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Abstract

A subset S of V is called an i-set(: > 2) if no two vertices in S have
the distance i. The 2-set number a2(G) of a graph is the maximum
cardinality among all 2-sets of G. A da-coloring of a graph is an assign-
ment of colors to its vertices so that no two vertices have the distance
two get the same color. The da-chromatic number xg4,(G) of a graph
G is the minimum number of ds-colors need to G. In this paper, we

initiate a study of these two new parameters.

1 Introduction

By a graph G = (V, E/) we mean a finite, undirected graph without loops

and multiple edges . The order and size of G are denoted by p and ¢ respec-

tively. For graph theoretical terms we refer Chartrand and Lesniak [1].

A subset S of V' is an independent set if no two vertices in S are adjacent.

An assignment of colors to the vertices of a graph so that no two adjacent

vertices get the same color is called a coloring of the graph and an assignment

of colors to the vertices of a graph so that no two vertices have the distance 1

or 2 get the same color is called a distant 2-coloring of G. This motivates to
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define two new parameters as follows:

A subset S of V' is called an i-set(i > 2) if no two vertices in S have the
distance i. The 2-set number a3(G) of a graph is the maximum cardinality
among all 2-sets of G. A dy-coloring of a graph is an assignment of colors to its
vertices so that no two vertices have the distance two get the same color. The
dy-chromatic number x4,(G) of a graph G is the minimum number of dy-colors
need to G.

The corona of two graphs G and G is the graph 1 o G5 formed from one
copy of G and |V (G1)| copies of Gy, where the i vertex of G is adjacent to
every vertex in the i copy of G5. Any undefined term in this paper may be
found in Chartrand and Lesniak [1]. In this paper, we initiate a study of these

two new parameters.

2 2-set number of a Graph

Definition 2.1. A subset S of V' is called an i-set(i > 2) of G if no two vertices
in S have the distance i. The 2-set number as(G) of a graph is the maximum

cardinality among all 2-sets of G.

Remark 2.2. From the above definition, if ¢ = 1, then S is an independent
set of G.

Proposition 2.3. ay(K),) = p.

Proof. In K,, no two vertices have distance two and hence as(K,) = p. ]

P+1 ifp=2(mod 4
Proposition 2.4. ay(P,) = F fp=2( )

L otherwise
Proof. Consider P, : vy —vg — -+ — v, .
Case 1. p = 2(mod 4)
Let S = {v1,vq, 5, Vg, . . ., Up—5,Up_4, Up—1,Vp . Then no two vertices in S have

distance two and is a maximum 2-set of P,. Thus ay(F,) = £ + 1.

Case 2.

If p = 0(mod 4), then S = {v1,ve,vs5, V6, ..., Vp_7,Vp_¢, Up_3, Up_2} IS a maxi-
mum 2-set. If p = 1(mod 4), then S = {vy, ve,v5,...,Vp_4,Vp_3,0,} is & maxi-
mum 2-set. If p = 3(mod 4), then S = {vy1, ve, U5, Vs, - . ., Vp—g, Up—5, Vp—2, Up_1 }

is a maximum 2-set. In this case, we get ay(F,) = [5]. O
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One can prove the following Proposition in analogous to the above.

—1 if p=2(mod 4)

p
Proposition 2.5. ay(C,) = 2p »
2] otherwise ,p >3

Proposition 2.6. ay(K,,,) = 2.

Proof. For any edge e = uv, whose end vertices form a maximum 2-set of K, ,,
and hence as(Ky,n) = 2. O

Lemma 2.7. Let G be a graph with p vertices . Then as(G) = p if and only

if G is complete or a union of complete components.

Proof. Suppose ay(G) = p. Then no two vertices in G have distance two. If
d(u,v) = k, 2 < k < oo, for some u,v € V(G), then d(w,u) = 2 for some
w € V(G), a contradiction. If d(u,v) = 1, for all u,v € V(G), then G is
complete. If d(u,v) = oo, for some u,v € V(G), then G = U",G;, where G;
are connected components of G. Since ax(G) = p, aa(G;) = |V(G;)| for all
1 <i < m and so each G; is complete.

Converse is obvious. O
The following Proposition is immediate from the definition.
Proposition 2.8. For a connected graph G, as(G) > w(G).

Theorem 2.9. Let G be a connected graph with p > 2 vertices. Then as(G) =
p—1if and only if w(G) =p — 1.

Proof. Suppose as(G) = p—1. Let S be a maximum 2-set of G with |S| = p—1.
Then no two vertices in S have distance two. If d(u,v) = k > 2 for some
u,v € S, then d(u,w) = 2, for some w € S, a contradiction. Thus any two
vertices in S have distance one, the subgraph induced by S is complete and
hence w(G) = p—1. Conversely, suppose w(G) = p—1. Then G is not complete
and by Lemma 2.7, as(G) < p— 1. If ap(G) < p— 1, then w(G) <p—1, a
contradiction. Hence ay(G) =p — 1. O

Proposition 2.10. For any connected graph G with p vertices, as(K,, o G) =
mas(G).

Proof. In K,, o G, for every i # j, d(u,v) = 3, for every u in i"* copy of G, v
in j" copy of G and hence ay(K,, o G) = max(Q). O
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In view of Proposition 2.10, we have following corollary.
Corollary 2.11. ay(K,, o G) = m if and only if G = K,
Lemma 2.12. Let G be a tree with p vertices. Then 1 < as(G) <p+1—A.

Proof. Obviously ay(G) > 1. Let S C V(G) with d(u,v) = 2 for all u,v € S.
Then |S| = A and so maximum 2-set contains at most p — (A — 1) vertices.
Thus as(G) <p+1-—A. O

Theorem 2.13. Let G be a connected bipartite graph with (Vi, Vs)-partition
of V(G), |Vi| > 1 and |Vi| > |Va|. Then,

(i) az(G) = V4| + |Va| if and only if G is complete.

(ii) Vi is a mazimum 2-set of G if and only if G is not complete.

Proof. (i) Suppose as(G) = |Vi| 4 |Va|. Since G is connected and by Lemma
2.7, G is union of two complete components and hence G is complete. Converse
is obvious.

(ii) Suppose V; is a maximum 2-set of G. Then for every v € Va, dg(v,u) = 2,

for some u € V; and so at least one shortest path v/ —w’—v' isin G, v/, w' € Vi,

v € Vi, Thus w'v' € E(G) and so w'v' ¢ E(G). Hence G is not complete.

Conversely, suppose G is not complete. Then for each x € V;, y € V5, there
exists &’ € Va, ¥ € V; such that dg(z,2") = 2 and dg(y,y’) = 2 and so V] is a

maximum 2-set of G. Hence as(G) = |V4]. O
Lemma 2.14. For any connected graphs G and H, ao(G+H) = w(G)+w(H).

Proof. If G and H are complete, then G + H is complete and by Lemma 2.7,
ay(G+ H) =w(G) +w(H).

Suppose G is not complete. Then G + H is not complete, diam(G + H) = 2
and by Proposition 2.8, as(G + H) > w(G + H). Suppose as(G + H) = k >
w(G + H). Then G + H contains Ky, k > w(G + H), a contradiction. Hence
a(G+H)=w(G+H)=w(G)+w(H). O

In view of Lemma 2.14, we have following corollary.
Corollary 2.15. ay(W,) =3, p > 4.

Theorem 2.16. Let G and H be connected with |V (G)| > 1 and |V (H)| > 1.
Then ao(G 4+ H) = 4 if and only if G and H are triangle free graphs.
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Proof. Suppose as(G + H) = 4. Then by Lemma 2.14, w(G) + w(H) = 4 and
so w(G) = w(H) = 2. Thus G and H are triangle free graphs. Conversely,
suppose G and H are triangle free graphs, then w(G) = w(H) = 2 and by
Lemma 2.14, as(G + H) = 4. O

Theorem 2.17. Let G be a connected graph with diam(G) = 2. Then ay(G) =
2 if and only if G is triangle free graph.

Proof. Suppose as(G) = 2. If G contains K3, then by Proposition 2.8, as(G) >

3, a contradiction. Conversely, suppose G is triangle free graph. If ay(G) =

U

k > 2, then by hypothesis, G' contains K, a contradiction.
In view of Theorems 2.16, 2.17, we have following corollary.

Corollary 2.18. Let G and H be connected graphs with diameter is 2. If G
and H are triangle free graphs then as(G 4+ H) = as(G) + ao(H).

Theorem 2.19. Let G be a any tree. Then as(G) = 2 if and only if G is a

star or bistar.

Proof. Suppose ay(G) = 2. If G is not a star, then diam(G) = k > 3. Suppose
diam(G) = k > 3. Then G has a path of length k and so as(G) > as(Piiq).
By Proposition 2.4, this is not possible. Thus diam(G) = 3 and so G is a
bistar. If G is not a bistar, then diam(G) # 3 and so diam(G) = 1 or 2. Hence

(G is a star. Converse is obvious. O]

3 dy-chromatic number of a Graph

Definition 3.1. A ds-coloring of a graph is an assignment of colors to its
vertices so that no two vertices have the distance two get the same color. The
do-chromatic number xq,(G) of a graph G is the minimum number of dy-colors
need to G. A graph G is k dy-colorable(resp. dp-chromatic) if x4, (G) < k(resp.

Xdz(G) = k)
Proposition 3.2. y4,(K,) = xa,(K,) = 1.

Proof. Since d(u,v) =1 for all u,v € V(K,), every vertex in K, assigned the

same color and hence xg4,(K,) = 1. Since d(u,v) = oo for all u,v € V(K,),
Xds (Fn) = 1. O
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Proposition 3.3. x4,(P,) =2 forp > 2.

Proof. Consider P, : v; — vy — -+ — v,
Case 1. p = 0(mod 4)
Let Ql = {U17U27U57U67 R va737vp72} and QZ = {U37U47U77U87 PRI 7Up717vp}'

Then €, and €2y are 2-sets and every vertex in ); make a distance two to at
least one vertex in {2, and vice versa. Hence we assign one color to €2; and
another one color to {2y and so x4, (F,) = 2.

Case 2. p = 1(mod 4)

Let Q1 = {v1, v2, U5, U, . . ., Up_s, Up_3, Up } and Qo = {vs, V4,07, Vs, , . .., Vp_2, Vp_1}.
Then €, and €2y are 2-sets and every vertex in €); make a distance two to at
least one vertex in (), and vice versa. Hence we assign one color to 2; and
another one color to {2y and so x4, (FP,) = 2.

Case 3. p = 2(mod 4)

Let 1 = {v1,v9,v5,06,...,0p-1,0,} and Qo = {vs,v4,07,0s,,...,Up_3,Up_2}.
Then €, and 2y are 2-sets and every vertex in {); make a distance two to at
least one vertex in (), and vice versa. Hence we assign one color to €2; and
another one color to €2y and so x4, (P,) = 2.

Case 4. p = 3(mod 4)

Let Q1 = {v1, v2, U5, U, - . ., Up_a, Up_1 } and Qo = {vs, V4, V7, Vs, , . . ., Vp—a, Vp—3, Up }.
Then €7 and €25 are 2-sets and every vertex in {); make a distance two to at
least one vertex in {25 and vice versa. Hence we assign one color to {2; and
another one color to Qy and so xg4,(P,) = 2. O

2 if p= 0 (mod 4
Proposition 3.4. x4, (C,) = U ( )

3 otherwise ,p>3
Proof. Consider C), : v1 —vg — =+ - — v, — V1.
Case 1. p = 0(mod 4)
Let Ql = {Ul, V2, Vs, Vg, - - -, Up—3, ’Up_Q} and QQ = {Ug, Vg, V7,U8y 5+, Up-1, Up}.

Then 7 and €2y are 2-sets and every vertex in {); make a distance two to at
least one vertex in (), and vice versa. Hence we assign one color to €2; and
another one color to 2y and so x4, (Cp) = 2.

Case 2. p=1,2,3(mod 4)

We consider first p;-vertices, where p; = 0(mod 4), as in case 1, assigning two
colors to pj-vertices of C,. Remaining there are k(=1 or 2 or 3)vertices.

If k=1 then p =p; + 1 and d(vp, 41, Vp,—1) = d(Vp, 41, v2) = 2, where vy €
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and vy, _; € 25. So assign a new color to vy, 4.

If £ = 2 then p = p1 + 2 and d(vp,12,v2) = d(Vp,42,Vp,) = d(Vp,41,01) =
d(Vp,41,Vp,—1) = 2,where vy, vy € 0y and vy, , v,,—1 € . So assign a new color
to both vy, 41 and v, 1.

If k = 3 then p = p; +3 and d(vp, 42, v1) = d(Vp, 42, Vp, ) = 2, where v; € €y and
Up, € 2. So assign a new color to vy, 4+2. Also color of vertex set {1y assign to
Up, +1 and color of vertex set €2y assign to vy, 13 because Q1U{v,, 11}, QU{v,, 13}
are 2-sets and d(vp, 41, Vp,1+3) = 2.

Hence in this cases, xq,(C)) = 3. O

Proposition 3.5. x4, (Kpn) =m for m > n.

Proof. Let Vi = {uq,us,...,un} and Vo = {vy,vq,...,v,} be the partition of
V(Kpy). Clearly d(u;,uj) = 2 = d(vg, v;) for every i # j, k # l. So we assign
m-colors to vertices in V; with each vertex has different color. Since for every
u € Vi,d(u,v) =1 for every v € V3, same set of colors of vertices in V] use to

vertices in V5.Hence x4, = m. O
Remark 3.6. In general, xg4,(Kn, ny...n,) = max{ny,na,...,n¢}.

. p%l if p is odd

Proposition 3.7. Forp >5, x4,(W,) = T
L if p is even

Proof. Note that W, = C,_1 + K;. Let V(Cp_1) = {v1,02,...,v,1} and

V(Kl) = Up.

Consider Cp,_1 =v; —v3 — -+ — Vp_1 — V1
Case 1. pis odd
Consider the maximum edge independent set S = {e; : ¢ = (v;,v;11) €

E(W,)fori=1,3,5,...,p—2} and |S| = §'(W,). Then V(C,) = U, {vi, vit1}.
Since d(u,v) = 2,for some u € {v;, v;i41} and v € {v;, vj41},for every i # j,there
are (3’ colors assigning to V' (C,,) with end vertices of each edge in S receive the

same color. Also d(v,,v;) =1,k =1 to p— 1,center vertex v, receives any one

color from [’ colors. Hence xq,(W,) = B'(W,) = (p D if p is odd.

Case 2. pis even

Consider the maximum edge independent set S" = {e; : e; = (v;,vi11) €
E(W,) for i =1,3,5,...,p — 1} and also V(W) = U, {vi,vit1}. As in case
1, there are 3’ colors assigned to V/(W,). Hence xq,(W,) = 8'(W,) = Lif p is
even. O
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Proposition 3.8. A connected graph G is one dy-colorable if and only if G is

complete.

Proof. Suppose G is one ds-colorable. Then no two vertices have distance two
in G. Since G is connected,any two vertices must have distance one. Hence GG

is complete. Converse follows from Proposition 3.2. O]

Proposition 3.9. Let G be a connected graph with p > 1 wvertices. Then
Xa,(G) = p — 1 if and only if G is a star graph

Proof. Suppose x4,(G) =p—1. Let S C V(G) with d(u,v) = 2. By hypothe-
sis, |S| =p—1 and S is an independent set of G. Since G is connected, there
exists a vertex w € V — § such that d(w,u) = 1 for all w € S. Thus G is a

star graph. Converse is obvious. O

Theorem 3.10. For any connected graph G with p > 1 vertices, 1 < x4,(G) <
p—1.
Proof. Obviously x4,(G) > 1. Let S be a subset of V(G) such that any two

vertices in S have distance two. Then S can have at most p — 1 vertices and
50 Xa,(G) <p—1. O

Remark 3.11. Let GG be a connected graph with diameter two. Then x4, > 2
Theorem 3.12. If G has a perfect matching, then xq,(G) < .

Proof. Let M = {e; : ¢; = (v;,vi41) € E(G),i = 1 to '} be a maximum
matching of G. Then |M| = (G) and V(G) = |, {vi, vit1}. There are §'
colors assigning to the vertices of G with end vertices of each edge in M receive
the same color because d(u,v) = 2 for some u € {v;,v;11} and v € {v},v41},

for every i # j. This is a maximum possible ds-coloring of G. Hence yg4, (G) <
. [
Theorem 3.13. Let G be a bipartite graph. Then xq, > A.

Proof. Let (V1,V3) be a partition of V(G) and let v € Vi with deg(v) = A.
Clearly the subgraph induces by N[v] in G is a star graph K; A and so x4, (G) >
Xds (K1,A) = Ain G. Hence x4, > A. O

Theorem 3.14. If G is a connected bipartite graph, then G is two dy— colorable.

But converse is not true.
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Proof. Let (Vi,Vs) be a partition of V(G). Clearly V; and V5 induces a com-
plete subgraphs of G. If G is complete, then yg4,(G) = 1. If G is not com-
plete, for every u € Vi,dg(u,v) = 2 for some v € V, and also for every
v € Va,dg(v,u) = 2 for some u € Vi. Hence assigning one color to all the
vertices in V; and another color to all the vertices in V. Hence xg4,(G) = 2.
Thus G is two dy—colorable.

Conversely, consider the graph given in the Figure 1. Clearly x4,(G) = 2 but

(G is not bipartite. n

Figure 1

Remark 3.15. In general, if G is connected k-partite then G is k dy-colorable.
Theorem 3.16. If G is a tree, then xq, = A

Proof. Since G is bipartite and by Theorem 3.13, xo > A. Suppose xq, =k >
A. Then V(G) contains S such that |S| = k and d(u,v) = 2 for all u,v € S.
This is not possible because V(G) contains S ' such that d(v',v") = 2 for all
v e S and |S'] = A. Hence x4, = A. O

Corollary 3.17. If G is connected and x4, > A, then G contains cycle.

Proof. Suppose G contains no cycle. Then G is a tree and by Theorem 3.16,
Xd, = A, a contradiction. u

Theorem 3.18. Let G be a graph. Then xa, +Xq, = P and Xa,Xq, =p — 1 if
and only if G = Ky, 1 or Kip 1, p> 1.

Proof. Assume that x4, 4+X4, = p and x4,X4, = p—1, then x4,2—p x4, +p—1 =
0 and be — P Xg, +p—1=0. Solving these equations, we get x4, =p—1, 1
and X4, = p — 1, 1. By hypothesis, x4, = p—1and x,;, = 1 or x4, = 1 and
X4, = P — 1. By Proposition 3.9, G = Ky ,_; or fl,p_l. Conversely, suppose
G = Ky,-1 or FLp_l, p>1 If G =Ky, , then x4, =p—1and X, = 1
and hence x4, + X4, = p and xa, X4, =p— 1. f G = K1, 1, then x4, = 1 and
X4, =P — 1 and hence xa, + X4, = p and xa, X4, =P — 1. ]
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Corollary 3.19. Let G be a graph with p vertices. If p = p; + 1, where py s
prime and XaXq, = P1, then G = Ky, or G = K,

Proof. Since XaX4, = P1; Xd» = P1 and X4, = 1 or xa, = 1 and Xy, = p1. If
Xd, = p1 and Y, = 1, then x4, + X4, = p and x4,X4, = p1- By Theorem 3.18,
G = Ki,. Similarly, if x4, = 1 and X, = p1, then G = K1, O

Theorem 3.20. For any graph G with p vertices, 2 < as(G)+ x4, (G) < p+1.

Proof. Obviously as(G) + xa,(G) > 2. Let S C V(G) such that S contains

exactly one vertex from each color class of G. Then |S| = x4,(G) and d(u, v)

~—

2 for all w,v € S. Thus any maximum 2-set contains at most p — (|S] — 1
vertices and so an(G) < p — x4, (G) + 1.

U
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