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1  Introduction 
 
The concept of hyperstructure was first introduced by Marty [7] in 1934 and has 

attracted attention of many authors in last decades and has constructed some other 
structures such as hyperrings, hypergroups, hypermodules, hyperfields, and hypervector 
spaces. These constructions have been applied to many disciplines such as geometry, 
hypergraphs, binary relations, combinatorics, codes, cryptography, probability, and etc. A 
wealth of applications of this concepts is given in [1 − 6] and [8 − 15].  

 In 1988 the concept of hypervector space was first introduced by Scafati-Tallini. 
She studied more properties of this new structure in [12] and [13]. We considered this 
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generalization of vector space in viewpoint of analysis and proved important results in this 
field. See [9 − 11]. In this paper we prove Hahn-Banach Theorem and some its results on 
hypervector spaces. This paper is arranged as follows. In section 2 we define the 
preliminary concepts and then in section 3 we prove the Hahn-Banach Theorem for 
functionals on normal real and complex hypervector spaces and some its results. 

 We denote the set of all complex numbers by 𝐶 and real numbers by 𝑅. 
Throughout of paper the field 𝐹 is as 𝐶 or 𝑅.  

 
 

2  Preliminaries 
  
Definition 2.1 ([13]) A 𝑤𝑒𝑎𝑘 or 𝑤𝑒𝑎𝑘𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑕𝑦𝑝𝑒𝑟𝑣𝑒𝑐𝑡𝑜𝑟𝑠𝑝𝑎𝑐𝑒 over a 

field 𝐹 is a quadruple (𝑋,+,𝑜,𝐹) such that (𝑋, +) is an abelian group and 𝑜: 𝐹 × 𝑋 → 𝑃∗(𝑋) 
is a multivalued product times a scalar such that: 

 
(1) ∀𝑎 ∈ 𝐹,∀𝑥, 𝑦 ∈ 𝑋, [𝑎𝑜(𝑥 + 𝑦)] ∩ [𝑎𝑜𝑥 + 𝑎𝑜𝑦] ≠ ∅, 

 
(2) ∀𝑎, 𝑏 ∈ 𝐹, ∀𝑥 ∈ 𝑋, [(𝑎 + 𝑏)𝑜𝑥] ∩ [𝑎𝑜𝑥 + 𝑏𝑜𝑥] ≠ ∅, 

 
(3) ∀𝑎, 𝑏 ∈ 𝐹, ∀𝑥 ∈ 𝑋, 𝑎𝑜(𝑏𝑜𝑥) = (𝑎𝑏)𝑜𝑥, 

 
(4) ∀𝑎 ∈ 𝐹,∀𝑥 ∈ 𝑋, 𝑎𝑜(−𝑥) = (−𝑎)𝑜𝑥 = −(𝑎𝑜𝑥), 

 
(5) ∀𝑥 ∈ 𝑋, 𝑥 ∈ 1𝑜𝑥. 

 
 
We call (1) and (2) 𝑤𝑒𝑎𝑘 𝑟𝑖𝑔𝑕𝑡 and 𝑙𝑒𝑓𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 laws, respectively. Note that 
the set 𝑎𝑜(𝑏𝑜𝑥) in (3) is of the form ∪𝑦∈𝑏𝑜𝑥 𝑎𝑜𝑦.  

 
  
Definition 2.2 ([12]) Let (𝑋, +) be an abelian group and 𝐹 be a field. Then a 

hypervector space is a quadruple (𝑋,+,𝑜,𝐹) where 𝑜 is a mapping 𝑜: 𝐹 × 𝑋 → 𝑃∗(𝑋), such 
that the following conditions are satisfied:  

 
(1) ∀𝑎 ∈ 𝐹,∀𝑥, 𝑦 ∈ 𝑋, 𝑎𝑜(𝑥 + 𝑦) ⊆ 𝑎𝑜𝑥 + 𝑎𝑜𝑦, 

 
(2) ∀𝑎, 𝑏 ∈ 𝐹, ∀𝑥 ∈ 𝑋, (𝑎 + 𝑏)𝑜𝑥 ⊆ 𝑎𝑜𝑥 + 𝑏𝑜𝑥, 

 
(3) ∀𝑎, 𝑏 ∈ 𝐹, ∀𝑥 ∈ 𝑋, 𝑎𝑜(𝑏𝑜𝑥) = (𝑎𝑏)𝑜𝑥, 

 
(4) ∀𝑎 ∈ 𝐹,∀𝑥 ∈ 𝑋, 𝑎𝑜(−𝑥) = (−𝑎)𝑜𝑥, 

 
(5) ∀𝑥 ∈ 𝑋, 𝑥 ∈ 1𝑜𝑥. 
 

We call (1) and (2) 𝑟𝑖𝑔𝑕𝑡 and 𝑙𝑒𝑓𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 laws, respectively. Note that the set 



Ali Taghavi and Roja Hosseinzadeh/ TJMCS Vol .2 No.4 (2011) 682-690 

684 
 

𝑎𝑜(𝑏𝑜𝑥) in (3) is of the form ∪𝑦∈𝑏𝑜𝑥 𝑎𝑜𝑦.  

  
Example 2.3 Suppose 0 ≠ 𝑎 ∈ 𝑅 and 0 ≠ 𝑧 ∈ 𝐶 . 𝐶 with usual sum and following 

product is a hypervector space on 𝑅:  
 𝑎𝑜𝑧 = {𝑟𝑒𝑖𝜃 ; 0 < 𝑟 ≤ |𝑎||𝑧|, 𝜃 = 𝑎𝑟𝑔(𝑎𝑧)}, 

if 𝑎 = 0 or 𝑧 = 0, then we define 𝑎𝑜𝑧 = 0.  
  
Example 2.4 Suppose 𝑎 ∈ 𝑅 and 𝑧 ∈ 𝐶. 𝐶 with usual sum and following product is 

a hypervector space on 𝑅:  
 𝑎. 𝑧 = {𝑟𝑒𝑖𝜃 ; 0 ≤ 𝑟 ≤ |𝑎||𝑧|,0 ≤ 𝜃 ≤ 2𝜋}. 

 
 
        Definition 2.5 ([12]) Let (𝑋, +, 𝑜, 𝐹) be a hypervector space over a field 𝐹. We 
define a pseudonorm in 𝑋 as being a mapping ∥. ∥: 𝑋 → 𝑅, of 𝑋 into the reals such that:  

 (𝑖) ∥ 0 ∥= 0, 
 (𝑖𝑖)∀𝑥, 𝑦 ∈ 𝑋, ∥ 𝑥 + 𝑦 ∥≤∥ 𝑥 ∥ +∥ 𝑦 ∥ ,  
 (𝑖𝑖𝑖)∀𝑎 ∈ 𝐹, ∀𝑥 ∈ 𝑋, sup ∥ 𝑎𝑜𝑥 ∥= |𝑎| ∥ 𝑥 ∥.  
  
 A pseudonorm in 𝑋 is called norm if: 
 (𝑖𝑣) ∥ 𝑥 ∥= 0 ⇔ 𝑥 = 0. 
 

3  Main results 
  
Definition 3.1 ([9]) If 𝑋 is a weak hypervector space over 𝐹, 𝑎 ∈ 𝐹 and 𝑥 ∈ 𝑋, 

then 𝑧𝑎𝑜𝑥  for 0 ≠ 𝑎 is that element of 𝑎𝑜𝑥 such that 𝑥 ∈ 𝑎−1𝑜𝑧𝑎𝑜𝑥  and for 𝑎 = 0, we 
define 𝑧𝑎𝑜𝑥 = 0.  

  
Remark 3.2 Note that 𝑧𝑎𝑜𝑥  in a weak hypervector space is the element that its norm 

is equal to |𝑎| ∥ 𝑥 ∥.  
 As the descriptions in [4], 𝑧𝑎𝑜𝑥  is not unique, necessarily. So the set of all these 

elements denoted by 𝑍𝑎𝑜𝑥 . In the mentioned paper we introduced a certain category of 
weak hypervector spaces that 𝑍𝑎𝑜𝑥  is singleton in them. These weak hypervector spaces 
have been called "normal". In [9], the following lemma stated a criterion for normality of a 
weak hypervector space.  

Lemma 3.3 ([9]) Let 𝑋 be a weak hypervector space over 𝐹. 𝑋 is normal if and 
only if  

 𝑧𝑎1𝑜𝑥 + 𝑧𝑎2𝑜𝑥 = 𝑧(𝑎1+𝑎2)𝑜𝑥 , ∀𝑥 ∈ 𝑋, ∀𝑎1 , 𝑎2 ∈ 𝐹, 

 
 𝑧𝑎𝑜𝑥1

+ 𝑧𝑎𝑜𝑥2
= 𝑧𝑎𝑜(𝑥1+𝑥2), ∀𝑥1, 𝑥2 ∈ 𝑋, ∀𝑎 ∈ 𝐹. 

 
  
Example 3.4 The defined hypervector space in Example 2.3 is normal.  
  
Lemma 3.5 ([9]) If 𝑋 is a weak hypervector space over 𝐹, 𝑎 ∈ 𝐹, 0 ≠ 𝑏 ∈ 𝐹 and 

also 𝑥 ∈ 𝑋, then the following properties hold: 
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  (a) 𝑥 ∈ 𝑍1𝑜𝑥   
 (b) 𝑎𝑜𝑧𝑏𝑜𝑥 = 𝑎𝑏𝑜𝑥  
  
 (c) 𝑍−𝑎𝑜𝑥 = −𝑍𝑎𝑜𝑥   
 Furthermore, if 𝑋 is normal, then 
 (d) 𝑍𝑎𝑜𝑥  is singleton.  
  
Definition 3.6 ([9]) Let 𝑋 be a weak hypervector space over 𝐹. A nonempty subset 

𝑀 of 𝑋 is called a weak subhypervector space of 𝑋, when 𝑀 satisfies the following 
properties:  

(𝑖)𝑥 + 𝑦 ∈ 𝑀, ∀𝑥, 𝑦 ∈ 𝑀,  
(𝑖𝑖)𝑧𝑎𝑜𝑥 ∈ 𝑀, ∀𝑎 ∈ 𝐹, ∀𝑥 ∈ 𝑀.  
 
 
Definition 3.7 Let 𝑋 be a weak hypervector space over 𝐹. A map 𝑓: 𝑋 → 𝐹 is called 

weak linear functional if and only if 𝑓 is additive and satisfies 𝑓(𝑧𝑎𝑜𝑥 ) = 𝑎𝑓(𝑥), for all 
𝑎 ∈ 𝐹 and 𝑥 ∈ 𝑋.  

 If 𝑋 is normed hypervector space over 𝐹, we denote the set of all bounded (see 
[10]) weak linear functionals on 𝑋 by 𝑋𝑤

∗ .  
 Now we are prepare to prove Hahn-Banach Theorem for weak linear functionals 

on normal real hypervector spaces.  
Theorem 3.8 Suppose  
 (a) 𝑀 is a weak subhypervector space of a normal real hypervector space 𝑋.  
 (b) 𝑝:𝑀 → 𝑅 satisfies  
 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦), 

 
 𝑠𝑢𝑝𝑝(𝑡𝑜𝑥) = 𝑡𝑝(𝑥) = 𝑝(𝑧𝑡𝑜𝑥 ), 

if 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋, 𝑡 ≥ 0, 
 (c) 𝑓:𝑀 → 𝑅 is a weak linear functional and 𝑓(𝑥) ≤ 𝑝(𝑥) on 𝑀. 
 Then there exists a weak linear functional Λ: 𝑋 → 𝑅 such that  
 Λ(𝑥) = 𝑓(𝑥)    (𝑥 ∈ 𝑀), 

and  
 Λ(𝑥) ≤ 𝑝(𝑥)    (𝑥 ∈ 𝑋). 

 
  
Proof. If 𝑀 ≠ 𝑋, choose 𝑥1 ∈ 𝑋\𝑀, and define  
 𝑀1 = {𝑥 + 𝑧𝑡𝑜𝑥1

; 𝑥 ∈ 𝑀, 𝑡 ∈ 𝑅}. 

We show that 𝑀1  is a weak subspace of 𝑋. Let 𝑥′, 𝑦′ ∈ 𝑀1 . So 𝑥′ = 𝑥 + 𝑧𝑡𝑜 𝑥1
 and 

𝑦′ = 𝑦 + 𝑧𝑠𝑜𝑥1
 where 𝑥, 𝑦 ∈ 𝑀 and 𝑡, 𝑠 ∈ 𝑅. Since 𝑋 is normal, we have  

 𝑥′ + 𝑦′ = (𝑥 + 𝑧𝑡𝑜𝑥1
) + (𝑦 + 𝑧𝑠𝑜𝑥1

) = (𝑥 + 𝑦) + 𝑧(𝑡+𝑠)𝑜𝑥1
 

so 𝑥′ + 𝑦′ ∈ 𝑀1, because 𝑥 + 𝑦 ∈ 𝑀. Now let 𝜆 ∈ 𝑅. Again by normality of 𝑋 and Lemma 
3.4(b) we have  

 𝑧𝜆𝑜𝑥′ = 𝑧𝜆𝑜(𝑥+𝑧𝑡𝑜 𝑥1 ) = 𝑧𝜆𝑜𝑥 + 𝑧𝜆𝑜𝑧𝑡𝑜 𝑥1
= 𝑧𝜆𝑜𝑥 + 𝑧𝜆𝑡𝑜𝑥1

. 

So it is clear that 𝑧𝜆𝑜𝑥′ ∈ 𝑀1, because 𝑧𝜆𝑜𝑥 ∈ 𝑀. Since  
 𝑓(𝑥) + 𝑓(𝑦) = 𝑓(𝑥 + 𝑦) ≤ 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥 − 𝑥1) + 𝑝(𝑥1 + 𝑦), 
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we have  
 𝑓(𝑥) − 𝑝(𝑥 − 𝑥1) ≤ 𝑝(𝑥1 + 𝑦) − 𝑓(𝑦)    (𝑥, 𝑦 ∈ 𝑀). (1) 

Since the right side of (1) is independent of 𝑥, the left side has least upper bound, as 𝑥 
ranges over 𝑀. Let 𝑎 be the least upper bound of the left side of (1). Then  

 𝑓(𝑥) − 𝑎 ≤ 𝑝(𝑥 − 𝑥1)    (𝑥 ∈ 𝑀)(2) 
and  

 𝑓(𝑦) + 𝑎 ≤ 𝑝(𝑦 + 𝑥1)    (𝑦 ∈ 𝑀). (3) 
Define 𝑓1  on 𝑀1 by  

 𝑓1(𝑥 + 𝑧𝑡𝑜𝑥1
) = 𝑓(𝑥) + 𝑡𝑎    (𝑥 ∈ 𝑀, 𝑡 ∈ 𝑅). 

It is clear that 𝑓1 = 𝑓 on 𝑀. Let 𝑥′ = 𝑥 + 𝑧𝑡𝑜𝑥1
 and 𝑦′ = 𝑦 + 𝑧𝑠𝑜𝑥1

 where 𝑥, 𝑦 ∈ 𝑀 and 

𝑡, 𝑠 ∈ 𝑅 and also let 𝜆 ∈ 𝑅. So by normality of 𝑋 we have 
 
 𝑓1(𝑥′ + 𝑦′) = 𝑓1((𝑥 + 𝑦) + 𝑧(𝑡+𝑠)𝑜𝑥1

) 

 = 𝑓(𝑥 + 𝑦) + (𝑡 + 𝑠)𝑎 
 = 𝑓(𝑥) + 𝑡𝑎 + 𝑓(𝑦) + 𝑠𝑎 
 = 𝑓1(𝑥′) + 𝑓1 (𝑦′) 

 and  
 𝑓1(𝑧𝜆𝑜𝑥′) = 𝑓1(𝑧𝜆𝑜(𝑥+𝑧𝑡𝑜 𝑥1 )) = 𝑓1(𝑧𝜆𝑜𝑥 + 𝑧𝜆𝑜𝑧𝑡𝑜 𝑥1

) 

 = 𝑓1(𝑧𝜆𝑜𝑥 + 𝑧𝜆𝑡𝑜𝑥1
) = 𝑓(𝑧𝜆𝑜𝑥 ) + 𝜆𝑡𝑎 

 = 𝜆𝑓(𝑥) + 𝜆𝑡𝑎 = 𝜆(𝑓(𝑥) + 𝑡𝑎) 
 = 𝜆𝑓1(𝑥′). 

 
So 𝑓1  is a weak linear functional. Now we show 𝑓1 ≤ 𝑝 on 𝑀1. 
By taking 𝑡 > 0 and replacing 𝑥  by 𝑧𝑡−1𝑜𝑥  in (2) and 𝑦  by 𝑧𝑡−1𝑜𝑦  in (3) 

and using Lemma 3.4 we obtain  
 𝑓(𝑧𝑡−1𝑜𝑥 ) − 𝑎 ≤ 𝑝(𝑧𝑡−1𝑜𝑥 − 𝑥1) 
 = 𝑝(𝑧𝑡−1𝑜𝑥 − 𝑧𝑡−1𝑜𝑧𝑡𝑜 𝑥1

) 

 = 𝑝(𝑧𝑡−1𝑜(𝑥−𝑧𝑡𝑜 𝑥1 )) 

 and  
 𝑓(𝑧𝑡−1𝑜𝑦 ) + 𝑎 ≤ 𝑝(𝑧𝑡−1𝑜𝑦 + 𝑥1) 

 = 𝑝(𝑧𝑡−1𝑜(𝑦−𝑧𝑡𝑜 𝑥1 )). 

 
So by multiplying the above inequalities by 𝑡, we obtain  
 𝑓(𝑥) − 𝑡𝑎 ≤ 𝑝(𝑥 − 𝑧𝑡𝑜𝑥1

), 

 
 𝑓(𝑦) + 𝑡𝑎 ≤ 𝑝(𝑦 + 𝑧𝑡𝑜𝑥1

). 

These inequalities and Lemma 3.4(c) imply  
 𝑓1(𝑥 + 𝑧−𝑡𝑜𝑥1

) ≤ 𝑝(𝑥 + 𝑧−𝑡𝑜𝑥1
), 

 
 𝑓1(𝑦 + 𝑧𝑡𝑜𝑥1

) ≤ 𝑝(𝑦 + 𝑧𝑡𝑜𝑥1
). 

Therefore 𝑓1(𝑥) ≤ 𝑝(𝑥) for all 𝑥 ∈ 𝑀1.  
 Let Γ be the collection of all ordered pairs (𝑀′, 𝑓′), where 𝑀′ is a weak 

subspace of 𝑋 that contains 𝑀 and 𝑓′ is a weak linear functional on 𝑀′ that extends 
𝑓. Partially order Γ by declaring (𝑀′, 𝑓′)°(𝑀′′, 𝑓′′) to mean that 𝑀′ ⊆ 𝑀′′ and 𝑓′′= 𝑓′ on 



Ali Taghavi and Roja Hosseinzadeh/ TJMCS Vol .2 No.4 (2011) 682-690 

687 
 

𝑀′ . By Hausdorff's Maximality Theorem there exists a maximal totally ordered 
subcollection Ω of Γ. Let Φ be the collection of all 𝑀′ such that (𝑀′, 𝑓′) ∈ Ω. Then Φ 
is totally ordered by set inclusion, and the union 𝑀  of all members of Φ is therefore a 
weak subspace of 𝑋. If 𝑥 ∈ 𝑀  then 𝑥 ∈ 𝑀′ for some 𝑀′ ∈ Φ. Define Λ(𝑥) = 𝑓′(𝑥), 
where 𝑓′ is the function which occurs in the pair (𝑀′, 𝑓′) ∈ Ω.  

 It is not difficult to check that Λ is well-defined, weak linear and Λ ≤ 𝑝 on 𝑀 .  
 If 𝑀  is a proper subhypervector space of 𝑋, the first part of the proof would give 

a further extension of Λ, and this would contradict the maximality of Ω. Thus 𝑀 = 𝑋.  
  
Lemma 3.9 Suppose 𝑋 is a normal hypervector space over 𝐶. 
 (a) If 𝑢 is the real part of a complex weak linear functional 𝑓, then 𝑢 is real 

weak linear and  
 𝑓(𝑥) = 𝑢(𝑥) − 𝑖𝑢(𝑧𝑖𝑜𝑥 )    (𝑥 ∈ 𝑋). (∗) 

 
 (b) If 𝑢 is a real weak linear functional on 𝑋 and 𝑓 to be defined by (∗), then 

𝑓 is a complex weak linear functional on 𝑋.  
 (c) If 𝑋 is a normed normal hypervector space and 𝑓 to be defined by (∗), then 

∥ 𝑓 ∥=∥ 𝑢 ∥.  
  
Proof. (a) It is clear that 𝑢 is real weak linear. Now let 𝑣 be the imaginary part of 

𝑓. So  
 𝑓(𝑥) = 𝑢(𝑥) + 𝑖𝑣(𝑥)    (𝑥 ∈ 𝑋). 

Since 𝑓(𝑧𝑖𝑜𝑥 ) = 𝑖𝑓(𝑥), we have  
 𝑢(𝑧𝑖𝑜𝑥 ) + 𝑖𝑣(𝑧𝑖𝑜𝑥 ) = 𝑖𝑢(𝑥) − 𝑣(𝑥). 

This implies 𝑣(𝑥) = −𝑅𝑒𝑖𝑓(𝑥) = −𝑢(𝑧𝑖𝑜𝑥 ) and hence  
 𝑓(𝑥) = 𝑢(𝑥) − 𝑖𝑢(𝑧𝑖𝑜𝑥 ). 

(b) By assumptions, it's clear that 𝑓 is additive and 𝑓(𝑧𝑎𝑜𝑥 ) = 𝑎𝑓(𝑥) for all 𝑎 ∈ 𝑅. We 
have  

 𝑓(𝑧𝑖𝑜𝑥 ) = 𝑢(𝑧𝑖𝑜𝑥 ) − 𝑖𝑢(𝑧𝑖𝑜𝑧𝑖𝑜𝑥 ) 

        = 𝑢(𝑧𝑖𝑜𝑥 ) − 𝑖𝑢(−𝑥) 
        = 𝑢(𝑧𝑖𝑜𝑥 ) + 𝑖𝑢(𝑥) 
      = 𝑖𝑓(𝑥). 

 This fact together with the normality of 𝑋 implies 𝑓(𝑧𝛼𝑜𝑥 ) = 𝛼𝑓(𝑥) for all 𝛼 ∈ 𝐶, 
because if 𝛼 = 𝑎 + 𝑏𝑖 where 𝑎, 𝑏 ∈ 𝑅, then we have  

 𝑓(𝑧𝛼𝑜𝑥 ) = 𝑓(𝑧(𝑎+𝑏𝑖)𝑜𝑥 ) = 𝑓(𝑧𝑎𝑜𝑥 + 𝑧𝑏𝑖𝑜𝑥 ) 

 = 𝑓(𝑧𝑎𝑜𝑥 ) + 𝑓(𝑧𝑏𝑖𝑜𝑥 ) = 𝑎𝑓(𝑥) + 𝑓(𝑧𝑏𝑜𝑧𝑖𝑜𝑥 ) 

 = 𝑎𝑓(𝑥) + 𝑏𝑓(𝑧𝑖𝑜𝑥 ) = 𝑎𝑓(𝑥) + 𝑏𝑖𝑓(𝑥) 
 = 𝛼𝑓(𝑥). 

 (c) Since |𝑢(𝑥)| ≤ |𝑓(𝑥)|, we obtain ∥ 𝑢 ∥≤∥ 𝑓 ∥. On the other hand, for any 𝑥 ∈ 𝑋 
there exists an 𝑎 ∈ 𝐶 such that |𝑎| = 1 and 𝑎𝑓(𝑥) = |𝑓(𝑥)|. So  

 |𝑓(𝑥)| = 𝑓(𝑧𝑎𝑜𝑥 ) = 𝑢(𝑧𝑎𝑜𝑥 ) ≤∥ 𝑢 ∥. ∥ 𝑧𝑎𝑜𝑥 ∥ 
 =∥ 𝑢 ∥. |𝑎| ∥ 𝑥 ∥ 
 =∥ 𝑢 ∥. ∥ 𝑥 ∥, 

 that implies ∥ 𝑓 ∥≤∥ 𝑢 ∥. Thus we obtain ∥ 𝑓 ∥=∥ 𝑢 ∥.  
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Theorem 3.10 Suppose 𝑀 is a weak subhypervector space of a normed normal 
hypervector space 𝑋 over 𝐹 and 𝑝 is a seminorm on 𝑋. Also suppose 𝑓 is a weak linear 
functional on 𝑀 and |𝑓(𝑥)| ≤ 𝑝(𝑥) for all 𝑥 ∈ 𝑀. Then 𝑓 extends to a weak linear 
functional 𝛬 on 𝑋 that satisfies  

 |Λ(𝑥)| ≤ 𝑝(𝑥)    (𝑥 ∈ 𝑋). 
 

  
Proof. If the scalar field is 𝑅, this is contained in Theorem 3.7, because 𝑝 is a 

seminorm and hence 𝑠𝑢𝑝𝑝(𝑡𝑜𝑥) = |𝑡|𝑝(𝑥) = 𝑝(𝑧𝑡𝑜𝑥 ) so 𝑝 has the properties of the 
defined map in Theorem 3.7(b).  

 Assume that the scalar field is 𝐶. Put 𝑢 = 𝑅𝑒𝑓. By Lemma 3.8(a) 𝑢 is real weak 
linear functional. Since |𝑢(𝑥)| ≤ |𝑓(𝑥)|, so |𝑢(𝑥)| ≤ 𝑝(𝑥) for all 𝑥 ∈ 𝑀. Thus by Theorem 
3.7 there is a real weak linear functional 𝑈 on 𝑋 such that 𝑈 = 𝑢 on 𝑀 and also 
𝑈 ≤ 𝑝 on 𝑋. Let Λ be a complex weak linear functional on 𝑋 whose real part is 𝑈. 
Theorem 3.8(a) implies that Λ = 𝑓 on 𝑀. Finally, to every 𝑥 ∈ 𝑋 corresponds an 𝑎 ∈ 𝐶, 
|𝑎| = 1, such that 𝑎Λ(𝑥) = |Λ(𝑥)|. Hence  

 |Λ(𝑥)| = Λ(𝑧𝑎𝑜𝑥 ) = 𝑈(𝑧𝑎𝑜𝑥 ) ≤ 𝑝(𝑧𝑎𝑜𝑥 ) = |𝑎|𝑝(𝑥) = 𝑝(𝑥). 
 

  
 An immediate result of the above theorem is the following theorem.  
Theorem 3.11 Let 𝑓 be a bounded weak linear functional on a weak hypervector 

space 𝑀 of a normed normal hypervector space 𝑋 over 𝐹. Then there exists a bounded 
weak linear functional 𝛬 on 𝑋 which is an extension of 𝑓 to 𝑋 and has the same norm,  

 ∥ Λ ∥𝑋=∥ 𝑓 ∥𝑀 . 
 

  
Proof. If 𝑀 = {0}, then 𝑓 = 0, and the extension is Λ = 0. Let 𝑀 ≠ {0}. Set 

𝑝(𝑥) =∥ 𝑓 ∥𝑀∥ 𝑥 ∥. It is clear that 𝑝 is a seminorm. Since 𝑓 is a bounded weak linear (See 
[10]), so we have  

 |𝑓(𝑥)| ≤∥ 𝑓 ∥𝑀∥ 𝑥 ∥= 𝑝(𝑥)    (𝑥 ∈ 𝑀). 
Hence we can now apply Theorem 3.9 and conclude that there exists a weak linear 
functional Λ on 𝑋 which is an extension of 𝑓 and  

 |Λ(𝑥)| ≤ 𝑝(𝑥) =∥ 𝑓 ∥𝑀∥ 𝑥 ∥. 
Taking the supremum over all 𝑥 ∈ 𝑋 of norm less than 1, we obtain the inequality  

 ∥ Λ ∥𝑋= 𝑠𝑢𝑝{|Λ(𝑥)|; 𝑥 ∈ 𝑋, ∥ 𝑥 ∥≤ 1} ≤∥ 𝑓 ∥𝑀 . 
Since under an extension the norm cannot decrease, we also have ∥ Λ ∥𝑋≥∥ 𝑓 ∥𝑀 . Together 
we obtain ∥ Λ ∥𝑋=∥ 𝑓 ∥𝑀  and the theorem is proved.  

 
 
Corollary 3.12 Suppose 𝑋 is a normed normal hypervector space over 𝐹. If 𝑥0 ∈ 𝑋, 

then there exists a bounded weak linear functional 𝛬 on 𝑋 such that  
 Λ(𝑥0) =∥ 𝑥0 ∥. 

Furthermore, if 𝑥0 ≠ 0, then  
 ∥ Λ ∥= 1. 
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Proof. If 𝑥0 = 0, take Λ = 0. If 𝑥0 ≠ 0, apply Theorem 3.10, with 𝑀 = {𝑧𝑡𝑜𝑥0
; 𝑡 ∈

𝐹} and 𝑓(𝑧𝑡𝑜𝑥0
) = 𝑡 ∥ 𝑥0 ∥. It is not difficult to check that 𝑀 is a weak hypervector space 

of 𝑋 and 𝑓 is weak linear on 𝑀. 𝑓 is bounded and has norm ∥ 𝑓 ∥= 1, because if 
𝑥 ∈ 𝑀  

 |𝑓(𝑥)| = |𝑓(𝑧𝑡𝑜𝑥0
)| = |𝑡| ∥ 𝑥0 ∥=∥ 𝑧𝑡𝑜 𝑥0

∥=∥ 𝑥 ∥. 

So 𝑓 has a bounded weak linear extension Λ from 𝑀 to 𝑋, of norm ∥ Λ ∥=∥ 𝑓 ∥= 1.  
 
 
Corollary 3.13 Suppose 𝑋 is a normed normal hypervector space over 𝐹. Then 𝑋𝑤

∗  
separates points on 𝑋.  

  
Proof. It is obvious by Corollary 3.11.  
 
 
Corollary 3.14 Let 𝑥 be in a normed normal hypervector space 𝑋 over 𝐹. Then we 

have  

 ∥ 𝑥 ∥= 𝑠𝑢𝑝{
|𝑓(𝑥)|

∥𝑓∥
; 𝑓 ∈ 𝑋𝑤

∗ , 𝑓 ≠ 0}. 

Hence if 𝑥0 is such that 𝑓(𝑥0) = 0 for all 𝑓 ∈ 𝑋𝑤
∗ , then 𝑥0 = 0.  

  
Proof. Let 𝑥 ≠ 0. So from Corollary 3.11 we have, writing 𝑥 for 𝑥0,  

 𝑠 𝑢𝑝{
|𝑓(𝑥)|

∥ 𝑓∥
; 𝑓∈ 𝑋𝑤

∗, 𝑓≠ 0} ≥
|Λ(𝑥)|

∥Λ∥
=

∥𝑥 ∥

1
=∥ 𝑥∥, 

and from |𝑓(𝑥)| ≤∥ 𝑓∥∥ 𝑥∥ for bounded weak linear functionals, we obtain  

 𝑠 𝑢𝑝{
|𝑓(𝑥)|

∥ 𝑓∥
; 𝑓∈ 𝑋𝑤

∗, 𝑓≠ 0} ≤∥ 𝑥∥. 

Thus for 𝑥≠ 0 we obtain ∥ 𝑥∥= 𝑠 𝑢𝑝{
|𝑓(𝑥)|

∥𝑓 ∥
; 𝑓∈ 𝑋𝑤

∗ , 𝑓≠ 0}. It is clear that this equality is true for 𝑥=

0, too.  
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