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Abstract 

 
In this paper, the concepts of edge (arc) extension of graphs (digraphs) and the edge 

(arc) extensible class of graphs (digraphs) have been introduced. The classes of regular 

and eulerian graphs (digraphs) which are not edge (arc) extensible classes have also 

been introduced. 

The concept of edge (arc) extensibility number has been introduced as well as the 

characterization of extensibility number of regular graphs (digraphs). Also the 

extensibility number of   eulerian graphs (digraphs) has been characterized.  

Keywords: Joining graphs, Extension of graphs, Regular graphs, Reducibility,           

Contractibility, and Connectivity 

1. Introduction  

Kharat and Waphare [6] introduced the concept of reducibility number for posts in 

lattices theory. Akram [3] introduced analogous concept in graph theory, in fact, he 

studied the reducibility of graphs (digraphs) and the characterization of reducibility 

number for some classes of graphs(digraphs). Akram [2] introduced the concept of 

contractibility number of graphs. In Akram [1] the concept of vertex extension of 

graphs had been introduced. In this work, we studied the concept of edge(arc) 
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extension of graphs(digraphs) and the edge(arc) extensibility number for some classes 

of graphs(digraphs).  

A graph ))(),(( GEGVG  consists of  two finite sets, )(GV , the vertex set of the 

graph, often denoted by just V , which is a nonempty set of elements called  vertices, and 

E(G), the edge set of the graph, often denoted by just E , which is a possibly empty set of 

elements called  edges, such that each edge e in E is assigned an unordered pair of 

vertices ),( vu called the end vertices of e .The number of vertices of G  will be called the 

order of G , and will usually be denoted by p ; the number of edges of G will generally 

be denoted by q . If for a graph G , 1p  then G is called trivial graph; if 0q  then G  is 

called a  null graph. We shall usually denote the edge corresponding to ),( wv  where ( v  

and w  are vertices of G ) by .vw  

If e  is an edge of G  having end vertices wv,  then e  is said to join the vertices v  and 

w , and these vertices are then said to be adjacent. An independent set of vertices in G  is 

a set of vertices of G  no two of which are adjacent.  

Let v  be a vertex of the graph G . If v  joined to itself by an edge, such an edge is 

called loop. The degree )(vd  is the number of edges of G incident with v , counting each 

loop twice. If two (or more) edges of G have the same end vertices then these edges are 

called parallel. A graph is called simple if it has no loops and parallel edges. We say that 

G  is r-regular graph if the degree of  every vertex is .r   

     A graph G  is connected if there is a path joining each  pair of vertices of G ;  a graph 

which is not connected is called disconnected.  

     A directed graph ),( AVD  consists of two finite sets V , the vertex set, a nonempty 

set of elements called the vertices of D  and A , the arc set, a possible empty set of 

elements called the arcs of D , such that each arc a  in A  is assigned  an ordered pair of 

vertices ),( vu .  

     If  a  is an arc, in the directed graph D , with associated ordered pair of vertices 

),( vu , then a  is said to join  u  to v . 

   A vertex v  of the digraph D  is said to reachable from a vertex u  if there is a directed 

path in D  from u  to v . A digraph D  is said to be connected  if its underlying graph is 

connected. A digraph D  is called simple if, for any pair of vertices u  and v  of D , there 

is at most one arc from u  to v  and there is no arc from u  to itself. 

   Let v  be a vertex in the digraph D . The indegree )(vid  of v  is the number of arcs of 

D  that have v  as its head, i.e., the number of arcs that "go to"  v . Similarly, the 

outdegree  )(vod  of v  is the number of arcs of D  that have v  as its tail, i.e., that "go 

out" of v . 
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        For the undefined concepts and terminology we refer the reader to Wilson[9], 

Clark[4], Harary[5], West[8] and Tutte[7]. 

     All the graphs(digraphs) through out this paper are nontrivial and simple. 

2. Edge Extensibility of Graphs. 

      In this section, we introduced the concepts of  edge extension set of graph, edge 

extensible class of graphs and the edge extensibility number of graph. Further, we 

characterized the edge extensibility number of regular and eulerian graphs. 

Definition 2.1: Let G  be a nontrivial (not complete) simple graph. The simple graph  

obtained from G  by adding a nonempty set of edges S  such that every edge in S  join 

two nonadjacent vertices in G  is called edge extension graph, and denoted by SG  , S  

is called edge extension set. In particular, if S consists of a single element e , then e  is 

called extension edge, and the graph denoted by eG  . 

We can see that the graph SG   have vertex set and edge set as follows: 

              ),()( GVSGV   

             SGESGE )()(   

Definition 2.2: Let   be a class of graphs satisfy certain property. Then  is called 

edge extensible class, if for every graph G , either G  is complete, or there exists an 

extension edge e  such that  eG . 

Examples 2.3: 

1. The class of connected graphs is edge extensible class. 

2. The class of regular graphs is not edge extensible class. 

3. The class of eulerian graphs is not edge extensible class. 

Definition 2.4: let   be a class of graphs with certain property, and G  be a 

nontrivial. The edge extensibility number of G  with respect to   is the smallest 

positive integer m , if exists, such that there exists an edge extension set S  of 

cardinality m  in such away the graph   SG . We write )(Gextm


 . If such a 

number does not exist for G , then we say that the corresponding edge extensibility 

number is  .    

     One can see that the tree T with respect to the class of trees   has extensibility 

number is  . Further,  the class of graphs   is edge extensible if and only if for every 

graph G  either G  is complete or G  has extensibility number one. 
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     Now we characterize the edge extensibility number for regular graphs. 

Theorem 2.5:  Let   be the class of regular graphs, and R  be a nontrivial simple 

r-regular graph of order P  with 1 Pr . Then  




)(Rexte   even is  P ifonly  and if    2P

odd is P ifonly  and if       

 

  P
 

Proof: Let R  be an r-regular graph of order P  with 1 Pr . Then Ru    rud )( . 

Let S  be a nonempty set of edges. If SR   is regular, then SRv    hrvd )( . 

That means the degree of every vertex in R  increased by h  where h  is a positive 

integer. It is clear that this happened when S  forms an n-factor in the graph SR  . 

Suppose that P  is even. As 1 Pr , then every vertex in R  is not adjacent to at least 

one vertex. Let },...,,{ 221 peeeS   be a set of edges and join every edge in S  to two 

nonadjacent vertices in R  such that S  forms a 1-factor in the graph SR  . Then 

SR w   rwd  1)( . Thus the graph SR   is  )1(r regular and S  is edge 

extension set of cardinality 2p  of R . Hence 2)( pRexte 


. If 2)( pRexte 


, then 

there exists an edge extension set },...,,{ 21 neeeL   with 2pn   such that  LR  

which is impossible as L  can not be a 1-factor in LR  and then joining the 

nonadjacent vertices of R  by the edges of L  does not give a regular graph. Hence  

2)( pRexte 


. 

Suppose that P  is odd. Let },...,,{ 21 PeeeS   be a set of edges and join every edge in S  

to two nonadjacent vertices in R  such that S  forms a 2-factor in the graph SR  . 

Then the graph SR   is  )2(r regular and S  is edge extension set of cardinality P  

of R . Then  PRexte 


)( . If PRexte 


)( ,  then there exists an edge extension set 

},...,,{ 21 neeeF   with Pn   such that  FR . Thus F  forms an n-factor which is 

impossible as  Pn   and P  is odd. Hence  PRexte 


)( . 

       Conversely, suppose that  2)( pRexte 


, then by definition 2.4, there exists an 

edge extension set S  of cardinality 2p , and  2p  is the smallest positive integer such 

that  SR . As 2p  is integer P  must be even. 

Suppose that PRexte 


)( . By definition 2.4, there exists an edge extension set S  of 

cardinality P , and S  is the smallest set such that  SR . If P  is even then there 

exists an edge extension set A  with cardinality 2p  such that  AR  and  by part 

one 2)( pRexte 


, which is a contradiction to our assumption. Hence P  is odd.                                                                     

□                                                                                        
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    In the following theorem, we characterize the edge extensibility number for eulerian  

graphs. 

Theorem 2.6:  Let   be the class of eulerian graphs, and G . Then 3)( 


Gexte  if 

and only if G  contains a set of three independent vertices. 

Proof: Suppose that 3)( 


Gexte . Then by definition 2.4, there exists an edge 

extension set },,{ 321 eeeS   of cardinality 3 such that  SG , and S  is the smallest 

such set. 

As G  is eulerian, then G  is connected and the degree of every vertex in G  is even. By 

definition 2.1, SG   is simple, then the set of edges },,{ 321 eeeS   in the graph SG   

take one of the five forms ,3 1P  21 PP  , 3P , 3,1K  or 3C .  

As SG   is eulerian, every vertex in SG   has even degree, and it is clear this 

happened only when S  of the form 3C . Hence 21,ee  and 3e  are the edges of the cycle 

3C . As every edge in S  join two nonadjacent vertices in G , then the vertices of 3C  are 

independent set of vertices in G . 

     Conversely, suppose that },,{ 321 vvvA   is a set of  independent vertices in the 

eulerian graph G ; let },,{ 321 eeeS   be a set of edges . Join every edge in S   to two 

nonadjacent vertices in A . Thus S  forms a cycle 3C  in the graph SG  . That is every 

vertex in SG   has an even degree. As adding the edges to a connected graph 

preserves the connectedness, then SG  is connected. Hence SG   is eulerian and S  

is edge extension set of cardinality 3. Hence 3)( 


Gexte . 

Suppose that 2)( 


Gexte . Then there exists an edge extension set },{ 21 eeL   of 

cardinality 2 such that  LG , which is impossible , as by definition 2.1, LG   is 

simple, the set L  in the graph LG   take one of the two forms 2P  or 12P , it is obvious 

in each case  LG . 

 As eG   is simple , eG   is not eulerian. Hence 1)( 


Gexte .  

 Thus 3)( 


Gexte .     

                                                            □ 

 

5



Akram B. Attar / TJMCS Vol .3 No.1 (2011) 1-10 

 6 

3. Arc Extension Digraphs 

     In this section the arc extension digraph has been introduced. Further, the arc 

extensibility number for regular and eulerian digraphs has been characterized. First 

we need to define the symmetric digraph. 

 Definition 3.1: Let D  be a digraph, the pair of vertices v u,  in D  is called symmetric if 

there is an arc from u  to v  and arc from v  to u . If every pair of vertices in D  is 

symmetric then D  is called symmetric digraph. If  D  does not contain any symmetric 

pair, then D  is called antisymmetric. 

      By similar way to that in definition 2.1, we define the arc extension digraph. 

Definition 3.2: Let D  be a not symmetric (nontrivial) simple digraph. The simple 

digraph  obtained from  D  by adding a nonempty set of arcs S  such that every arc in 

S  join a pair of vertices v u,  in which there is no arc  from u  to v  is called arc 

extension digraph, denoted by SD , S  is called arc extension set. Inparticular, if 

S consists of a single element a , then a  is called extension arc, and the digraph 

denoted by aD . 

    Now we define the arc extensible class of digraphs. 

Definition 3.3: Let D be a class of digraphs satisfying certain property. The class D is 

called arc extensible if for every D  D either D  is symmetric or there exists an 

extension arc a  such that  aD  D. 

    One can see that the class of connected digraphs is arc extensible, but neither the 

class of regular digraphs nor the class of eulerian digraphs is arc extensible. 

    The definition of arc extensibility number is similar to that in definition 2.4, only 

replace each graph by a "digraph" and each edge by an "arc" as follows: 

Definition 3.4: let D be a class of a digraphs with certain property, and D  D  be a 

nontrivial. The arc extensibility number of D  with respect to D is the smallest positive 

integer m , if exists, such that there exists an arc extension set S  of cardinality m  in 

which the digraph  SD  D  . We write )(
D

Dextam  . If such a number does not 

exist for D , then we say that the corresponding arc extensibility number is  . 

Definition 3.5: Two (or more) directed cycles in the digraph D  are called disjoint if its 

arcs and vertices are distinct. 

     Here we characterized the arc extensibility number for the regular digraphs. 

Theorem 3.6: Let D be a class of regular digraphs, D  D  be an       
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antisymmetric simple regular digraph of P  vertices. Then PDexta  )(
D

 if and only if 

D  contains a set of disjoint directed cycles C such that every vertex in D  belongs to a 

cycle in C. 

Proof: Suppose that PDexta  )(
D

. Then by definition 3.4, there exists an arc 

extension set },,{ 1  a ..., a aS p2  of cardinality P  such that  SD  D and S  is the 

smallest such set. 

As SD  is regular digraph, then SDv     rvodvid  ,)()( . As the cardinality of 

S  equals to P  and SD  is regular, then either S  forms a directed  Hamiltonian cycle 

in SD  or S  forms a set of disjoint  directed cycles pass through all the vertices of D .  

Suppose that S  forms the directed cycle  132211 uau ... uauau pp  in the digraph SD . By 

the definition 3.2, SD  is simple digraph. Then we must have the directed cycle  

11111 ufu ... ufufu 2pppp   in D .  

Suppose that S  forms a set of disjoint directed cycles pass through all the vertices of 

D . Then by similar argument for all the cycles in S as above, D  must have a set of 

disjoint cycles pass through all the vertices of D . 

   Conversely, suppose that D  contains a set of disjoint directed cycles C such that 

every vertex in D  belongs to a cycle in C. 

We discuss the proof when C consists of a single element and the other cases is by 

similar argument.  

Suppose that C consists of a unique directed cycle 132211 vf...vvfvfv pp  in D . By 

assumption every vertex in D  belongs to a cycle in C. Then 132211 vf...vvfvfv pp  is 

Hamiltonian directed cycle in D .  

Let },,{  h ..., h h H p21  be a set of arcs. As D  is antisymmetric, we can join 1v  to pv by 

ph ; pv  to 1pv by 1ph ; …; 2v  to 1v  by 1h . Then 112111 ... vhvvhvhv pppp   is a Hamiltonian 

directed cycle in the digraph HD  and  rwodwid  )()(  HDw  . Thus HD is 

regular digraph and H  is arc extension set of cardinality P . Hence PDexta  )(
D

. If 

PDexta  )(
D

, then there exists an arc extension set },...,,{ 1 n2 l l lL   with Pn   such 

that  LD  D. 

As  LD  D, then  LDv     rvodvid  ,)()( . That means either L  forms a 

Hamiltonian directed cycle or  L  forms a set of disjoint directed cycles pass through all 

vertices of  D , which is impossible as pn  .  
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Hence PDexta  )(
D

.                                                                                      □ 

    Now, we characterize the arc extensibility number for the eulerian digraphs. 

 

Theorem 3.7: Let   be the class of eulerian digraphs, ED  be a simple. Then  

2)(
E

 Dexta  if and only if D  contains two independent vertices. 

Proof: Suppose that 2)(
E

 Dexta , by definition 3.4, there exists an arc extension set 

},{ 1  2a aS  of cardinality two such that ESD  , and S  is the smallest such set.  

As the digraph SD  is eulerian, then SD  is connected and 

SDv     vodvid  ),()( , clearly this happen when the set of arcs S  forms a 

directed cycle. As S  consists of two arcs  2a a ,1 , then S  forms a directed cycle of length 

two in SD , in such away  2a a ,1  are joined two  independent vertices in D . 

    Conversely, suppose that v u,  are two independent vertices in the eulerian digraph 

D , and },{ 1  2a aS   is a set of two arcs.  

Join the vertex u  to v  by the arc 1a  and v  to u  by 2a . Then S  forms a directed cycle of 

length two. Thus SD w   wodwid  )()( . As the addition of arcs to a connected 

graph preserves the connectedness, then SD  is connected. Hence the digraph SD  

is eulerian, and S  is arc extension set of cardinality 2. That is 2)(
E

 Dexta . If 

2)(
E

 Dexta , then there exists an extension arc a  such that EaD  which is 

clearly impossible. Hence 2)(
E

 Dexta .                          □          

                                  

Theorem 3.8: Let   be the class of eulerian digraphs, ED  be a simple and 

antisymmetric. Then  2k     k,Dexta  )(
E

 if and only if D  does not contain two 

independent vertices and the smallest directed cycle in D  has a length k  . 

Proof: Suppose that 2k     k,Dexta  )(
E

 , by definition 3.4, there exists an arc 

extension set },,{ 1 k 2 a ...,a aS  of cardinality k  such that ESD  , and S  is the 

smallest such set. 

If D  contains two independent vertices, then by theorem 3.7, 2)(
E

 Dexta   a 

contradiction to our assumption that 2k .  

As SD  is eulerian, then SD is connected and SD w   wodwid  )()( . As D  is 

antisymmetric and SD w   wodwid  )()( , then  either S  forms a directed cycle 

or S  forms a union of directed cycles in  SD .  
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Suppose that S  forms the directed cycle 12211 ... uauauau kk  in SD . As by definition 

3.2, SD  is simple, we must have the directed cycle 112111 ... ubuububu kkkk   in D . Thus 

D  contains the direct cycle kC of length k . 

Suppose that  D  contains a directed cycle nC of length kn   and denote nC  by 

12211 ... vdvdvdv nn , then there exists an arc extension set },,{ 1  f ...,f fH n2  such that 

112111 ... vfvvfvfv nnnn   forms a cycle in SD , that is HDv   vodvid  )()( , and as 

the adding of arcs to a connected graph preserves the connectedness, SD  is eulerian 

and nDexta  )(
E

 which is a contradiction to our assumption that kDexta  )(
E

. 

Hence kC is the smallest directed cycle in D .  

Suppose that S forms a union of cycles in SD  , then by consider each of these cycles 

and using the same argument above, we get a contradiction to the minimality of k . 

   Conversely, suppose that D  does not contain two independent vertices and the 

smallest directed cycle in D  has a length k  . 

Let 132211 ... ubuububu kk  be a cycle of length k  in D ; let },,{ 1 k 2 a ...,a aS   be a set of arcs. 

Join 1u  to ku  by ka ; ku  to 1ku  by 1ka ;...; 2u to 1u  by 1a . Then 112111 ... uauuauau kkkk   

forms a directed cycle in SD . Then the digraph SD  is connected and 

SD w   wodwid  )()( . Hence SD  is eulerian and S  is an arc extension set of 

cardinality k . Thus kDexta  )(
E

. If kDexta  )(
E

, then there exists an arc extension 

set },,{ 1  f ...,f fH n2  with kn   such that EHD  . By part one H  must be forms a 

directed cycle in HD , say 132211 ... vfvvfvfv nn . In this case 112111 ... vhvvhvhv nnnn    is a 

directed cycle in D . Hence D  contains  a cycle of length kn   a contradiction to the 

smallestness  of  k . Hence kDexta  )(
E

. As D  does not contain two independent 

vertices, then 2k .                                                                                                  □ 
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