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Abstract 
     We consider an HIV model, based on optimal control, for identifying the best treatment 
strategy in order to maximize the healthy cells by using chemotherapies with minimum side 
effects. In this paper, a new approach is introduced which transform the constraints of 
problem to the integral constraints. By an approximation, we obtain a finite dimensional 
linear programming problem which give us an approximate solution for original problem. 
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1- Introduction  

     One of the worst diseases in whole world is AIDS (Acquired Immunity 
Deficiency Syndrome). It is caused by the human immunodeficiency virus 
(HIV). 
There is still much work to be completed in the search for an anti-HIV 
vaccine. Most of the chemotherapies are aimed at killing or halting the 
pathogen, but treatment which can boost the immune system can serve to 
help the body fight infection on its own. The new treatments are aimed at 
reducing viral population and improving the immune response. This brings 
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new hope to the treatment of HIV infection, and we are exploring strategies 
for such treatments using optimal control techniques. 
Once HIV enters the body, the human immune system tries to get rid of it. 

The invasion is reported to 4CD T cells  . The 4CD  is a protein marker in the 

surface of the T cell, and the letter T refers to thymus, the organ responsible 
for maturing these cells after they migrate from the bone marrow (where 

they are manufactured). The surface of 4CD T  possesses a protein that can 

bind to foreign substances such as HIV. The HIV needs a host in order to 
reproduce and the above mentioned protein provides shelter. The HIV virus 
is a retrovirus, the RNA of the virus is converted into DNA inside the 

4CD T cells  . Thus, when infected 4CD T cells   begin to multiply to fight 

this pathogen, they produce more virus (see [1], [3], [5], [6]). 

2. Statement of the Model  

   We consider a model which presented by  Gumel et al.[3 ]describes the 

interaction of HIV and the immune system of the body. In this model, the variables 

are 4, iT T  and V  present the number of healthy 4CD T cells  , infected 

4CD T cells  and free viruses respectively. The number of 4T  cells in the 

person is affected by the rate 

of natural growth of 4T  cells, the rate of production of 4CD T cells  due to 

the presence of the virus(note that if the virus gets into the body, 4T  cells 

multiply themselves to the maximum level to resist the virus), the natural 
death rate and rate of infection of healthy cells due to the presence of the 
virus. 
The number of iT  cells depend on the rate of production of infected cells 

from actively infected 4CD T cells  , the rate at which the virus infects free 

cells, natural death, the action of anti-HIV cyto-toxic T lymphocyte cells and the 
viral lysis. Similarly, the population of the virus is determined by the 
production rate of viruses by actively infected 4T  cells, the rate at which the 

virus enters into the rested 4T  cells and the natural death rate. 

In this model, the variables are 4, iT T  and V  represent the number of healthy

4CD T cells  , infected 4CD T cells  and free viruses, respectively. 
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with given initial values for 4T , iT  and V at 0t  respectively by 0
4T , 0

iT  and 0V .  

Define the objective functional 

                             2 2
1 2 4 1 1 2 2

0
( , ) ( ( ) ( ( ( )) ( ( )) )) . (4)

tf

t
J u u T t A u t A u t dt    

 

In other words, we are maximizing the benefit based on the healthy T cells 
count and minimizing the cost based on the percentage effect chemotherapy 
given (i.e. 1u  and 2u ). The parameters 1 2, 0A A   represent the weights on the 

benefit and cost. 

The goal is to seek an optimal control pair * *
1 2( , )u u  such that 

      
* *
1 2 1 2 1 2( , ) max{ ( , ) : ( , ) },J u u J u u u u U   

where U  is the control set defined by 

     1 2 0{ ( , ) : measurable, 0 ( ) 1, [ , ] for 1,2}.i i fU u u u u u t t t t i       

In the above  model, parameters and constants, defined as follows: 
 
  the value of functioning thymus, 

s  rate of supply of 4CD T cells   

r  rate of production of 4CD T cells  due to the HIV, 

1   natural death rate of 4CD T cells  , 

vk  rate of infection of activated 4CD T cells  , 

2   natural death rate of infected 4CD T cells  , 

3   natural death rate of free viruses, 

ck  rate of Cyto-toxic T lymphocytes action viral lysis, 

N  rate of production of HIV from actively infected 4CD T cells  , 

tk   rate of viral entry quiescent resting 4CD T cells  ,  



H. R. ERFANIAN and M. H. NOORI SKANDARI/ TJMCS Vol .2 No.4 (2011) 650-658 

653 

 

 In the next section the problem is changed to a problem in measure space, 
where we interface with a linear programming problem. 
 In the following we replace the problem by another one in which the 
maximum of the objective functional (4) is calculated over a set of positive 
Radon measures to be defined as follows. Some authors have used this 
approach in a variety of optimal control problems; we mention 
[2],[7],[8],[10] and the pioneering work of Rubio ([9]) as well. 
 

Let J A U    , where 0[ , ]fJ t t  and t J  , 1 2 3[ ( ), ( ), ( )]x x t x t x t or

4[ ( ), ( ), ( )]ix T t T t V t A    is the trajectory of the controlled system and A is a 

compact set of 3R , 1 2, ( ) [ ( ), ( )]t J u t u t u t U    is the control and U is a 

compact set of 2R  . we may rewrite optimization problem (1) -(4) as the 
following reduced form:  

  

            

2 2
1 1 1 2 2

0

0

max ( , ) ( ( ) ( ( ( )) ( ( )) )) (5)

. . ( ) ( , , ) , (6)

tf

t

J x u x t A u t A u t dt

s t x t g t x u t J

  

 





 

3. Classical Control problems  

    We shall say that a trajectory-control pair [ (.), (.)]p x u , is admissible if the 

following conditions hold:  
i)  ( ) ,x t A t J  .  

ii)  ( ) ,u t U t J  .  

iii) The boundary conditions ( )a ax t x   and ( )b bx t x  is satisfied, where bx  

is unknown.  

iv) The pair p  satisfies the differential equation (6)  a.e. on 0J .  

Let B an open ball in 4R  containing J  A. Let ( )C B  be the space of all real-

valued continuously differentiable functions on B which are bounded on B 

together with their first derivatives. Let ( )C B  , and define function g  as 

follows:  

                           ( , , ) ( , ) ( , , ) ( , ) ( , , )g
x tt x u t x g t x u t x t x u                (7)   

The function g  is in the space ( )C   of all real-valued continuous functions 

defined on the compact set  . Thus we have  
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( , , ) ( ( , ) ( , ))

( , ) ( , ) ( , )

, ( )

g
x t

J J

b b a a

J

t x u dt t x x t x dt

t x dt t x t x

C B

  

  

 

 

  

   

 





                        (8) 

     

Let ( )OD J  be the space of infinitely differentiable real-valued functions with 

compact support in OJ . Define  

              
0( , , ) ( ) ( , , ) ( ) 1,2,..., ( ).j j jt x u x t g t x u t j n D J                  (9) 

Then (see [9]) 
0( , , ) 0 1,2,..., ( ).j

J

t x u j n D J     

Put  

                                   ( , , ) ( ) ( , , )t x u t t x u           (10)  

that is, a function which depends on the time variable only; then 

                                    ( , , ) ( ) ,( , , )g t x u t t x u                                         (11) 

If p  is an admissible pair, the equality (10) with the choice (11) for the 

function   implies that  

                                    

( , , ) , '( )g

J

t x u dt a C B                                         (12) 

Where a  is the integral of f over J, independent of x  and u . Now, 

the mapping  

                                    

: ( , ( ), ( )) , ( )p

J

F F t x t u t dt F C    .                         (13) 

Defines a positive, linear functional on ( )C  . 

By the Riesz representation theorem, there exists a unique positive Radon 
measure   on   which  

                            

( ) ( , , ) ( ) , ( )p F F t x u dt Fd F F C 

 

       .              (14) 
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Let ( )M    be the set of all positive Radon measure on  . Define the positive 

Radon measure ( )M    such that maximizes the following linear 

functional  

                                                 0( ) ( )I f                                (15) 

subject to  

                                      ( ) , ( ),g C B                                       (16) 

                          
0( ) 0, 1,2,..., ( ),j j n D J                                    (17)   

                                       1( ) , ( ),g a C                         (18)                                               

     

We define Q to be the set of all measures in ( )M    that satisfy equalities 

(16)-(18) than we can show that there exists an optimal measure   in the Q 

for which 0 0( ) ( )f f    for all Q (see [8]).  

This problem is an infinite-dimensional linear programming problem and all 
the functions in (15)-(18) are linear with respect to measure  . We obtain 

the approximate solution of this problem by the solution of a finite-
dimensional linear program.  
 
In this section, we are limiting constraint (15)-(18) as follows:  

i) We choose the function 1( , ) , 1,2,..., .r
it x x r M    and 1,2,..., .i n  Then we 

have 1 ( , , ).g r
i irx g t x u   

ii) We consider  

                 
21

2 ( )
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r t t
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Where 2 21, 2 .b at t t M nM     We shall call h , h=1,2,…, the sequence of 

functions of the type  

2( , , ) ( ) ( , , ) ( ), 1,2,..., .r r rt x u x t g t x u t r M      

iii) For the third type of constraints, we choose  

1

0 .

s
s

t J

otherwise



 


 

with 
( 1)

[ , ] 1,2,....,a a
s

t s t t s t
J s L

L L

    
   (see[9]). 

In the previous section, we have limited the number of constraints in the 
original linear program; the underlying space is not, however, finite-
dimensional.  
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Definition: Let A be borel set and z a point in the space  . The Radon 
measure z  will be called atomic measure if  

         

1
( )( )

0 .

z A
z A

ow



 


 

Now we approximate   by a linear combination of atomic measure in 

following proposition of [9].  

Proposition: Let   be a countable dense subset of  . Given 0  , a measure 

( )M    can be found such that 0| ( ) | ,f     and  | ( ) | ,
g
j     

1,2,...,j  ,M and the measure  has the form  

    
1

( ),
M

k
k

k

z  



  

where ( )kz  is atomic measure, , 0, 1,2,..., .k
kz k M      

The infinite-dimensional linear programming problem in (15)-(18) can be 
approximated by the following linear programming problem in which 

, 1,2,...,jz j N  belongs to a dense subset of  .    
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where ( , , ) , 1,2,...,j j j jz t y x j N    are constructed by dividing the sets J, 

A, U into the number of equal subsets.  
By using manner similar (see [9]) we can approximate the optimal pair 

[ (.), (.)]x u  by considering k j

j k

 



  such that if we set 1( , )k kt    then 

( ) ku t u and the trajectory (.)x  will be obtained by the equation (6). 

4. Computational Results  

    We now present results from solving model which assumed the parameters 
and initial values the same Gumel [3] as follows: 
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s =10, r =0.03, vk  0.4, N=1000, ck 0.5, L=0.25,   0.9,  0.2, tk 0.8, 

1 2  0.01, 3  3.07 with 4(0)T 1000, (0)iT 10 and (0)V  10000. 

For more clearness, it is better to present these results through graphs. 
Figures 1 and 2 show Healthy cells before and after treatment and Viral load 
before and after treatment, respectively. Figures 3 and 4 show the optimal 
control 1u and 2u , respectively. In fact they show the best policy of drugs 

treatment. 
 

          

    Fig.1. Healthy cells before and after treatment         Fig.2.Viral load before and after 
treatment 

 

             
                       Fig.3.The first control                              Fig.4. The second contro 
5. Conclusion  

    In this paper an applicable and practical method for solving nonlinear 
optimal control problems is presented that we developed it for best 
chemotherapy in treatment of HIV which this method is based on linear 
technique. It seems that by using this method, we can obtain fine results by 
considering a linear treatment of the nonlinear differential equations. 
Moreover, it is not necessary to impose any restriction on objective function 
of model. 
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