (0,L) and for each n = 0, . . . ,N− 1, the

remainder term of integral part is the order O(δt).

Proof. Let x ∈ (0,L) and for each n = 0, . . . ,N− 1, we have:

Ie : = λ

∫tn+1

0
k (x, tn+1 − s

)
u (x, s)ds−

λδt

2

n∑
j=0

[
k
(
x, tn+1 − tj+1

)
u(x, tj+1) + k

(
x, tn+1 − tj

)
u(x, tj)

]

=

n∑
j=0

λ

∫tj+1

tj
k (x, tn+1 − s

)
u (x, s)ds−

λδt

2

n∑
j=0

[
k
(
x, tn+1 − tj+1

)
u(x, tj+1) + k

(
x, tn+1 − tj

)
u(x, tj)

]

=

n∑
j=0

[
λ

∫tj+1

tj
k (x, tn+1 − s

)
u (x, s)ds−

λδt

2

(
k
(
x, tn+1 − tj+1

)
u(x, tj+1) + k

(
x, tn+1 − tj

)
u(x, tj)

)]
.

(5.1)
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Using integration by parts of the above term on the left hand side:

λ

∫tj+1

tj
k
(
x, tn+1 − s

)
u (x, s)ds = λ

[
−
(
tj+1/2 − s

)
k
(
x, tn+1 − s

)
u (x, s)

]tj+1

s=tj

+ λ

∫tj+1

tj

(
tj+1/2 − s

) d
ds

[
k
(
x, tn+1 − s

)
u (x, s)

]
ds

=
λδt

2
(
k
(
x, tn+1 − tj+1)u(x, tj+1) + k

(
x, tn+1 − tj

)
u(x, tj)

)
+ λ

∫tj+1

tj

(
tj+1/2 − s

) d
ds

[
k
(
x, tn+1 − s

)
u (x, s)

]
ds,

(5.2)

where tj+1/2 = (j+ 1
2)δt. Replacing Eq. (5.2) into Eq. (5.1), we get:

Ie = λ

n∑
j=0

∫tj+1

tj

(
tj+1/2 − s

) d
ds

[
k
(
x, tn+1 − s

)
u (x, s)

]
ds.

So, we apply an absolute norm:

|Ie| =

∣∣∣∣∣∣λ
n∑
j=0

∫tj+1

tj

(
tj+1/2 − s

) d
ds

[
k
(
x, tn+1 − s

)
u (x, s)

]
ds

∣∣∣∣∣∣
6λ

n∑
j=0

∫tj+1

tj

∣∣∣(tj+1/2 − s
)∣∣∣ ∣∣∣∣ dds [k (x, tn+1 − s

)
u (x, s)

]∣∣∣∣ds
6λ

n∑
j=0

∫tj+1

tj

∣∣∣(tj+1/2 − s
)∣∣∣ (∣∣∂yk (x, tn+1 − s

)
u (x, s)

∣∣+ ∣∣k (x, tn+1 − s
)
∂su (x, s)

∣∣)ds
6λ

n∑
j=0

∫tj+1

tj

∣∣∣(tj+1/2 − s
)∣∣∣ (∣∣∂yk (x, tn+1 − s

)∣∣ |u (x, s)|+
∣∣k (x, tn+1 − s

)∣∣ |∂su (x, s)|
)
ds

6
λδt

2

∫T
0
C1C

′
0 (1 + sα) +C0C

′
1
(
1 + sα−1)ds.

Hence we obtained the estimate error of integral part by:

‖Ie‖ 6 Cδt, where C =
λ

2

∫T
0
C1C

′
0 (1 + sα) +C0C

′
1
(
1 + sα−1)ds > 0. (5.3)

Using Eq. (4.8) we rewrite the Eq. (4.17) as:

Un+1 =

n∑
j=0

ΨL−1B(n− j)Ψ−1Uj +ΨL−1E(n+ 1)U0 +ΨL−1 (Fn+1 + Hn+1) .

So, we obtain the simple scheme by this expression:

Un+1 =

n∑
j=0

V(n− j)Uj + Q(n+ 1)U0 + W(n+ 1), (5.4)

V(s) : = ΨL−1B(s)Ψ−1, Q(s) := ΨL−1E(s), W(s) := ΨL−1 (Fs + Hs) . (5.5)
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Un+1 can be computed for n = 0, . . . ,N− 1 by using the recursive formula expressed in Eq. (5.4) and U0

is computed by the initial condition, i.e., [u(x1, 0), . . . ,u(xM, 0)]T .

Lemma 5.2. For each n = 0, . . . ,N− 1, the solution of Eq. (5.4) satisfies

Un+1 =

βn+1 +

n+1∑
j=1

Θn+1,jQ(j)

U0 +

n+1∑
j=1

Θn+1,jW(j), (5.6)

where the sequences matrices βn and Θn,i are defined by:{
βn =

∑n−1
j=0 V(n− 1 − j)βj, ∀n > 1,

β0 := I,

{
Θn,i =

∑n−i
j=1 V(j− 1)Θn−j,i, n > i > 1,

Θn,n := I, n > 1.

The matrices I and V(.) are defined in Eqs. (4.16) and (5.5), respectively.

Proof. For n = 0 we have in Eq. (5.6),

U1 = [β1 + Q(1)]U0 + W(1), (5.7)

Eq. (5.7) is identical to Eq. (5.4). We prove that, if the statement Eq. (5.4) is valid for j = 1, . . . ,n, then the
statement holds for j = n+ 1:

Un+1 =

n∑
j=0

V(n− j)Uj + Q(n+ 1)U0 + W(n+ 1)

= V(n)U0 +

n∑
j=1

V(n− j)Uj + Q(n+ 1)U0 + W(n+ 1)

= V(n)U0 +

n∑
j=1

V(n− j)

[(
βj +

j∑
k=1

Θj,kQ(k)

)
U0 +

j∑
k=1

Θj,kW(k)

]
+ Q(n+ 1)U0 + W(n+ 1)

=

V(n) +

n∑
j=1

V(n− j)βj +

n∑
j=1

V(n− j)

j∑
k=1

Θj,kQ(k) + Q(n+ 1)

U0

+

n∑
j=1

V(n− j)

j∑
k=1

Θj,kW(k) + W(n+ 1)

=

 n∑
j=0

V(n− j)βj +

n∑
j=1

V(n− j)

j∑
k=1

Θj,kQ(k) + Q(n+ 1)

U0

+

n∑
j=1

V(n− j)

j∑
k=1

Θj,kW(k) + W(n+ 1)

=

βn+1 +

n∑
j=1

V(n− j)

j∑
k=1

Θj,kQ(k) + Q(n+ 1)

U0 +

n∑
j=1

V(n− j)

j∑
k=1

Θj,kW(k) + W(n+ 1).

Using the substitution j = n+ 1 − l, we obtain

Un+1 =

[
βn+1 +

n∑
l=1

V(l− 1)
n+1−l∑
k=1

Θn+1−l,kQ(k) + Q(n+ 1)

]
U0
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+

n∑
l=1

V(l− 1)
n+1−l∑
k=1

Θn+1−l,kW(k) + W(n+ 1)

=

[
βn+1 +

n∑
l=1

n+1−l∑
k=1

V(l− 1)Θn+1−l,kQ(k) + Q(n+ 1)

]
U0

+

n∑
l=1

n+1−l∑
k=1

V(l− 1)Θn+1−l,kW(k) + W(n+ 1)

=

[
βn+1 +

n∑
k=1

n+1−k∑
l=1

V(l− 1)Θn+1−l,kQ(k) + Q(n+ 1)

]
U0

+

n∑
k=1

n+1−k∑
l=1

V(l− 1)Θn+1−l,kW(k) + W(n+ 1)

=

[
βn+1 +

n∑
k=1

(
n+1−k∑
l=1

V(l− 1)Θn+1−l,k

)
Q(k) + Q(n+ 1)

]
U0

+

n∑
k=1

(
n+1−k∑
l=1

V(l− 1)Θn+1−l,k

)
W(k) + W(n+ 1)

=

[
βn+1 +

n∑
k=1

Θn+1,kQ(k) + Q(n+ 1)

]
U0 +

n∑
k=1

Θn+1,kW(k) + W(n+ 1)

=

[
βn+1 +

n+1∑
k=1

Θn+1,kQ(k)

]
U0 +

n+1∑
k=1

Θn+1,kW(k).

Finally, lemma is proved using the principles of mathematical induction.

Lemma 5.3. Suppose that the expressions of matrices Ψ, L, B(.), and V(.) are defined in Eqs. (4.9), (4.14), (4.15),
and (5.5), respectively, we have the following estimation of V(s) for all s > 0:

‖V(s)‖ 6
∥∥ΨJ−1∥∥ [dα(s) − dα(s+ 1)] , ∀s > 0,

where

L = γαJ and J = T − δtαΓ(2 −α)AD +
λΓ(2 −α)δt1+α

2
K(0)T + δtαΓ(2 −α)S.

Proof. We have

V(s) = ΨL−1B(s)Ψ−1 = ΨL−1 [γα(dα(s) − dα(s+ 1))I − λδtK ((s+ 1)δt)]TΨ−1

= ΨL−1 [γα(dα(s) − dα(s+ 1))I − λδtK ((s+ 1)δt)] .

Now we apply the norm

‖V(s)‖ =
∥∥ΨL−1 [γα(dα(s) − dα(s+ 1))I − λδtK ((s+ 1)δt)]

∥∥
6
∥∥ΨL−1∥∥ ‖[γα(dα(s) − dα(s+ 1))I − λδtK ((s+ 1)δt)]‖

6
∥∥ΨL−1∥∥max16i6M|γα(dα(s) − dα(s+ 1)) − λδtk(xi, ((s+ 1)δt) |,

where k > 0 and dα(s) − dα(s+ 1) > 0 for all s > 0, we get

‖V(s)‖ 6 γα
∥∥ΨL−1∥∥ [dα(s) − dα(s+ 1)] =

∥∥ΨγαL−1∥∥ [dα(s) − dα(s+ 1)] 6
∥∥ΨJ−1∥∥ [dα(s) − dα(s+ 1)] .
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Lemma 5.4. There exists a positive increasing sequence θn defined by:{
θn = 1 +

∥∥ΨJ−1
∥∥ θn−1, n > 2,

θ1 = 1.
(5.8)

Hence we have
n∑
k=1

‖Θn,k‖ 6 θn, n > 1. (5.9)

Proof. For n = 1, we get in Eq. (5.9),

1∑
k=1

‖Θ1,k‖ = ‖Θ1,1‖ = 1 6 1 = θ1.

We assume that Eq. (5.9) is true for all n = 1, . . . ,m− 1, where m = 2, . . . ,N and we prove that Eq. (5.9)
is true for n = m, we have

m∑
k=1

‖Θm,k‖ = ‖Θm,m‖+
m−1∑
k=1

‖Θm,k‖

= 1 +

m−1∑
k=1

‖Θm,k‖

= 1 +

m−1∑
k=1

∥∥∥∥∥∥
m−k∑
j=1

V(j− 1)Θm−j,k

∥∥∥∥∥∥
6 1 +

m−1∑
k=1

m−k∑
j=1

‖V(j− 1)‖
∥∥Θm−j,k

∥∥ = 1 +

m−1∑
j=1

‖V(j− 1)‖
m−j∑
k=1

∥∥Θm−j,k
∥∥ .

Now we apply the estimate of V(.) in Lemma 5.3 and the increasing sequence θn:

m∑
k=1

‖Θm,k‖ 6 1 +
∥∥ΨJ−1∥∥m−1∑

j=1

[dα(j− 1) − dα(j)] θm−j

6 1 +
∥∥ΨJ−1∥∥m−1∑

j=1

[dα(j− 1) − dα(j)] θm−1

= 1 +
∥∥ΨJ−1∥∥ [dα(0) − dα(m− 1)] θm−1

= 1 +
∥∥ΨJ−1∥∥ [1 − dα(m− 1)] θm−1 6 1 +

∥∥ΨJ−1∥∥ θm−1 = θm.

Because 0 6 1−dα(x) 6 1 for all x > 0. Thus Eq. (5.9) holds true for n = m. By the principle of induction,
Eq. (5.9) is true for all n.

The MLS method is used to approximate un(x), the theoretical analysis of the MLS approximation
has been started by Levin [20] and Zuppa [34]. We use the results obtained in [3, 32] for error estimation,
stability, and convergence of the MLS method. Let w > 0 be a function such that supp(w) ⊂ B(0, r) =
{z/||z|| 6 r}, where r > 0, X := {x1, x2, . . . , xN} be a set of points in Ω ⊂ R and uj = u

(
xj
)
, j = 1, . . . ,N. Let

{p1, . . . ,pm} be a set of basis polynomials in the polynomial space with m� n. After the construction of
the MLS method in Section 3, we need to ensure that the minimization problem has a unique solution,
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which ensures that the matrix A(x) defined in Eq. (3.4) is non-singular, in order to have a well-defined
MLS approximation. We define

〈u, v〉x =

N∑
i=1

w (x − xi)u (xi) v (xi) ,

then ‖u‖x =
√
〈u,u〉x is a discrete norm on the polynomial space Pm. The error estimations are obtained

on the system of nodes and the weights functions by using the following assumption.

Property 5.5 ([33]). For any x ∈ Ω, the matrix A(x) defined in Eq. (3.4) is non-singular.

Definition 5.6 ([33]). Let x ∈ Ω. The star of x, st(x) is defined as st(x) = {i | w (x − xi) 6= 0}.

Theorem 5.7 ([33]). A necessary condition for property 5.5 is that for any x ∈ Ω,

n = card(st(x)) > card (Pm) = m+ 1.

Theorem 5.8 ([3]). Assume that A(x) satisfies Property 5.5, then for any x ∈ Ω̄, there exists û(x) ∈ Pm, which
satisfies

‖u− û(x)‖x 6 ‖u− p‖x, ∀p ∈ Pm.

The aim is to obtain error estimation in terms of the parameter r, which plays the role of the support
size of the weight function. For the error analysis, the following properties of the weight function and
distribution of points are required, as introduced in [3].

(1) Given x ∈ Ω there exist at least m+ 1 points xj ∈ X∩B(x, r2 ).
(2) ∃c0 > 0 such that w(z) > c0,∀z ∈ B(0, r2 ).
(3) w ∈ C1 (B(0, r))∩W1,∞(R) and ∃c1 such that ‖w′‖L∞(R) 6

c1
r .

(4) ∃cp such that rσ 6 cp, where σ = min |xi − xk| is the minimum over the m+ 1 points in condition 1.
(5) ∃ck such that for all x ∈ Ω, card {X∩B(0, 2r)} < ck.
(6) w ∈ C2 (B(0, r))∩W2,∞(R), and ∃c2 such that ‖w′′‖L∞(R) 6

c2
r2 .

Theorem 5.9 ([3]). Let m > 1, if u ∈ Cm+1(Ω̄) and properties (1)-(6) hold, then there exists C = C(c0, c1, c2, cp,
ck,m) such that ∥∥u′′ − û′′∥∥

L∞(Ω)
6 C

∥∥∥u(m+1)
∥∥∥
L∞(Ω)

rm−1.

Obviously, the error of the presented method will be affected by δt and the error of the second deriva-
tives in Theorems 5.9. After applying the above theorems we assume that the scheme expressed in Eq.
(5.4) is the q-th order accurate in space.

Theorem 5.10. The solution Unof the scheme Eq. (5.4) satisfies

‖En‖ 6 Cθn(δt+ (δt)2−α + (δx)q),

for some C > 0, where En = Unexact − Unapp for all n > 1, E0 = 0, and θn is defined in Lemma 5.4.

Proof. Suppose that the exact solution of Eq. (1.1) at time nδt is denoted by Unexact for each n = 1, . . . ,N.
By the scheme in Eq. (5.4) we obtain:

Unexact =

n−1∑
j=0

V(n− 1 − j)Ujexact + Q(n)U0 + W(n) + R(n), (5.10)

and the approximate solution is denoted by:
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Unapp =

n−1∑
j=0

V(n− 1 − j)Ujapp + Q(n)U0 + W(n), (5.11)

where R(n) is the rest error at time nδt and U0
exact = U0

app = U0. Now subtracting the Eq. (5.11) from the
Eq. (5.10) and applying Lemma 5.2, we get:

En = βnE0 +

n∑
j=1

Θn,jR(j) =

n∑
j=1

Θn,jR(j). (5.12)

Using the previous order of errors, the order of fractional derivative in Eq. (4.3), the order of integral
part in Eq. (5.3) and the order of MLS approximation, we deduce that it exist a constant C > 0 for all
j = 1, . . . ,N such that:

‖R(j)‖ 6 C(δt+ (δt)2−α + (δx)q). (5.13)

Now applying the norm of Eq. (5.12) and using the inequality in Eq. (5.13),

‖En‖ 6
n∑
j=1

∥∥Θn,j
∥∥ ‖R(j)‖ 6 C

 n∑
j=1

∥∥Θn,j
∥∥ (δt+ (δt)2−α + (δx)q) 6 Cθn(δt+ (δt)2−α + (δx)q).

Remark 5.11. The sequence θn in Eq. (5.8) can be written by this expression:

θn =

n−1∑
i=0

∥∥ΨJ−1∥∥i , n > 1.

Then we have the following two bounded errors:

‖En‖ 6 Cn(δt+ (δt)2−α + (δx)q) if
∥∥ΨJ−1∥∥ = 1

or

‖En‖ 6 C

(
1 −

∥∥ΨJ−1
∥∥n

1 − ‖ΨJ−1‖

)
(δt+ (δt)2−α + (δx)q) if

∥∥ΨJ−1∥∥ 6= 1.

Finally, the analysis error of presented method of scheme in Eq. (5.4) is proven.

6. Numerical results

We used the above method to show the advantage and the sharpness of some errors for solving
TFPIDE of Volterra. The errors L∞,L2, and Root-Mean-Square (RMS) of errors are measured based on the
following formulas:

L∞ = max
16i6M

|ui − uexact (xi)| , L2 =

√√√√M∑
i=1

|ui − uexact (xi)|
2, RMS =

√√√√ 1
M

(
M∑
i=1

|ui − uexact (xi)|
2

)
.

We used the quadratic basis for the construction of shape function. The choice of support size for all
weights functions is r = 2.5 LM and we choose µ = L

M on Gaussian weight function for all problems.
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Example 6.1. Consider the time fractional partial integro-differential equation of Volterra type:
C
0 Dαt u(x, t) − ∂2

xu(x, t) +
∫t

0
x(t− s)u(x, s)ds = f(x, t), (x, t) ∈ Ω := (0, 1)× (0, 1],

u(x, 0) = 0, ∀x ∈ [0, 1],
u(0, t) = t+ tα and u(1, t) = 0, ∀t ∈ (0, 1],

where

f(x, t) =
(
1 − x2)( t1−α

Γ(2 −α)
+ Γ(1 +α)

)
+ 2 (t+ tα) + x

(
1 − x2)(t3

6
+

t2+α

(1 +α)(2 +α)

)
,

and the exact solution (see [29]) of the above problem is u(x, t) = (1 − x2)(tα + t).

Table 1: Comparison of methods for Example 6.1 using GWF with t = 0.5 and L∞ error.
Method of [29] in Table 2 with M = N Proposed method with M = 11

N α = 0.4 α = 0.6 α = 0.8 α = 0.4 α = 0.6 α = 0.8
64 7.7015e− 5 1.0674e− 4 1.4035e− 4 7.6352e− 05 1.0567e− 04 1.3912e− 04
128 3.1966e− 5 4.5264e− 5 6.3712e− 5 3.1656e− 05 4.4847e− 05 6.3170e− 05
256 1.3638e− 5 1.9694e− 5 2.9251e− 5 1.3488e− 05 1.9525e− 05 2.9012e− 05
512 5.9723e− 6 8.7732e− 6 1.3547e− 5 5.8979e− 06 8.7019e− 06 1.3439e− 05
1024 2.6791e− 6 3.9924e− 6 6.3183e− 6 2.6417e− 06 3.9609e− 06 6.2692e− 06

Table 2: Different values of L∞-error for Example 6.1 using GWF.
t = 0.5 t = 1

N M α = 0.4 α = 0.6 α = 0.8 α = 0.4 α = 0.6 α = 0.8
6 6 2.0000e− 03 2.7000e− 03 2.5000e− 03 2.4388e− 04 2.8955e− 04 4.5416e− 04
64 7 7.5905e− 05 1.0618e− 04 1.3986e− 04 1.3178e− 05 1.3405e− 05 3.2528e− 05

128 8 3.1938e− 05 4.5077e− 05 6.3423e− 05 5.8983e− 06 4.9165e− 06 1.4368e− 05
512 9 5.8913e− 06 8.7112e− 06 1.3453e− 05 1.4077e− 06 6.1253e− 07 2.5540e− 06
1024 10 2.6759e− 06 3.9781e− 06 6.2965e− 06 6.7279e− 07 2.0794e− 07 1.0479e− 06
2500 11 9.7078e− 07 1.4764e− 06 2.3691e− 06 2.7258e− 07 9.4940e− 08 3.2526e− 07
3000 12 8.0542e− 07 1.2183e− 06 1.9553e− 06 2.2060e− 07 7.5728e− 08 2.6205e− 07
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α = 0.8

Figure 2: The L∞-error at t = 0.5, where M = 11 with differ-
ent values of α in Example 6.1.
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Figure 3: The L∞-error at t = 0.5 with different values of α
in Example 6.1.
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Figure 4: The exact and numerical solution for Example 6.1 with M = N = 10 and α = 0.5.

In Example 6.1, the results are compared with the method in [29] based on finite difference method
(FDM). The L∞-error are reported in the Table 1 at t = 0.5 with different values of α and N, For the
(FDM) chosen N = M but in the proposed method we choose only M = 11 with the same values of N
in [29], this results give better accuracy than those obtained in [29]. The L∞-error at different values of α
and t are reported in Table 2. Also the L∞-error when α = 0.4, 0.6, 0.8 are shown in Figs. 2 and 3 for
t = 0.5 with different values of N and M, which is more sharp for small values of α. The approximate
solution and the exact solution are illustrated in Fig. 4, where α = 0.5 and M = N = 10, which confirms
the convergence and the theoretical findings.

Example 6.2. In this example, considering the test problem to see the applicability of this method:
C
0 Dαt u(x, t) − exp(x)∂2

xu(x, t) +
∫t

0
x2(t− s)3u(x, s)ds = f(x, t), (x, t) ∈ Ω := (0, 1)× (0, 1],

u(x, 0) = 0, ∀x ∈ [0, 1],

u(0, t) = tα+1 + t2α+2 and u(1, t) = (cos(1) + 1)
(
tα+1 + t2α+2) , ∀t ∈ (0, 1],

where

f(x, t) = (cos(x) + x2)

(
22α+2tα+2Γ( 3

2 +α)√
π(2 +α)

+ tΓ(α+ 2)

)
− exp(x)(2 − cos(x))tα+1(1 + tα+1)

+ 3(cos(x) + x2)x2
(

(16α2 + 64α+ 60)tα+5 + (α2 + 9α+ 20)t2α+6

8α6 + 144α5 + 1046α4 + 3924α3 + 8018α2 + 8460α+ 3600

)
,

and the exact solution is u(x, t) = (cos(x) + x2)tα+1(1 + tα+1).

Table 3: Comparison of errors for Example 6.2 using GWF, where M = 20 and δt = 0.0005.
α = 0.1 α = 0.3

t L∞-error L2-error RMS-error L∞-error L2-error RMS-error
0.1 8.9482e− 07 2.5376e− 06 5.6742e− 07 5.6778e− 07 1.3018e− 06 2.9109e− 07
0.2 2.0769e− 06 5.9428e− 06 1.3289e− 06 1.4636e− 06 3.8330e− 06 8.5709e− 07
0.3 3.5082e− 06 1.0072e− 05 2.2522e− 06 2.6541e− 06 7.1989e− 06 1.6097e− 06
0.4 5.1894e− 06 1.4929e− 05 3.3382e− 06 4.1503e− 06 1.1446e− 05 2.5593e− 06
0.5 7.1255e− 06 2.0527e− 05 4.5900e− 06 5.9738e− 06 1.6640e− 05 3.7208e− 06
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Table 4: Comparison of errors for Example 6.2 using GWF, where δt = 0.01, t = 0.1.
α = 0.1 α = 0.2

M L∞-error L2-error RMS-error L∞-error L2-error RMS-error
6 3.3325e− 05 3.9546e− 05 1.6145e− 05 2.8583e− 05 3.6180e− 05 1.4770e− 05
9 1.2601e− 05 1.5966e− 05 5.3221e− 06 1.1701e− 05 1.7678e− 05 5.8926e− 06
12 5.5395e− 06 7.7223e− 06 2.2292e− 06 5.7391e− 06 1.3767e− 05 3.9741e− 06
15 2.9205e− 06 4.6663e− 06 1.2048e− 06 4.9269e− 06 1.4491e− 05 3.7416e− 06

Table 5: Comparison of errors for Example 6.2 using GWF, where t = 0.1 and M = 23.
α = 0.1 α = 0.2

N L∞-error L2-error RMS-error L∞-error L2-error RMS-error
10 9.4335e− 05 3.2541e− 04 6.7852e− 05 2.9893e− 04 1.0000e− 03 2.1503e− 04
50 5.2021e− 06 1.8222e− 05 3.7996e− 06 1.8608e− 05 6.4328e− 05 1.3413e− 05
120 8.6328e− 07 3.0893e− 06 6.4416e− 07 3.8863e− 06 1.3623e− 05 2.8406e− 06
160 7.8372e− 07 1.6742e− 06 3.4909e− 07 2.2285e− 06 7.9335e− 06 1.6542e− 06
200 7.4460e− 07 1.2400e− 06 2.5855e− 07 1.4149e− 06 5.1165e− 06 1.0669e− 06
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Figure 5: The exact and numerical solution for Example 6.2 with α = 0.1, M = 6 and N = 10.
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Figure 6: The error values at α = 0.1, where δt = 0.0005 and
M = 20 for Example 6.2 using GWF.
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Figure 7: A comparison errors at t = 0.1 and α = 0.1, where
δt = 0.01 in (left) and M = 23 in (right) for Example 6.2
using GWF.

The numerical solution and the corresponding exact solution are illustrated in Fig. 5, where α = 0.1,
N = 10, and M = 6. The method provides good results with a small number of nodes in space. The L∞,
L2 and RMS of errors at different values of t and α, where δt = 0.0005 are shown in Table 3. The different
values of errors are presented in the Tables 4 and 5 at t = 0.1 and α = 0.1, 0.2 when M and N increase,
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respectively. Graphs of those errors L∞, L2, and RMS are shown in Fig. 7, where t = α = 0.1. The results
converge to the exact values by increasing the numbers N and M. Fig. 6 confirms that the errors increase
as t −→ T .

Example 6.3. We consider the following time fractional partial integro-differential problem:
C
0 Dαt u(x, t) − (1 + log(x+ 1))∂2

xu(x, t) +
∫t

0
cos(x+ t− s)u(x, s)ds = f(x, t), (x, t) ∈ Ω := (0, 1)× (0, T ],

u(x, 0) =
√
x+ 1 + 1, ∀x ∈ [0, 1],

u(0, t) = 1 + (t+ 1)3 and u(1, t) =
√

2 + (t+ 1)3 , ∀t ∈ (0, T ],

where

f(x, t) =
−3(α2 − 2αt+ 2t2 − 5α+ 6t+ 6)t1−α

Γ(1 −α)(α3 − 6α2 + 11α− 6)
+

1 + log(1 + x)

4(x+ 1)
√
x+ 1

+ 3 cos(x)(t2 + 2t+ cos(t) −
5
3

sin(t) − 1)

+ ((cos(t) − 1) sin(x) + cos(x) sin(t))
√
x+ 1 + (−t3 − 3t2 + 3t− 5 cos(t) − 3 sin(t) + 5) sin(x),

and the exact solution is u(x, t) =
√
x+ 1 + (t+ 1)3.

Table 6: Comparison of errors for Example 6.3 using GWF, where M = 23 and δt = 0.0001 with T = 2.
α = 0.3 α = 0.7

t L∞-error L2-error RMS-error L∞-error L2-error RMS-error
0.1 3.9954e− 06 1.2158e− 05 2.5352e− 06 2.3151e− 05 7.7981e− 05 1.6260e− 05
0.5 5.6630e− 06 1.6649e− 05 3.4716e− 06 3.4939e− 05 1.1748e− 04 2.4497e− 05
1 9.0379e− 06 2.5886e− 05 5.3976e− 06 4.8305e− 05 1.6172e− 04 3.3722e− 05

1.5 1.4462e− 05 4.0949e− 05 8.5385e− 06 6.3716e− 05 2.1182e− 04 4.4168e− 05
2 2.2479e− 05 6.3348e− 05 1.3209e− 05 8.2240e− 05 2.7029e− 04 5.6358e− 05

Table 7: Comparison of weights functions and errors for Example 6.3, where α = 0.5 and t = 0.1 with T = 1.
Gaussian weight function Cubic spline weight function Quartic spline weight function

N M L2-error RMS-error L2-error RMS-error L2-error RMS-error
100 6 8.9065e− 05 5.8545e− 05 1.8488e− 04 1.2098e− 04 2.9415e− 04 1.9198e− 04
200 9 4.7481e− 05 3.1758e− 05 1.0967e− 04 7.3394e− 05 1.4715e− 04 9.6265e− 05
600 15 1.2188e− 05 8.5246e− 06 3.1067e− 05 2.1189e− 05 3.4445e− 05 2.3523e− 05
800 18 7.4679e− 06 5.1989e− 06 1.9897e− 05 1.3656e− 05 2.0622e− 05 1.4394e− 05

Table 8: Comparison of errors for Example 6.3 using GWF, where t = 0.1 and T = 1.
α = 0.3 α = 0.7

N M L∞-error L2-error RMS-error L∞-error L2-error RMS-error
10 6 8.4148e− 04 1.4000e− 03 5.6962e− 04 5.8000e− 03 9.8000e− 03 4.0000e− 03

100 9 3.8735e− 05 7.6270e− 05 2.5423e− 05 3.9251e− 04 8.0324e− 04 2.6775e− 04
200 12 1.9147e− 05 3.9557e− 05 1.1419e− 05 1.6428e− 04 3.9766e− 04 1.1480e− 04
300 15 9.9702e− 06 2.5425e− 05 6.5647e− 06 9.9308e− 05 2.7014e− 04 6.9750e− 05
500 18 6.0061e− 06 1.3976e− 05 3.2942e− 06 5.1542e− 05 1.5447e− 04 3.6409e− 05
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Figure 8: A comparison of errors at α = 0.3, where δt =
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Figure 11: The exact and numerical solution for Example 6.3 with α = 0.5, M = 8 and N = 10.

The L∞-error, L2-error, and RMS-error are shown in Table 6 at different values of t and α, where
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δt = 0.0001 and M = 23. Fig. 8 displays the errors L∞, L2, and RMS at different values of t, where α
M = 23 and δt = 0.0001. These numerical results provides the method with high accuracy in different
values of α. Similarly, Table 7 and Fig. 9 display the comparison between the weights functions at different
values of M and N when α = 0.5 and t = 0.1, it is observed that the errors by Gaussian weight function
is better than other weights. The numerical solution and the exact solution for Example 6.3 are shown
in Fig. 11 with α = 0.5, M = 8, and N = 10. It is observed that the numerical solutions converge to the
exact solutions by using Gaussian weight function with only a small number of nodes. Also the errors are
presented in Table 8 and Fig. 10 when t = 0.1 with one value in figure and two values of α in table. The
results show that better accuracy is obtained with the present method by increasing values of M and N.

Example 6.4. Similarly we consider the following test problem:
C
0 Dαt u(x, t) − ∂2

xu(x, t) +
∫t

0
x(t− s)2u(x, s)ds = f(x, t), (x, t) ∈ Ω := (0, 1)× (0, 1],

u(x, 0) = 0, ∀x ∈ [0, 1],

u(0, t) = cos(1)t2α+1 and u(1, t) = cos(exp(1))t2α+1, ∀t ∈ (0, 1],

where the source function f is given by:

f(x, t) =
cos(exp(x))22α+1tα+1Γ(α+ 3

2)√
π(α+ 1)

+ (exp(x) sin(exp(x))

+ exp(2x) cos(exp(x)))t2α+1 +
cos(exp(x))xt2α+4

4α3 + 18α2 + 26α+ 12
,

and the exact solution for this choice of f is u(x, t) = cos(exp(x))t2α+1.

Table 9: Comparison errors for Example 6.4 using GWF, where t = 0.2.
α = 0.2 α = 0.4

N M L∞-error L2-error RMS-error L∞-error L2-error RMS-error
10 6 1.0000e− 03 1.2000e− 03 5.0340e− 04 3.7841e− 04 4.4347e− 04 1.8105e− 04

100 12 1.5488e− 04 2.0668e− 04 5.9663e− 05 7.8292e− 05 1.0528e− 04 3.0391e− 05
200 20 3.2944e− 05 8.1689e− 05 1.8266e− 05 1.6790e− 05 4.2113e− 05 9.4167e− 06
300 30 1.0138e− 05 3.5818e− 05 6.5395e− 06 5.2803e− 06 1.8980e− 05 3.4652e− 06
500 43 6.4091e− 06 1.1545e− 05 1.7606e− 06 3.4882e− 06 6.1683e− 06 9.4066e− 07

Table 10: Comparison of errors for Example 6.4 using GWF, where δt = 0.01 and M = 43.
α = 0.2 α = 0.4

t L∞-error L2-error RMS-error L∞-error L2-error RMS-error
0.2 6.6992e− 06 1.1903e− 05 1.8152e− 06 5.4549e− 06 1.9137e− 05 2.9184e− 06
0.4 1.7084e− 05 3.0522e− 05 4.6545e− 06 1.3253e− 05 2.6405e− 05 4.0268e− 06
0.6 2.9941e− 05 5.3816e− 05 8.2069e− 06 2.5715e− 05 4.6028e− 05 7.0193e− 06
0.8 4.4687e− 05 8.0529e− 05 1.2281e− 05 4.2105e− 05 7.4614e− 05 1.1378e− 05
1 6.1008e− 05 1.1009e− 04 1.6788e− 05 6.2184e− 05 1.1050e− 04 1.6850e− 05
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Table 11: Comparison of weights functions and errors for Example 6.4, where α = 0.5, δt = 0.001, and M = 37.
Gaussian weight function Cubic spline weight function Quartic spline weight function

t L∞-error RMS-error L∞-error RMS-error L∞-error RMS-error
0.1 5.3889e− 07 3.3906e− 07 2.7744e− 06 1.8449e− 06 2.4267e− 06 1.5487e− 06
0.3 4.7419e− 06 2.4799e− 06 2.6280e− 05 1.7950e− 05 2.1493e− 05 1.4399e− 05
0.5 1.3279e− 05 6.9968e− 06 7.6026e− 05 5.2161e− 05 6.1098e− 05 4.1465e− 05
0.9 4.3125e− 05 2.3259e− 05 2.5673e− 04 1.7651e− 04 2.0305e− 04 1.3935e− 04
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Figure 12: The exact and numerical solution for Example 6.4 with α = 0.2, M = 6 and N = 15.
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Figure 13: The exact and numerical solution for Example 6.4 with α = 0.4, M = 6 and N = 15.

The L∞-error, L2-error and RMS-error are shown in Table 9 at t = 0.2, where N and M increase, Table
10 show the errors at different values of t and α, where M = 43 and δt = 0.01. The obtained errors
results confirms that the proposed method provides the approximate solutions with high accuracy. The
numerical solutions and the exact solutions for Example 6.4 are shown in Figs. 12 and 13 with α = 0.2
and α = 0.4, respectively. It is observed that the numerical solutions converge more quickly to the exact
solutions by using Gaussian weight function. Also the comparison between the weights functions at
different values of t, where M = 37 and δt = 0.01 presented in Table 11 which reveals that the Gaussian
weight function results are more accurate than cubic and quartic weights functions. The errors results
reported in Fig. 14 approve that the errors decrease along with the increase of M and N, this confirms the
convergence of the method.
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Figure 14: A comparison of errors for Example 6.4 with α = 0.2 and t = 0.5.

7. Conclusion

In this study, we solve a TFPIDE of Volterra type by using the MLS method. The finite difference
scheme is used to discretize the time fractional derivative. The second partial derivative and the in-
tegral part are approximated by MLS and the composite trapezoidal approximation, respectively. The
error analysis is studied by more matrices sequences and it is shown that the numerical scheme is of
order O(δt + (δt)2−α) in time and of order O(hq) over the entire domain. The numerical test prob-
lems reveal the applicability and the high accuracy of the proposed method on using less points in
space. Experimentally the MLS approximations give better accuracy when we choose the Gaussian
weight function. As a future research direction, this method can be extended for other kind of fractional
partial integro-differential equations (FPIDEs) in a rectangular or a non-rectangular domain Ω ⊂ Rd

(d > 2).
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