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Abstract

The ecologist and farmers have both greatly benefited from the modeling and control of Nilaparvata Lugens (N. Lugens)
populations in rice fields. This work describes a sex-structured wild Lugens population and male Lugens infected with w-Stri
(Wolbachia). The w-Stri type Wolbachia can naturally control wild Lugens, as shown in a test done in the laboratory. Male
Lugens infected with w-Stri produce larger amounts of cytoplasmic incompatibility, when they mate with wild female Lugens.
Using the time-dependent control parameter of the continuous releasing rate of male Lugens infected with w-Stri, we create an
optimal control problem. By analyzing the necessary and sufficient conditions, we investigate the optimality. Furthermore, we
explore the sufficient conditions for the elimination of wild Lugens via periodic impulsive releases of male Lugens infected with
w-Stri. Numerical simulations validate the theoretical conclusions.
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1. Introduction

Plant viruses are transmitted by insects, which cause substantial damage to agricultural crops. One of
the most important crops, Oryza sativa (Rice), is susceptible to nearly 800 different insect and herbicide
species. Among them are Lugens, Bollworms, Aphids, and others ([4, 25, 29]). Lugens is a monophagous
bug species that transmits Rice Ragged Stunt Virus (RRSV) [5] throughout India, China, and other Asian
countries. The hoppers’ burns are evidence of the direct damage that these insects cause by sucking the
phloem sap from rice stalks and depleting the nutrients, especially when there are a lot of rice plants.
For controlling these types of insects, synthetic chemical pesticides have been used. The authors of
[6, 17] studied a series of experiments that examine chemotaxis models involving attraction and repulsion.
These models consider various factors, including nonlinear diffusion, sensitivities, logistic sources, and
cell density dynamics. Additionally, they explore the consequences of consumption and/or production
on the chemicals involved. Increased pesticide use in agriculture can lead to insecticide resistance, pest
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resurgence, harm to natural enemies, and environmental degradation. The use of practical, efficient,
and environmentally friendly pest control methods is therefore essential. Basir et al. [1] investigated
the impact of public knowledge on crop pest management using a mathematical model that included
plant biomass, pests, and aware populations. Biological control methods, also known as integrated pest
management, were also discussed.

In recent years, two biological control methods have been developed to control or eradicate these types
of insects and mosquito-borne diseases, namely, the Incompatible Insect Technique (IIT) and the Sterile Insect
Technique (SIT). IIT is associated with a bacterium (intracellular) called Wolbachia, which is typically found
in insects like mosquitoes. Using a population replacement strategy involves releasing insects that contain
Wolbachia to replace wild mosquitoes and insects. A female infected with Wolbachia will also transmit
the Wolbachia to her offspring. The Cytoplasmic Incompatibility (CI) of Wolbachia occurs when infected
males mate with uninfected females. Insects or mosquitoes will be gradually reduced by the IIT. Using
feedback control strategies, Bliman [3] discussed control of Wolbachia-infected Aedes aegypti mosquito
populations. The stabilizing effects of several feedback control law are studied in order to illustrate these
concepts. In [18], the authors examined the qualitative behaviour of Aedes Aegypti mosquitoes infected
with Wolbachia, which interrupts dengue virus transmission by virtue of its CI and maternal transmission.
In recent years, some authors studied the abstract theory of impulsive control methods ([16, 22, 26]).

By disrupting mosquito and other insect reproduction, SIT creates sterile male populations by using
chemical, physical, and radical tactics. Males are sterilized and reintroduced into the wild to mate with
existing wild populations. Insects and mosquitoes could be reduced or eliminated if sterile males are
released multiple times into the environment [10]. Dumont et al. [9] presented the modelling and analysis
of SIT techniques to Aedes Albopictus populations and derived the conditions for constant, periodic
impulsive sterile male releases, which are helpful for disease prevention, reduction, and elimination. To
release impulsive sterile male mosquitoes into the wild population, the authors discussed both open-
loop and closed-loop control strategies in [2]. In [24, 33], the authors analysed the control of mosquitoes
populations using incompatible and sterile insect techniques. Du et al. [8] examined the comparative
efficacy of irradiation with X-rays as a mosquito SIT. Xue et al. [30] discussed the SIT into the mosquitoes
populations with allee effects and the release of sterile insects with different strategies and control analysis
used find the releasing strategy as well as eliminating the mosquitoes population level. Strugarek et al.
[28] investigated a rudimentary mathematical model that was developed for the reduction of the Aedes
mosquito population model using SIT and IIT, showed elimination conditions for steady, periodic, and
impulsive releases and predict treatment times.

In the natural environment of Lugens, Wolbachia variant w-Lug is present [31]. According to some
experimental findings, the Wolbachia w-Lug increases the fecundity of Lugens by naturally laying more
eggs than uninfected Lugens in all temperatures [14], and in order for Laodelphax striatellus and Lugens
to thrive, Wolbachia must supply the essential nutrients biotin and riboflavin. Wild Lugens populations
were not controlled by Wolbachia strain w-Lug in this case. Researchers found another Wolbachia strain
as w-Stri from a small planthopper Laodelphax Striatellus [32]. According to [23], this strain can cause CI
and interfere with maternal transmission. In a laboratory experiment, Gong et al. [11] transferred w-Stri
from Striatellus to Lugens, and found that the w-Stri reduced rice ragged stunt viral infection, transmis-
sion, and disease prevention. By utilizing the differential equation method, the authors in [20] analyzed
w-Stri and w-Lug Wolbachia spreading dynamics in populations of N. Lugens using imperfect mater-
nal transmission and incomplete CI. Dai et al. [7] framed the population replacement and suppression
Lugens model with periodic impulsive releases of N. Lugens infected with w-Stri and control analysis.

In this study, a mathematical model is developed for wild Lugens and male Lugens infected with w-
Stri. A continuous releasing size of male Lugens infected with w-Stri is used as a control parameter in an
optimal control problem. To arrive at the effective control procedures, Pontryagin’s maximum principle
is applied. Periodic impulsive sterile emissions are studied and eradication criteria are developed based
on their frequency and magnitude. Male Lugens infected with w-Stri must be released frequently and in
sufficient quantities in order to ensure population replacement and suppression. Our model suppresses
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the Lugens population with a release period shorter than the sexual lifetime of male Lugens infected with
w-Stri. This paper is organized as follows. Section 2 defines the model and steady states. The impulsive
control and optimality conditions are derived in Section 3. The numerical examples in Section 4 verify
the theoretical results. Conclusions are provided in the last section.

2. Model formulation

According to Liu et al. [19], the following replacement model is applicable to Lugens infected with
w-Stri:

ṠM(t) =
bSF(t)

2
SM(t)

SM(t) + IM(t)
+
bSF(t)

2
(1 − ξ)IM(t)

SM(t) + IM(t)
− d1SM(t)N(t),

ṠF(t) =
bSF(t)

2
SM(t)

SM(t) + IM(t)
+
bSF(t)

2
(1 − ξ)IM(t)

SM(t) + IM(t)
− d1SF(t)N(t),

İM(t) =
bIF(t)

2
− d2IM(t)N(t),

İF(t) =
bIF(t)

2
− d2IF(t)N(t).

(2.1)

Here, SM,SF, and IM, IF are the numbers of male and female Lugens uninfected and infected with w-Stri,
receptively. Here, b is the birth rate and d1,d2 are the decay rate constants. The CI intensity of infected
males against uninfected females is ξ ∈ (0, 1). From model (2.1), we include the individual competition
effect [13, 21] and continuous releases of male Lugens infected with w-Stri, so the model becomes,

Ṁ =
(
F

M

M+βMI
+ (1 − ξ)F

MI

M+βMI

)
ϑαe−γ(M+F) − µMM,

Ḟ =
(
F

M

M+βMI
+ (1 − ξ)F

MI

M+βMI

)
ϑ(1 −α)e−γ(M+F) − µFF,

ṀI = u(t) − µMI
MI.

(2.2)

M and F are the population densities of wild male and female Lugens, respectively, and t is the time
in days. Male Lugens infected with w-Stri are denoted as MI, and u(t) : R+ → [0,umax] represents
the releasing rate of MI. Assume that

α

1 −α
is the primary sex ratio and ϑ is the average number of

eggs laid by each female every day. An individual’s competition effect is characterized by γ ([13, 21]).
In comparison to wild male fitness, β represents the relative reproductive fitness or effectiveness, which
is typically less than one. µM, µF, and µMI

are the death rates of wild male and female Lugens, male
Lugens infected with w-Stri, respectively. Here this is an explicit solution to the last equation in (2.2):

MI(u(·), t) = e−µMIt
(
MI(0) +

∫t
0
eµMIsu(s)ds

)
.

According to the above equation, MI(u(·), t) is bounded and non-negative from u ∈ [0,umax]. The right
side of the first two equations of (2.2) is decreasing in MI(t). The authors in [19, 20] showed the wild
Lugens model constrained trajectories from an absorbing set, so (2.2) computes Lipschitz continuous
solutions, and (2.2) computes a bounded solution.

For each wild male and female Lugens, define the basic off-spring numbers as NM = ϑα
µM

and NF =
ϑ(1−α)
µF

. The model (2.2) without MI populations has two steady states. i) if NF 6 1, trivial steady state
E0(M

∗
0 = 0, F∗0 = 0); ii) NF > 1, endemic steady state E1(M

∗
1 = 1

γ
NM

NM+NF
lnNF, F∗1 = 1

γ
NF

NM+NF
lnNF). For

the stability analysis of these two steady states, the reader may be referred [2, 19, 20] and so is omitted
here. Now, we consider u(t) = b as constant ([2]), the third equation of (2.2) entirely decouples from
the model and its value M∗I =

b
µMI

can be replaced in first two equations of (2.2), we obtain the endemic
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equilibrium E2(M
∗
2 , F∗2 ,M∗I,2 = b

µMI
), it is difficult to get the values for M∗2 and F∗2 analytically, so better

will get numerically.

3. Main results

3.1. Optimal control technique
The proposed control method seeks to minimize the number of wild Lugens. We define control

function u(t), t ∈ [0, tf] as time-dependent release rate of male Lugens infected with w-Stri with minimal
time tf. Objective function includes: i) controlling the wild population within a specified time period; ii)
reducing the total duration of control action; iii) minimizing the cost of control action. We consider the
objective function as follows:

min
0<tf<∞,06u(t)6umax

J(tf,u) = B1(F(tf) − ε)
2 +

∫tf
0
[B2F(t) +B3 +

B4

2
u2(t)]dt. (3.1)

The cost coefficient B1 describes the highest priority as achieving elimination in a limited amount of time,
B2 defines the significance of wild female elimination intensity during the release operation, B3 represents
the appreciation for time, and B4 refers the control effort costs (i.e., mass-rearing of male Lugens infected
with w-Stri). The objective is to minimise the cost function (3.1) and to determine the functions of optimal
control

(
u∗, t∗f

)
such that

J(u∗, t∗f) = min
06u(t)6umax,0<tf<∞{J(u, tf)},

depending on (2.2) and suitable initial conditions given at t = 0. We demonstrate the model’s optimal
control existence and explain its optimality conditions.

Theorem 3.1 ([15]). If NF > 1, then the model (2.2) has a solution (u∗, t∗f) such that J(u∗, t∗f) =
min0<tf<∞,06u(t)6umax{J(tf,u)}.

Proof. State and control variables are non-negative in the control system (2.2). To minimize the problem,
the objective function in u(t) must be proven to be convex. In addition to being convex and closed, the
control variable u(t) ∈ [0,umax], t > 0 is also closed. The optimal system must be bounded in order for
optimal control to occur. We assure the existence of an optimal control u(t) which minimize (3.1) with
the help of (2.2).

To find the optimal control, we determine the Hamiltonian and Lagrangian for the model (2.2). The
Lagrangian is given by L = B2F+B3 +

1
2B4u

2. Then, we describe a Hamiltonian function H for (2.2) where
λi, i = 1, 2, 3 are the adjoint variables:

H(X,u, λ) = −B2F−B3 −
B4

2
u2 + λ1

{(
F

M

M+βMI
+ (1 − ξ)F

MI

M+βMI

)
ϑαe−γ(M+F) − µMM

}
+ λ2

{(
F

M

M+βMI
+ (1 − ξ)F

MI

M+βMI

)
ϑ(1 −α)e−γ(M+F) − µFF

}
+ λ3

{
u(t) − µMI

MI

}
.

(3.2)

Let us use Pontryagin’s maximum principle from [15] to generate the necessary conditions. If (X,u) is
an optimal solution for the model (2.2), where X = (M, F,MI) and u ∈ [0,umax], then there exists a
non-trivial vector function λ = (λ1, λ2, λ3) satisfying the inequalities:

dX

dt
=
∂H

∂λ
,

∂H

∂u
= 0,

dλ

dt
= −

∂H

∂X
.



R. Chinnathambi, et al., J. Math. Computer Sci., 37 (2025), 261–273 265

In order to derive the necessary condition for the optimal control problem, the adjoint system and control
characterisation are presented in the following theorem.

Theorem 3.2. Given an optimal control u∗ ∈ [0,umax] and a solution X∗ = (M∗, F∗,M∗I) of the corresponding
model (2.2), there exist adjoint variables λi, i = 1, 2, 3 satisfying

dλ1

dt
= −

∂H

∂M
= λ1

{
µM − ϑαe−γ(M+F)F

( βMI

(M+βMI)2 − (1 − ξ)
MI

(M+βMI)2

)
+ γ
( M

M+βMI
− (1 − ξ)

MI

M+βMI

)}
− λ2

{
ϑ(1 −α)e−γ(M+F)F

( βMI

(M+βMI)2

− (1 − ξ)
MI

(M+βMI)2

)
− γ
( M

M+βMI
+ (1 − ξ)

MI

M+βMI

)}
,

dλ2

dt
= −

∂H

∂F
= B2 − ϑe

−γ(M+F)(1 − Fγ)
{ M

M+βMI
+ (1 − ξ)

MI

M+βMI

}
(λ1α+ λ2(1 −α)) + µFλ2,

dλ3

dt
= −

∂H

∂MI
= λ3µ2 − Fϑe

−γ(M+F) (1 − ξ−β)M

(M+βMI)2

(
λ1α+ λ2(1 −α)

)
,

with transversality conditions λi(tf) = 0, i = 1, 2, 3. For t ∈ [0, tf], then there exists an optimal control function

u∗ =max
{

0, min{
1
B4
λ3(t),umax}

}
.

Proof. To find the adjoint equations and the criteria for transversality, we employ the Hamiltonian (3.2).
The adjoint system results from Pontryagin’s maximum principle, which is described in [15],

dλ1

dt
= −

∂H

∂M
,

dλ2

dt
= −

∂H

∂F
,

dλ3

dt
= −

∂H

∂MI
;

with λi(tf) = 0. Solving the equations to obtain the characterization of the optimal control, ∂H∂u = 0, on
the interior of the control set and utilising the control space [0,umax] property, we can derive the desired
characterization u∗ = max

{
0, min{ 1

B4
λ3(t),umax}

}
.

3.2. Impulsive releases of male Lugens with infected w-Stri

We insert the periodic impulsive release of male Lugens infected with w-Stri and the model becomes

Ṁ =
(
F

M

M+βMI
+ (1 − ξ)F

MI

M+βMI

)
ϑαe−γ(M+F) − µMM,

Ḟ =
(
F

M

M+βMI
+ (1 − ξ)F

MI

M+βMI

)
ϑ(1 −α)e−γ(M+F) − µFF,

ṀI = −µMI
MI, in any case t ∈

⋃
n∈N

(
nτ, (n+ 1)τ

)
,

MI(nτ
+) = τbn +MI(nτ

−), n = 1, 2, 3, . . . .

(3.3)

Make bn a constant, drop sub-index n. MI(nτ
±) denotes the left and right limits of MI(t) at t = nτ. If

t→∞, the function MI approaches the periodic solution as follows

M
per
I (t) =

τb

1 − e−µMIτ
e−µMI(t−nτ).
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Describe the periodic model

Ṁ =
(
F

M

M+βM
per
I

+ (1 − ξ)F
M

per
I

M+βM
per
I

)
ϑαe−γ(M+F) − µMM,

Ḟ =
(
F

M

M+βM
per
I

+ (1 − ξ)F
M

per
I

M+βM
per
I

)
ϑ(1 −α)e−γ(M+F) − µFF.

(3.4)

The model (3.3) has the same Lugens free steady state E0. We will now investigate the asymptomatic
stability of E0. So, we describe the mean value of 1

M
per
I

([2]),

〈 1
M

per
I

〉
:=

2(cosh(µMI
τ) − 1)

bµMI
τ2 .

Theorem 3.3. Assume that

b > bcrit
per =

2 cosh(µMI
τ) − 1

µMI
τ2(eγ)

min
{ β
NF

+ ξ− 1,
β

NM

}
, τ > 0.

Then, the solution of the model (3.4) converges globally exponentially to the Lugens free equilibrium E0.

Proof. From (3.4),

Ḟ =
( FM

M+βM
per
I

+ (1 − ξ)
FM

per
I

M+βM
per
I

)
(1 −α)ϑe−γ(M+F) − µFF.

For any t > 0,M > 0, F > 0, use α1 = max{e−γxx; x > 0} = 1
eγ ,

M

M+βM
per
I

e−γ(M+F) 6
Me−γM

βM
per
I

6
α1

βM
per
I

and
M

per
I

M+βM
per
I

e−γ(M+F) 6
1
β

.

Applying the integration with nτ < t from nτ to t,

F(t) 6 e

∫t
nτ

((
M

M+βM
per
I

+(1−ξ)
M

per
I

M+βM
per
I

)
(1−α)ϑe−γ(M+F)−µF

)
ds
F(nτ),

F(t) 6 e

∫t
nτ

((
α1

βM
per
I

+
(1−ξ)
β

)
(1−α)ϑ−µF

)
ds
F(nτ),

F((n+ 1)τ) 6
[
e

(
α1(1−α)ϑ

βM
per
I

+(1−α)ϑ( 1−ξ
β )−µF

)
τ]
F(nτ).

The above sequences decrease towards 0, we deduce that〈 1
M

per
I

〉
<

1
α1

( β
NF

+ ξ− 1
)
= eγ

( β
NF

+ ξ− 1
)

.

In the first equation of (3.4), we similarly demonstrate that
〈

1
M

per
I

〉
< eγ β

NM
. Providing the necessary

conditions
〈

1
M

per
I

〉
leads to sufficient conditions for the asymptotic stability at E0,

〈 1
M

per
s

〉
=

(2 cosh(µMI
)τ) − 1

µMI
τ2b

< eγmax
{ β
NF

+ (ξ− 1),
β

NM

}
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b >
2 cosh(µMI

τ) − 1
µMI

τ2(eγ)
min
{ β
NF

+ ξ− 1,
β

NM

}
.

Lemma 3.4. Let k1 and k2 be two real numbers such that 0 < k1,k2 <
1
NF

. Then, every solution of (2.2) such that
M

M+βMI
6 k1 and MI

M+βMI
6 k2, t > 0, converges exponentially to E0.

Proof. By using the assumptions M
M+βMI

6 k1 and MI

M+βMI
6 k2, the model (2.2) becomes

Ṁ 6
(
(k1 + (1 − ξ)k2)αϑ− µM

)
M, Ḟ 6

(
(k1 + (1 − ξ)k2)(1 −α)ϑ− µF

)
F.

The autonomous linear system(
Ṁ

Ḟ

)
=

(
−µM (k1 + (1 − ξ)k2)αϑ

0 (k1 + (1 − ξ)k2)(1 −α)ϑ− µF

)(
M

F

)
(3.5)

is monotone ([27]). It is used as a method of comparison for evolution of (2.2). Then, it can be concluded
that

0 6M(t) 6 M(t), 0 6 F(t) 6 F(t), t > 0.

Here, (M, F) be the solution of (3.5) attained by same initial values as the solution (M, F) of (2.2). Then,
the linear system (3.5) is asymptotically stable if 0 < k1,k2 <

1
NF

, i.e., (M, F) asymptotically converges to
E0. Based on this, (M, F) also asymptotically converges to E0.

Here, we want to verify the condition M
M+βMI

6 k1, according to the adequate sterile impulse releases
bn. Before, the value of MI on (nτ, (n+ 1)τ] derived,

MI(t) =MI(nτ
+)e−µMI(t−nτ) = (τbn +MI(nτ))e

−µMI(t−nτ). (3.6)

We impose the stronger condition instead of M
M+βMI

6 k1, on (nτ, (n+ 1)τ],

βMI(t) >
( 1
k1

− 1
)

M(t), t > 0, (3.7)

where M(t) means to super solution of M(t).

Lemma 3.5. The solution of (3.5) on (nτ, (n + 1)τ] with initial values (M(nτ), F(nτ)) = (M(nτ), F(nτ)) is
defined by (

M(nτ)
F(nτ)

)
=

(
q1 q2
0 q3

)(
M(nτ)
F(nτ)

)
, (3.8)

where q1 = e−µM(t−nτ),q2 =
(k1+(1−ξ)k2)αϑ

µM−µF+(k1+(1−ξ)k2)(1−α)ϑe
−

(
µF−(1−α)ϑ(k1+(1−ξ)k2)

)
(t−nτ)

− e−µM(t−nτ),

q3 = e
−

(
µF−(1−α)ϑ(k1+(1−ξ)k2)

)
(t−nτ)

.

Here, the feedback control analysis is defined as, on any (nτ, (n+ 1)τ], substituting the values of (3.6) and
(3.8) into (3.7), thus

βMI(t) >
( 1
k1

− 1
)

M(t),β
(
bnτ+MI(nτ)

)
e−µMI(t−nτ)

>
1 − k1

k1

(
e−µM(t−nτ)M(nτ) +

{ (k1 + (1 − ξ)k2)αϑ

µM − µF + (k1 + (1 − ξ)k2)(1 −α)ϑ
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× e
−

(
µF−(1−α)ϑ(k1+(1−ξ)k2)

)
(t−nτ)

− e−µM(t−nτ)
}
F(nτ)

)
,

bnτ > −MI(nτ) +
1 − k1

βk1
e(µMs−µM)s

(
M(nτ) + F(nτ)

× (k1 + (1 − ξ)k2)αϑ

µM − µF + (k1 + (1 − ξ)k2)(1 −α)ϑ
eµM−µF+(1−α)ϑ(k1+(1−ξ)k2)s−1

)
, s ∈ [0, τ].

Theorem 3.6. For a given k1 ∈
(

0, 1
NFu

)
, assume, for n ∈N,

τbn >
∣∣∣Γ ( M(nτ)

F(nτ)

)
−MI(nτ)

∣∣∣
+

,

Γ =

(
1−k1
βk1

e(µMI−µM)τ

(1−k1)
βk1

(k1+(1−ξ)k2)αϑ
µM−µF+(k1+(1−ξ)k2)(1−α)ϑ(e

(µMI−(µF+(1−α)ϑ(k1+(1−ξ)k2))τ − e(µMI−µM)τ)

)T
.

(3.9)

Then, every solution of (3.3) exponentially converges to E0 with a rate of convergence restricted from below by a
value unrelated to the initial condition. Furthermore,

τbn 6 Γ

(
M(nτ)
F(nτ)

)
,

then the series
∑+∞
n=0 bn also converges.

The proof of the above theorem is similar to that of Theorem 6 in [2] and Theorem 3 in [24], hence it
is omitted. Here, |x|+ := max{0, x} defines the non-negative part of the real number x. The row vector Γ
described in below the equation (3.9) has positive components.

4. Numerical discussions

The numerical simulation split into two parts. For both the initial condition and parameter values
are based on [31]. The parameters are as follows: α = 0.5, β = 1, γ = 3.57 ∗ 10−4, ϑ = 4.55, µM = 0.04,
µF = 0.03, µMI

= 0.084, ξ = 0.45. Define

M∗ :=
NM

NF +NM

1
γ

lnNF and F∗ :=
NF

NF +NM

1
γ

lnNF.

Let NM = 56.87 and NF = 75.83. The initial values for the model (2.2) are taken as M(0) =M∗, F(0) = F∗,
MI(0) = 1.

4.1. Optimal control
The optimality system (2.2) described in the above section has to be solved numerically in addition to

the conditions for time optimality for a free terminal time. The scaling factors for all quantities included
in the objective functional (3.1) are Bi, i = 1, 2, 3, 4. Here, we use the subsequent scaling for Bi, i = 1, 2, 3, 4;

B1 =
P1

F
, B2 =

P2

F
, B3 =

P3

365
, B4 =

P4

umax
.

We are most concerned with eliminating wild Lugens in the shortest time period. So, the highest value
given to P1, in order to achieve our primary objective. The rearing (unit) cost of one sterile male might be
given the lowest priority, which is denoted by P4 in the priority ranking system. Having a high elimination
intensity (measured by P2 in the objective function (3.1)) will allow us to keep eliminating Lugens even
as F(t) decreases. The part of minimizing time P3 must be explored, additional considerations are the
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following options: i) P3 = 0; ii) P4 < P3 < P2; iii) P3 > P2. Taking all of the above into account, we can
find the coefficients as P1 = 1010, P2 = 104, P3 ∈ {0, 103, 105}, P4 = 1. The value of u∗ needs to be increased
such that it is higher than bn = 1.4∗103. Also we should prevent the large releases of u∗ and keep the total
control intervention cost within reasonable bounds. u∗ needs to be sufficiently large in order to facilitate
a more rapid reduction in the numbers of wild Lugens. For this reason, in all subsequent simulations, we
will use a maximum release capacity of u∗ = 2.5 ∗ 103. Figures 1-6 represent the numerical results of the
model (2.2) using three different sets of coefficients.

Figures 1, 3, and 5 show with and without optimal control u∗(t), t ∈ [0, T ] of the model (2.2) with
three scenarios: P3 = 0, 103, 105, respectively. Although it displays a similar basic structure, their tangible
implementation may be feasible due to the practicality of continuous time releases.

According to Figures 2, 4, and 6, the left side shows the optimal release rate, while the right side shows
the daily changes in release rate, a technical variable used to quantitatively explain control actions. w-Stri
carriers should increase rapidly during the first 25 days after release, and then gradually decrease over the
next 250 days. These instances will undoubtedly be dominated by w-Stri-infected Lugens populations by
the end of this period. Furthermore, all optimal release programs have similar structures, which naturally
illustrates their robustness. Nevertheless, as P3 rises, the total numbers of sterile insects required for the
implementation of the program’s increases, while the control intervention duration gradually decreases.
In making decisions, this information tells us that there is a trade-off between the elimination effort’s
overall cost and time duration.

A plot of the optimal state for wild male, female Lugens, and male Lugens infected with w-Stri can be
found on the right side of Figures 2, 4, and 6. We can see that when u∗(t) is applied, the number of wild
male and female Lugens keeps going down as t→ T∗ goes on, and both wild populations will finally go
extinct.

A more practical release program based on sterile males impulsive releases will be discussed in the
next subsection.

4.2. Impulsive system

Here, we propose a numerical solution of impulsive release of males Lugens infected with w-Stri (3.3).
Using the following parameters, we can get the numerical trajectories of the model (3.3) as α = 0.074,
β = 0.5, γ = 3.57 ∗ 10−1, ϑ = 0.0005, µM = 0.004, µF = 0.003, µMI

= 0.014, ξ = 0.65, NM = 56.87,
NF = 75.83. The initial values for the model 3.3 are follows: M(0) =M∗, F(0) = F∗, MI(0) = 1.

The quantity of male Lugens infected with w-Stri released can be lowered by using the closed-loop
technique. Reducing the overall numbers of males Lugens infected with w-Stri released is demonstrated
in Theorem 3.6. In the examination of feedback method, we take the wild population into account every
τ days. To illustrate the trade off between treatment duration and control effort, we additionally consider
the values of k1. Convergence to E0 occurs more quickly and with more control effort for smaller values
of k1. Figure 7 displays diagrams indicating that the wild population is nearly extinct with the help of
SIT treatment for k1NF = 0.3, τ = 7, and k1NF = 0.3, τ = 14. For larger values of k1, the control effort is
reduced, and convergence should be delayed. The nth release’s size, bn is equal to the value on the right
side of (3.9). It is evident that k1 and τ significantly affect the convergence of the Lugens population to
E0.

Remark 4.1. We present the continuous (optimal control) and periodic (feedback control) releases of male
Lugens infected with w-Stri in Figures 1-6 and 7 . Due to the difficulty of implementing continuous time
releases, their tangible realization is likely to become impossible inevitably. Feedback control begins with
frequent releases, which gradually decrease in intensity as the wild Lugens population decreases. When
the system is free of wild Lugens, the releases cease completely. A closed-loop control approach requires
evaluating the current magnitude of the untamed population, such as through MRR experiments [12].
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Figure 1: Numerical trajectories of the state variables with P3 = 0. Here purple line indicates controlled state M(t), purple dot
is state M(t), blue line describes controlled state F(t), dot line is state F(t), and red line is state MI(t).
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Figure 2: Optimal trajectory of the state variables with P3 = 0; control trajectory (left) and controlled state trajectories (right).
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Figure 3: Optimal trajectories of the state variables with P3 = 103. Here purple line indicates controlled state M(t), purple dot
is state M(t), blue line describes controlled state F(t), dot line is state F(t), and red line is state MI(t).
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Figure 4: Optimal trajectory of the state variables with P3 = 103. Control trajectory (left) and controlled state trajectories (right).
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Figure 5: Optimal trajectories of the state variables with P3 = 105. Here purple line indicates controlled state M(t), purple dot
states M(t), blue line describes controlled state F(t), dot line is state F(t), and red line is state MI(t).
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Figure 6: Optimal trajectory of the state variables with P3 = 105. Control trajectory (left) and controlled state trajectories (right).
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Figure 7: Periodic impulsive system of (3.3) with k1NF = 0.3, τ = 7 days (left) and k1NF = 0.3, τ = 14 days (right).

5. Concluding remarks

In this study, w-Stri-infected male Lugens and sex-structured wild Lugens were examined. Wild Lu-
gens populations were reduced using a model based on the releasing size of male Lugens infected with
w-Stri as a time-dependent control parameter. An optimal control solution is derived for wild Lugens
cases. We first achieve continuous-time release programs through an optimal control strategy. To replace
the population in the shortest time possible and with the least effort, we consider SIT techniques. The
method we presented allows this Wolbachia strain to be dispersed throughout natural Lugens popula-
tions.

Further, we investigated the impulsive periodic release of male Lugens infected with w-Stri into wild
Lugens populations, as well as the elimination of wild Lugens populations. To reduce the prevalence of
wild Lugens, two control methods are introduced, namely optimal control and impulsive control. These
two control methods are economically viable based on numerical simulations of wild Lugens popula-
tions. This study proposes a practical method for quickly replacing wild Lugens populations with w-Stri
infection.
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In the future, we will incorporate a delay factor into the model to gain insight into the spatio-temporal
dynamics of Lugens models and sparse measurements.
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