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Abstract

In this paper, we introduce a novel machine learning algorithm designed for the classification of cardiovascular diseases. The
proposed inertial projected forward-backward-forward algorithm is developed to address constrained minimization in Hilbert
spaces, with a specific focus on improving the accuracy of disease classification. Utilizing inertial techniques, the algorithm
employs a projected forward-backward-forward strategy, demonstrating convergence under mild conditions. Evaluation of
the algorithm employs four essential performance metrics-accuracy, F1-score, recall, and precision to gauge its effectiveness
compared to alternative classification models. Results indicate significant performance gains, achieving peak metrics of 77.50%
accuracy, 71.57% precision, 91.27% recall, and 80.23% F1-score, thereby surpassing established benchmarks in machine learning
models for cardiovascular disease classification.
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1. Introduction and preliminaries

Various fields in applied sciences, engineering, computer science, medicine and etc. [2, 14, 18, 19,
27, 28, 33–36] can be formulated as mathematical model. Some problems have constraints that limit the
set of possible solutions. To solve these problems, a common approach is to restrict changes within
the working sub-space by adding or dropping one constraint at each iteration. In practical applications,
many real-world problems such as image inpainting and data classification problems can be modeled
as subproblems. To address these, a projected forward-backward algorithm can be employed to solve
constrained convex minimization problems.

In this work, we aim to study the following constrained convex minimization problem:

min
x∈Ω

(f(x) + g(x)) (1.1)
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where Ω is a nonempty closed and convex subset of a Hilbert space H and f,g : H → R ∪ {+∞} are
proper, convex, and lower semicontinuous functions that f is differentiable on H. The problem (1.1)
relates to many real-world problems [9, 11, 17, 21, 29–31]. Let D be a convex subset of H, the strong
relative inerior of D is

sri D = {x ∈ D|cone(D− x) = span(D− x)}.

Let f and g be proper lower semicontinuous convex functions from H to [−∞,+∞], and x̄ ∈ H. The
subdifferential of g is denoted as the set-valued operator ∂g : H→ 2H and is defined as follows:

∂g(x) = {y ∈ H|g(w) − g(x) > 〈y,w− x〉,w ∈ H}.

If 0 ∈ sri(dom f− dom g), then the following are equivalent (Corollary 26.3 in [4]):

i) x̄ is a solution to the problem minx∈H(f(x) + g(x));
ii) x̄ ∈ zer(∂f+ ∂g) = {x ∈ H| 0 ∈ (∂f+ ∂g)(x)}.

Moreover, if f is Gâteaux differentiable at x̄, then above statements are equivalent to

x̄ = proxβg(x̄−β∇f(x̄)), (1.2)

where β > 0 and∇f is the gradient of f. IfΩ = H, then (1.1) solves the unconstrained convex minimization
problem:

min
x∈H

(f(x) + g(x)). (1.3)

For solving (1.3), we can construct a simple iteration. Let x0 ∈ H and

xn+1 = proxβg(x
n −β∇f(xn)), (1.4)

where β > 0. By this point of view, we know that (1.4) is called a classical forward-backward splitting
algorithm (FBS). As a consequence, it has been studied by many authors (see [6, 18–20, 28]). Let x ∈ H.
We know that the orthogonal projection of x onto a nonempty, closed, and convex subset C of H is defined
by

PCx := argmin
y∈C

‖x− y‖2. (1.5)

We know that

‖PCx− y‖2 6 ‖x− y‖2 − ‖PCx− x‖2,

for all y ∈ C. From (1.2) and (1.5), we can define a simple method for solving (1.1) as follows. Let x0 ∈ H
and

xn+1 = PΩ(proxβg(x
n −β∇f(xn))), (1.6)

where β > 0. The method (1.6) is called a projected forward-backward splitting algorithm (PFBS). In 2000,
Tseng [32] introduced the forward-backward-forward splitting algorithm (FBFS) or Tseng’s extragradient
algorithm or Tseng’s method. FBFS is generated by x0 ∈ H and

xn+1 = proxβng(x
n −βn∇f(xn)) −βn(∇f(proxβng(x

n −βn∇f(xn))) −∇f(xn)), (1.7)

where (βn) is a real positive sequence. In 2005, Combettes and Wajs [12] proposed the relaxed version of
FBS (FBS-CW) which is generated by x0 ∈ H, ε ∈ (0, min{1, 1/L}) and

xn+1 = xn + λn(proxβng(x
n −βn∇f(xn)) − xn), (1.8)
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where λn ∈ [ε, 1], βn ∈ [ε, (2/L) − ε] and L is the Lipschitz constant of ∇f. In 2009, Beck and Teboulle [5]
introduced a fast iterative shrinkage-thresholding algorithm (FISTA) as follows. Let t1 = 1 and x0 = x1 ∈

H. Calculate yn = xn + θn(x
n − xn−1), where θn =

tn − 1
tn+1

and tn+1 =
1 +

√
1 + 4t2

n

2
. Next, calculate

xn+1 = proxαng(y
n −αn∇f(xn)), (1.9)

where αn = 1/L and L is the Lipschitz constant of ∇f. For other inertial methods, we refer to [3, 8, 10, 13,
22–24, 26].

In 2021, Phairatchatniyom et al. [25] introduced the modified inertial iterative algorithm (MII) for
solving split variational inclusion problems in real Hilbert spaces as follows. Let x0 = x1 ∈ H1 and set
α > 0, λ > 0 and {γn} ⊂ [γ∗,γ∗] ⊂ (0, 1

L), where L = ‖A‖2. Let {βn} ⊂ (0, 1) such that limn→∞ βn = 0 and∑∞
n=1 βn =∞. Calculate wn = (1 −βn)[xn + θn(xn − xn−1)], where {θn} ⊂ [0, 1) such that

θn =

min
{

εn

‖xn − xn−1‖
, θ
}

, if xn 6= xn−1,

θ, otherwise.

Next, calculate

xn+1 = JB1
λ (wn +αnA

∗(JB2
λ − I)Awn). (1.10)

In 2022, Adamu et al. [1] introduced inertial Halpern-type forward-backward splitting algorithm (IHFB)
for solving variational inclusion problems in a real Banach space E as follows. Let x0 = x1 ∈ E and choose
θn such that 0 6 θn 6 θ̄n, where

θ̄n =

min
{

εn

‖xn − xn−1‖
, θ
}

, if xn 6= xn−1,

θ, otherwise.

Calculate yn = xn + θn(xn − xn−1). Next, compute vn = βnu+ (1 −βn)J
B
λn

(yn − λnAyn) and

xn+1 = ηnyn + (1 − ηn)vn. (1.11)

Highlights for this research are following.

• This research introduces new projected forward-backward-forward algorithms based on Ishikawa
iterations, designed to address constrained convex minimization problems. Using employing the
inertial technique, the study provides a weak convergence theorem for the proposed algorithm.

• The algorithm is applied to data classification problems, specifically in Section 3 we present a pro-
posed algorithm to predict cardiovascular disease datasets.

• The proposed algorithm demonstrates good performance compared to existing methods, with en-
hanced precision, recall, F1 score, and accuracy. It effectively learns from training datasets and
generalizes well to holdout datasets, outperforming other methods in the literature. With more
training models, the results show that the loss tends to decrease, and the accuracy tends to increase,
this means that our Algorithms suitably learn the training dataset in machine learning.

The content is arranged as follows. In Section 2, we construct our main theorem. In Section 3, we
test experiments and discuss applications for our algorithms. Finally, in Section 4, we end this work by
conclusions.
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2. Main theorem

In this section, we suggest a new inertial projected forward-backward-forward splitting algorithm and
establish the weak convergence. Let Ω be a nonempty closed and convex subset of H. Now, we assume
that f : H → R ∪ {+∞} and g : H → R ∪ {+∞} are proper, lower semi-continuous, and convex functions
that f is differentiable on H with the Lipschitz constant L of ∇f. Throughout this paper, we assume that
Ω∩ argmin(f+ g) is nonempty.

Algorithm 2.1 (Inertial projected forward-backward-forward splitting algorithm (IPFBF)).
Initialization: Given θn ∈ [0,+∞), ηn ∈ (0, 2/L) and αn ∈ (0, 1/L).
Iterative step: Let x0, x1 ∈ H and calculate xn+1 as follows:
Step1. Compute the inertial step: yn = xn + θn(x

n − xn−1).
Step2. Compute the forward-backward step:

zn = proxηng(y
n − ηn∇f(yn)) and wn = proxαng(z

n −αn∇f(zn)).

Step3. Compute the xn+1 step: xn+1 = PΩ(wn +αn(∇f(zn) −∇f(wn))).
Set n := n+ 1 and return to Step1.

Theorem 2.2. Let (xn) be generated by Algorithm 2.1 and θn ∈ [0,∞). Assume that 0 < lim infn→∞ ηn 6

lim supn→∞ ηn < 2
L

, 0 < lim infn→∞ αn 6 lim supn→∞ αn < 1
L

, and
∑∞
n=1 θn < +∞. Then we have

1. for each x∗ ∈ Ω∩ argmin(f+g), ‖xn+1 − x∗‖ 6 K ·
∏n
j=1(1+ 2θj), where K = max{‖x0 − x∗‖, ‖x1 − x∗‖};

2. (xn) weakly converges to an element of Ω∩ argmin(f+ g).

Proof. Let x∗ ∈ Ω∩ argmin(f+ g) and qn = wn +αn(∇f(zn) −∇f(wn)). So, we get

‖xn+1 − x∗‖2 = ‖PΩ(qn) − x∗‖2 6 ‖qn − x∗‖2 − ‖PΩ(qn) − qn‖2. (2.1)

By the definition of wn, we have

zn −wn −αn∇f(zn) ∈ αn∂g(wn). (2.2)

Moreover, we see that

αn∇f(zn) = qn −wn +αn∇f(wn). (2.3)

Using (2.2) and (2.3), we obtain

zn − qn −αn∇f(wn) ∈ αn∂g(wn). (2.4)

Noting x∗ ∈ argmin(f+ g), we get −αn∇f(x∗) ∈ αn∂g(x∗). Using (2.4) and the monotonicity of ∂g, it
gives

〈zn − qn −αn(∇f(wn) −∇f(x∗)),wn − x∗〉 > 0. (2.5)

Since ∇f is monotone, it follows from (2.5) that 〈zn − qn,wn − x∗〉 > 0. Therefore, we get

〈zn − qn,wn − qn〉+ 〈zn − qn,qn − x∗〉 > 0. (2.6)

We know that ‖a± b‖2 = ‖a‖2 ± 2〈a,b〉+ ‖b‖2 for all a,b ∈ H. From (2.6), we have

1
2

[
‖zn − qn‖2 + ‖qn −wn‖2 − ‖zn −wn‖2

]
+

1
2

[
‖zn − x∗‖2 − ‖zn − qn‖2 − ‖qn − x∗‖2

]
> 0.
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This implies that

‖qn − x∗‖2 6 ‖zn − x∗‖2 + ‖qn −wn‖2 − ‖zn −wn‖2. (2.7)

Since ∇f is L-Lipschitz continuous on H, we have

‖qn −wn‖2 = ‖wn +αn(∇f(zn) −∇f(wn)) −wn‖2 6 α2
nL

2‖zn −wn‖2. (2.8)

Moreover, we see that

‖zn − x∗‖2 = ‖proxηng(y
n − ηn∇f(yn)) − proxηng(x∗ − ηn∇f(x∗))‖

2

6 ‖(yn − ηn∇f(yn)) − (x∗ − ηn∇f(x∗))‖2

− ‖(I − proxηng)(y
n − ηn∇f(yn)) − (I − proxηng)(x∗ − ηn∇f(x∗))‖

2

6 ‖yn − x∗‖2 −
2ηn
L
‖∇f(yn) −∇f(x∗)‖2 + η2

n‖∇f(yn) −∇f(x∗)‖2

− ‖yn − proxηng(y
n − ηn∇f(yn)) − ηn(∇f(yn) −∇f(x∗))‖2

= ‖yn − x∗‖2 − ηn(
2
L
− ηn)‖∇f(yn) −∇f(x∗)‖2

− ‖yn − proxηng(y
n − ηn∇f(yn)) − ηn(∇f(yn) −∇f(x∗))‖2.

(2.9)

From (2.7), (2.8), and (2.9), we obtain

‖qn − x∗‖2 6 ‖zn − x∗‖2 +α2
nL

2‖zn −wn‖2 − ‖zn −wn‖2

= ‖zn − x∗‖2 − (1 −α2
nL

2)‖zn −wn‖2

6 ‖yn − x∗‖2 − ηn(
2
L
− ηn)‖∇f(yn) −∇f(x∗)‖2 − ‖yn − proxηng(y

n − ηn∇f(yn))

− ηn(∇f(yn) −∇f(x∗))‖2 − (1 −α2
nL

2)‖zn −wn‖2.

(2.10)

Combining (2.1) and (2.10), we get

‖xn+1 − x∗‖2 6 ‖yn − x∗‖2 − ηn(
2
L
− ηn)‖∇f(yn) −∇f(x∗)‖2

− ‖yn − proxηng(y
n − ηn∇f(yn)) − ηn(∇f(yn) −∇f(x∗))‖2

− (1 −α2
nL

2)‖zn −wn‖2 − ‖PΩ(qn) − qn‖2.

(2.11)

Now, we will show that (xn) is bounded. From definition of yn and (2.11), we see that

‖xn+1 − x∗‖ 6 ‖yn − x∗‖ = ‖xn + θn(x
n − xn−1) − x∗‖ 6 ‖xn − x∗‖+ θn(‖xn − x∗‖+ ‖xn−1 − x∗‖).

This shows that
‖xn+1 − x∗‖ 6 (1 + θn)‖xn − x∗‖+ θn‖xn−1 − x∗‖.

By Lemma 5 in [14], we conclude that

‖xn+1 − x∗‖ 6 K ·
n∏
j=1

(1 + 2θj),

where K = max{‖x0 − x∗‖, ‖x1 − x∗‖}. Since
∑∞
n=1 θn < +∞, we have (xn) is bounded. By (2.11), we
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obtain

‖xn+1 − x∗‖2 6 ‖xn + θn(x
n − xn−1) − x∗‖2 − ηn(

2
L
− ηn)‖∇f(yn) −∇f(x∗)‖2

− ‖yn − proxηng(y
n − ηn∇f(yn)) − ηn(∇f(yn) −∇f(x∗))‖2

− (1 −α2
nL

2)‖zn −wn‖2 − ‖PΩ(qn) − qn‖2

6 ‖xn − x∗‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖+ θ2
n‖xn − xn−1‖2

v− ηn(
2
L
− ηn)‖∇f(yn) −∇f(x∗)‖2 − ‖yn − proxηng(y

n − ηn∇f(yn))

− ηn(∇f(yn) −∇f(x∗))‖2 − (1 −α2
nL

2)‖zn −wn‖2 − ‖PΩ(qn) − qn‖2.

Since limn→∞ θn‖xn − xn−1‖ = 0, limn→∞ ‖xn − x∗‖ exists and 0 < lim infn→∞ ηn 6 lim supn→∞ ηn <
2
L

, we have

lim
n→∞ ‖∇f(yn) −∇f(x∗)‖ = 0

and

lim
n→∞ ‖yn − proxηng(y

n − ηn∇f(yn)) − ηn(∇f(yn) −∇f(x∗))‖ = 0.

So limn→∞ ‖yn − zn‖ = 0. Moreover, we can show that limn→∞ ‖PΩ(qn) − qn‖ = 0 and limn→∞ ‖zn −
wn‖ = 0. By definition of yn, it is easily seen that limn→∞ ‖xn − yn‖ = 0. Then,

‖zn − xn‖ 6 ‖zn − yn‖+ ‖yn − xn‖⇀ 0 as n→∞.

Moreover, we see that

‖qn − xn‖ 6 ‖qn −wn‖+ ‖wn − zn‖+ ‖zn − xn‖
6 α2

nL
2‖wn − zn‖+ ‖wn − zn‖+ ‖zn − xn‖

= (1 +α2
nL

2)‖wn − zn‖+ ‖zn − xn‖ → 0 as n→∞.

By definition of zn, we obtain
yn − ηn∇f(yn) − zn

ηn
∈ ∂g(zn)

that is

yn − zn

ηn
−∇f(yn) +∇f(zn) ∈ ∂g(zn) +∇f(zn). (2.12)

Therefore ∥∥∥∥yn − zn

ηn
−∇f(yn) +∇f(zn)

∥∥∥∥ 6
1
ηn
‖yn − zn‖+ ‖∇f(yn) −∇f(zn)‖

6

(
1
ηn

+ L

)
‖yn − zn‖ → 0 as n→∞.

If x∞ is a weak limit point of (xn), then there exists a subsequence (xni) of (xn) such that xni ⇀ x∞.
By replacing n by ni and passing i → ∞ in (2.12), we have 0 ∈ ∂g(x∞) +∇f(x∞) by Fact 2.2 in [6]. On
the other hand since limn→∞ ‖PΩ(qn) − qn‖ = 0 and qni ⇀ x∞, by the demiclosedness of PΩ, we have
x∞ ∈ Ω. Therefore x∞ ∈ Ω∩ argmin(f+ g). Using Theorem 5.5 in [4], Theorem 2.2 is completed.
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3. Application to data classification

Many real world problems such as signal and image processing, transportation, data regression, and
classification problems can be formulated in the form of a convex minimization problem. In this section,
we focus on demonstrating how to format some machine learning (ML) problems, especially a classifica-
tion problem, into a constrained convex minimization problems by using the proposed algorithm. Also,
it shows that our algorithms are more effective than some algorithms mentioned in the literature. Pre-
cisely, we are interested in cardiovascular disease (CVD) for the dataset. It was obtained from the Kaggle
dataset (https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset) for cardiovascular
disease prediction, an online resource.

Cardiovascular disease is one reason for death in the world, and every year, around 17.9 million
deaths, representing 32% of all global deaths. Of these deaths, 85% were due to heart attack and stroke
are estimated by World Health Organization. At least three-quarters of the world’s deaths from CVD
occur in low- and middle-income countries. People living in low- and middle-income countries often
do not have the benefit of primary health care programmes for early detection and treatment of people
with risk factors for CVD. The most important behavioural risk factors of heart disease and stroke are
unhealthy diet, physical inactivity, tobacco use, and harmful use of alcohol. The effects of behavioural
risk factors may show up in individuals. We use the CVD dataset in Kaggle to predict cardiovascular
disease in response to the situation.

The dataset consists of 70,000 records and 12 characteristics. There are two categories of analyzing
the classes: 0 for absence or 1 for the presence of the disease. From the data samples, 35021 (50.03%)
are specified as absent, while the remaining 34,979 (49.97%) are identified as the presence of cardiovas-
cular disease. For benchmarking classifier, we consider the following various methods which have been
proposed to classify CVD as in Table 1.

Table 1: Classification accuracy of different methods.
Methods Authors Acc (%)
Machine Learning Techniques Jinjri et al. [16]
Logistic Regression 69.87
K-Nearest Neighbour 72.36
Support Vector Machine 72.66
Machine Learning Techniques Bhave and Gaikwad [7]
Decision Trees 64.22
Random forest 72.08
AdaBoost 73.28
XGBoot 74.11
LightGBM 74.07
Majority viting ensemble 74.17
ELM-Algorithm 2.1 77.50

The CVD dataset is considered relevant for identifying the disease. The goal column is divided into
two categories: 1 for heart problems and 0 for disorders other than heart disease. The attributes were
collected during the patient’s medical examination: 1. objective data (factual information); 2. examination
data (results from medical exams); 3. subjective data (information given by the patient). Table 2 contains
a detailed description of the characteristics.
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Table 2: Distribution of features of the study population.

Attribute name Description Value type Variable type
Age Patient’s age in days int (days)

Objective
Height Patient’s height in cm int (cm)
Weight Patient’s weight in kg float (kg)
Gender Patient’s gender (1) women

(2) men
Ap–hi Systolic blood pressure int

Examination

Ap–lo Diastolic blood pressure int
Cholesterol Patient’s cholesterol (1) normal

(2) above normal
(3) well above normal

Gluc Patient’s glucose (1) normal
(2) above normal
(3) well above normal

Smoke Whether patient smokes or not binary

Subjective
Alco

Whether the patient consumes
alcohol or not

binary

Active
Whether patient is physically
active or not

binary

Cardio
Presence or absence of
cardiovascular disease

binary Target

Let S := {(yn,bn)|yn ∈ Rq,bn ∈ Rp,n = 1, 2, . . . , J} be the training dataset, where J is distinct samples,
yn is an input data, and bn is a target. In experiments on regression and classification problems, the main
goal of extreme learning machine (ELM) is to find x = [x1T , . . . , xMT ]T such that Ax = b, where M is the
number of nodes in the hidden layer and A is hidden layer output matrix defied by

A =

G(a
1y1 + b1) · · · G(aMy1 + bM)

...
. . .

...
G(a1yK + b1) · · · G(aMyK + bM)

 ,

G ia an activate function, ai and bi are random weight and bias of the i-th hidden node, and b =

[b1T , . . . ,bJT ]T is the training data. The output at the i-th hidden node is

On =

M∑
i=1

xiG(aiyn + bi).

The classification problems can be expressed as Table 3.
To predict CVD, we apply the proposed algorithm to solve all models in Table 3. All results are

performed by MATLAB 2022b on a 64-bit MacBook Pro Chip Apple M1 and 8 GB of RAM. To evaluate
the quality of the predicted dataset, we use precision, recall, F1 score, and accuracy, which are defined by

precision =
TP

TP + FP
, recall =

TP
TP + FN

, F1 score =
2TP

2TP + FP + FN
,

and
accuracy =

TP + TN
TP + FP + TN + FN

× 100%,
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Table 3: List of models considered for the proposed algorithm, where λ, λ1, and λ2 are a regularization parameter.
Models Function Explanation Argument
M1 prox`1 `1 norm proximal operator. Solve:

minx∈H ‖Ax− b‖2
2 + λ‖x‖1

x, λ, parameters

The problem (1.3) setting: f(x) = ‖Ax− b‖2
2 and g(x) = λ‖x‖1.

M2 prox`2 `2 norm proximal operator. Solve:
minx∈H ‖Ax− b‖2

2 + λ‖x‖2
2

x, λ, parameters

The problem (1.3) setting: f(x) = ‖Ax− b‖2
2 and g(x) = λ‖x‖2

2.
M3 prox`1 `1 norm proximal operator. Solve:

minx∈C ‖Ax− b‖2
2 + λ1‖x‖1

x, λ1, λ2, parameters

The problem (1.1) setting: f(x) = ‖Ax− b‖2
2, g(x) = λ‖x‖1, and C = {x ∈ R | ‖x‖1 < λ2}.

M4 prox`2 `2 norm proximal operator. Solve:
minx∈C ‖Ax− b‖2

2 + λ1‖x‖2
2

x, λ1, λ2, parameters

The problem (1.1) setting: f(x) = ‖Ax− b‖2
2, g(x) = λ‖x‖2

2, and C = {x ∈ R | ‖x‖2
2 < λ2}.

where TP is a true positive, TN is a true negative, FP is a false positive, and FN is false negative. The
binary cross entropy loss function calculates the loss of an example by computing the following average:

Loss = −
1

output size

output size∑
i=1

yi log ȳi + (1 − yi) log(1 − ȳi),

where output size is the number of scalar values in the model output, yi is a corresponding target value,
and ȳi is a i-th scalar value in the model output.

To start our computation, we clean the dataset by apps in MATLAB using smooth data for attributes:
height, weight, Ap–hi, and Ap–lo as in Tables 4 and 5. 70% of the dataset was selected as the training
set and 30% as the test set to cross-validate the model’s performance, and adjust the classification model
according to the parameters of the classification algorithm.

Table 4: Setting method and parameters for cleaned dataset.

Specify method
and parameters

Attribute names

Height Weight Systolic blood
pressure

Diastolic blood
pressure

Smoothing method Moving mean Moving mean Moving median Moving median
Smoothing parameters Smoothing factor Smoothing factor Smoothing factor Smoothing factor

Smoothing factor 0.25 0.3 0.65 0.85

The initial points x0 = x1 are zero vectors with the size of training dataset for all algorithms. The
parameters ηn = 0.9

2 max(eig(ATA))
and αn = 0.9

max(eig(ATA))
, where eig(ATA) is eigenvalues of ATA. θn of all

algorithms is defined as

θn =


tn − 1
tn+1

, where tn+1 =
1 +

√
1 + 4t2

n

2
, if 1 6 n 6M,

1
n2 , otherwise,



P. Cholamjiak, W. Cholamjiak, K. Kankam, J. Math. Computer Sci., 37 (2025), 347–360 356

Table 5: Results of the cleaned dataset.

Attribute names
Maximum

(Minimum)
Mean

Standard
Deviation (SD)

Height
Original 250 (55) 164.36 8.21
Cleaned 209 (105.5) 164.36 5.79

Weight
Original 200 (10) 74.21 14.40
Cleaned 144.5 (37) 74.21 10.34

Systolic blood pressure
(Ap_hi)

Original 16020 (-150) 128.82 154.01
Cleaned 210 (80) 126.13 11.95

Diastolic blood pressure
(Ap_lo)

Original 11000 (-70) 96.63 188.47
Cleaned 110 (60) 81.60 4.95

for some positive integerM. The sigmoid is an activation function, hidden nodesM = 110, and the binary
cross entropy loss = 0.15 for the stopping criteria. The results as shown in Table 6.

Table 6: The performance for solving models in Table 3.
Models Regularization parameters ITER (CPU) Pre Rec F1 Acc(%)

M1 λ = 0.01 48 (2.1696) 71.5789 91.2621 80.2310 77.5000
M2 λ = 10−5 48 (2.2437) 71.5757 91.2717 80.2326 77.5000
M3 λ1 = 10−5 and λ2 = 0.5 51 (2.3678) 71.5041 91.4525 80.2573 77.4905
M4 λ1 = 10−5 and λ2 = 0.5 51 (2.4462) 71.5009 91.4620 80.2589 77.4905

From Table 6, we see that model M1 performs better than models M3 and M4 in terms of quality of
the predicted dataset, number of iterations and CPU time. However, model M1 has an accuracy value
equal to M2 (77.5%), but in terms of CPU time, model M1 performs better than M2.

Next, we apply different ML algorithms such as FBFS (1.7), FBS-CW (1.8), FISTA (1.9), MII (1.10), and
IHFB (1.11) to solve Model M1 and compare the efficiency of algorithms. All parameters are chosen as in
Table 7. The initial points x0 = x1 are zero vectors with the size of training dataset for all algorithms. θn
is defined by

θn =


tn − 1
tn+1

, where tn+1 =
1 +

√
1 + 4t2

n

2
, if 1 6 n 6M,

1
n2 , otherwise,

for FBFS FBS-CW FISTA and IPFB. We choose θn by

θn =

min
{

εn

‖xn − xn−1‖
, θ
}

, if xn 6= xn−1,

θ, otherwise,

for IHFB and MII. The sigmoid is an activation function, hidden nodes M = 110, and the binary cross
entropy loss = 0.15 for the stopping criteria. The results are shown in Table 8.

From Table 8, we see that the IPFBF algorithm has an excellent fit model. It suitably learns the training
dataset and generalizes to classify the CVD dataset better than FBFS (1.7), FBS-CW (1.8), FISTA (1.9), MII
(1.10), and IHFB (1.11) for these parameters. Moreover, The performance of the IPFBF algorithm has the
highest efficiency in precision, recall, F1 score, and accuracy in the case of the same number of iterations.
Confusion matrix for IPFBF algorithm is shown in Figure 1. Also, we present the accuracy value to show
efficiency of our algorithm and the validation loss with the accuracy of training. This shows that it has no
overfitting in the training dataset in Figures 2 and 3, respectively.
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Table 7: Chosen parameters of each algorithm.

Methods Parameters
αn ηn βn λn t1 εn θ u

FBFS – – 0.1
max(eig(ATA))

– 1 – – –

FBS-CW – – 0.1
max(eig(ATA))

0.1
max(eig(ATA))

1 – – –

FISTA 0.9
max(eig(ATA))

– – – 1 – – –

IHFB – 1
(n+1)8

1
1000n

0.1
max(eig(ATA))

– 1
(n+1)6 0.8 b

2

MII 0.9
max(eig(ATA))

– 1
(n+2)1/2 – –

(
0.1

max(eig(ATA))

)3
0.01 –

IPFB 0.9
max(eig(ATA))

0.9
max(eig(ATA))

– – 1 – – –

Table 8: The performance for solving model M1.
Algorithms Regularization parameters ITER (CPU) Pre Rec F1 Acc(%)
FBFS λ = 10−5 48 (1.6328) 69.3099 93.0135 79.4310 75.9000
FBS-CW λ = 10−5 48 (1.0998) 69.6199 92.7470 79.5364 76.1238
FISTA λ = 10−5 48 (0.5523) 70.6676 92.1854 80.0051 76.9476
IHFB λ = 10−5 48 (0.6561) 69.3099 93.0135 79.4310 75.9000
MII λ = 10−2 48 (0.6478) 64.9894 96.2593 77.5924 72.1857
IPFBF λ = 10−5 48 (2.2437) 71.5757 91.2717 80.2326 77.5000

Figure 1: Confusion matrix for IPFBF algorithm.

Figure 1 shows that the confusion matrix gives a true positive (TP: 9588), false positive (FP: 3807),
false negative (FN: 918), and true negative (TN: 6687). Although satisfactory, the results could be better to
be implemented in clinical settings where excellent performance is required given the much FN and FP.
However, it can be used to predict CVD for preliminary checks in the future.

From Figures 2 and 3, we see that the IPFBF algorithm has an excellent fit model. It suitably learns
the training dataset and generalizes to classify the CVD dataset.
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Figure 2: Performance graph of IPFBF algorithm (accuracy
train: 77.6980%, accuracy validation: 77.5000%) on CVD
dataset.

Figure 3: Loss curve of IPFBF algorithm (training loss:
0.2397%, validation loss: 0.2409%) on CVD dataset.

4. Conclusion

In this work, we introduced an inertial projected forward-backwards-forward splitting algorithm for
solving the constrained convex minimization problem in Hilbert spaces. Under the suitable conditions, we
then proved that the proposed algorithm converges weakly to the solution. In the numerical experiments,
we applied the proposed algorithm to solve the CVD classification in infinite dimensional spaces and
compared the performance of the algorithm with FBFS (1.7), FBS-CW (1.8), and FISTA (1.9). It is shown
that the classification efficiency varies with the selected method. The results show that our algorithms
are effective regarding precision, recall, F1 score, and accuracy. Based on the experiments, the proposed
algorithm performs better than other methods in terms of accuracy at 77.50%. It shows that our algorithm
suitably learns the training dataset and generalizes well to classify.
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