The Journal of

Mathematics and Computer Science

Available online at
http://www.TIMCS.com

The Journal of Mathematics and Computer Science Vol. 3 No. 2 (2011) 117-125

Multiple solutions for a two-point boundary value problem depending on two parameters

Shapour Heidarkhani ${ }^{a}$ and Javad Vahidi ${ }^{b}$
${ }^{a}$ Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran
e-mail address: sh.heidarkhani@yahoo.com
${ }^{b}$ Department of Applied Mathematics, Iran University of Science and Technology, Behshahr, Iran e-mail address: j.vahidi@iust.ac.ir

Received: April 2011, Revised: June 2011
Online Publication: July 2011

Abstract

In this paper we deal with the existence of at least three weak solutions for a two-point boundary value problem with Neumann boundary condition. The approach is based on variational methods and critical point theory.

Keywords- Three solutions; Critical point; Multiplicity results; Neumann problem.
AMS subject classification: 35J20; 34A15.

1 Introduction

In this work, based on a three critical points theorem due to Ricceri [9], we are interested in ensuring the existence of at least three solutions for the following Neumann problem

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}\right| u^{\prime}\right)^{\prime}+u=\lambda f(x, u)+\mu g(x, u) \tag{1}\\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $\lambda, \mu>0, f:[0,1] \times R \rightarrow R$ is a continuous function and $g:[0,1] \times R \rightarrow R$ is an L^{1}-Caratéodory function.

Precisely, we deal with the existence of an open interval $\Lambda \subseteq[0,+\infty[$ and a positive real number q, such that, for each $\lambda \in \Lambda$, the problem (1) admits at least three weak solutions whose norms in $W^{1,3}([0,1])$ are less than q.

We say that u is a weak solution to the problem (1) if $u \in W^{1,3}([0,1])$ and
$\int_{0}^{1}\left|u^{\prime}(x)\right| u^{\prime}(x) v^{\prime}(x) d x+\int_{0}^{1} u(x) v(x) d x-\lambda \int_{0}^{1} f(x, u(x)) v(x) d x-\mu \int_{0}^{1} g(x, u(x)) v(x) d x=0$
for all $v \in W^{1,3}([0,1])$.
Problem of the above type with Dirichlet and Neumann boundary conditions were widely in these latest years and we refer to [1-8] and the reference therein for more details.

In [4], using variational methods, the author ensures the existence of at least three weak solutions in $W_{0}^{1,2}([0,1])$ for the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda f(u)=0, \tag{2}\\
u(0)=u(1)=0
\end{array}\right.
$$

where $\lambda>0$ and $f: R \rightarrow R$ is a continuous function, while in their interesting paper [3], R.I. Avery and J. Henderson studied the problem (2) (independent of λ, in that case), where $f: R \rightarrow R$ is a continuous function and λ is a real parameter, by using multiple fixed-point theorem to obtain three symmetric positive solutions under growth conditions on f.

Also, M. Ramaswamy and R. Shivaji recently in [8] established the existence of three positive solutions for classes of nondecreasing, p-sublinear functions f belonging to $C^{1}([0, \infty))$ for a p-Laplacian version of [3], i.e., the problem

$$
\begin{cases}-\Delta_{p} u=\lambda f(u) & \text { in } \Omega, \tag{3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $p>1, \lambda>0$ is a parameter and Ω is a bounded domain in $R^{N} ; N \geq 2$ with $\partial \Omega$ of class C^{2} and connected.

In [6] the authors obtained the existence of an open interval $\Lambda \subseteq[0, \infty[$ such that for each $\lambda \in \Lambda$, problem

$$
\begin{cases}-\Delta_{p} u+a(x)|u|^{p-2} u=\lambda f(x, u) & \text { in } \Omega \tag{4}\\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian operator, $\left.\lambda \in\right] 0,+\infty\left[, \Omega \subset R^{N}\right.$ is non-empty bounded open set with a boundary of class $C^{1}, a \in L^{\infty}(\Omega)$, with $\operatorname{essinf}_{\Omega} a>0, f: \Omega \times R \rightarrow R$ a function, $p \geq 2$ and v is the outer unit normal to $\partial \Omega$, and in [2] the authors proved the existence of an open interval $] \lambda^{\prime}, \lambda^{\prime \prime}[$ for each λ of problem (4) depending on λ admit at least three solutions.

In [1], we obtained the existence of an interval $\Lambda \subseteq[0,+\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$ problem

$$
\begin{cases}\Delta_{p} u+\lambda f(x, u)=a(x)|u|^{p-2} u & \text { in } \Omega, \tag{5}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

admits at least three weak solutions in whose norms in $W_{0}^{1, p}(\Omega)$ are less than q, where $\Omega \subset R^{N}(N \geq 2)$ is an non-empty bounded open set with a smooth boundary $\partial \Omega, p>N$, $\lambda>0, f: \Omega \times R \rightarrow R$ is a continuous function and positive weight function $a(x) \in C(\bar{\Omega})$.

In the present paper, our approach is based on a three critical points theorem proved in [9], recalled below for the reader's convenience (Theorem 2.1), on a technical lemma (Lemma 2.3) that allows us to apply it.

Theorem 2.4 which is our main result, ensures the existence of an open interval $\Lambda \subseteq[0, \infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, the problem (1) admits at least three weak solutions whose norms in $W^{1,3}([0,1])$ are less than q.

As the consequences of Theorem 2.4, we obtain Corollary 2.5 and Theorem 2.6.
Corollary 2.5 ensures the existence of three weak solutions for the problem:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\lambda h_{1}(x) h_{2}(u)+\mu g(x, u) \tag{6}\\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $h_{1}:[0,1] \rightarrow R$ and $h_{2}: R \rightarrow R$ are two continuous functions such that $h_{1}(x) \geq 0$ in $\left[0, \frac{1}{4}\right] \cup\left[\frac{3}{4}, 1\right]$ and $h_{2}(t) \geq 0$ in $\left[0, \frac{d}{4}\right]$ for positive constant $d \in R$ which will be taken later.

Finally, Theorem 2.6 ensures the existence of three weak solutions for the problem:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\lambda f(u)+\mu g(u) \tag{7}\\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $f, g: R \rightarrow R$ are two continuous functions, as Example 2.7 shows.
The aim of the present paper is to extend the main result of [4] in the case Neumann boundary condition.

2 Main results

First we here recall for the reader's convenience the three critical points theorem of [9](see [11] for the related results) and Proposition 3.1 of [10]:

Theorem 2.1. Let X be a reflexive real Banach space, $I \subseteq R$ an interval, $\Phi: X \longrightarrow R$ a sequentially weakly lower semicontinuous C^{1} functional, bounded on each bounded subset of X , whose derivative admits a continuous inverse on X^{*} and $J: X \longrightarrow R$ a C^{1} functional with compact derivative.
Assume that

$$
\lim _{\|x\| \rightarrow+\infty}(\Phi(x)+\lambda J(x))=+\infty
$$

for all $\lambda \in I$, and that there exists $\rho \in R$ such that

$$
\sup _{\lambda \in I} \inf _{x \in X}(\Phi(x)+\lambda(J(x)+\rho))<\inf _{x \in X} \sup _{\lambda \in I}(\Phi(x)+\lambda(J(x)+\rho)) .
$$

Then, there exist a non-empty open set interval $A \subseteq I$ and a positive real number q with the following property: for every $\lambda \in A$ and every C^{1} functional $\Psi: X \longrightarrow R$ with compact derivative, there exists $\delta>0$ such that, for each $\mu \in[0, \delta]$, the equation

$$
\Phi^{\prime}(u)+\lambda J^{\prime}(u)+\mu \Psi^{\prime}(u)=0
$$

has at least three solutions in X whose norms are less than q.
Proposition 2.2. Let X be a non-empty set and Φ, J two real function on X. Assume that there are $r>0$ and $x_{0}, x_{1} \in X$ such that

$$
\begin{array}{r}
\Phi\left(x_{0}\right)=J\left(x_{0}\right)=0, \Phi\left(x_{1}\right)>r \\
\sup _{\left.\left.x \in \Phi^{-1}(]-\infty, r\right]\right)}(-J(x))<r \frac{-J\left(x_{1}\right)}{\Phi\left(x_{1}\right)} .
\end{array}
$$

Then, for each ρ satisfying

$$
\sup _{\left.\left.x \in \Phi^{-1}(]-\infty, r\right]\right)}(-J(x))<\rho<r \frac{-J\left(x_{1}\right)}{\Phi\left(x_{1}\right)}
$$

one has

$$
\sup _{\lambda \geq 0} \inf _{x \in X}(\Phi(x)+\lambda(\rho+J(x)))<\inf _{x \in X} \sup _{\lambda \geq 0}(\Phi(x)+\lambda(\rho+J(x))) .
$$

Here and in the sequel, X will denote the Sobolev space $W^{1,3}([0,1])$ with the norm

$$
\|u\|=\left(\int_{0}^{1}\left|u^{\prime}(x)\right|^{3} d x+\int_{0}^{1}|u(x)|^{3} d x\right)^{1 / 3}
$$

and put

$$
F(x, t)=\int_{0}^{t} f(x, \xi) d \xi
$$

for each $(x, t) \in[0,1] \times R$.
Our main results fully depend on the following lemma:
Lemma 2.3. Assume that there exist two positive constants c and d with $\sqrt[3]{113} d>\sqrt[3]{28} c$ such that
(i) $F(x, t) \geq 0$ for each $(x, t) \in\left(\left[0, \frac{1}{4}\right] \cup\left[\frac{3}{4}, 1\right]\right) \times\left[0, \frac{d}{4}\right]$,
(ii) $\frac{113}{c^{3}} \max _{(x, t) \in[0,1] \times[-c, c]} F(x, t)<\frac{28}{d^{3}} \int_{\frac{1}{4}}^{\frac{3}{4}} F\left(x, \frac{d}{4}\right) d x$.

Then, there exist $r>0$ and $w \in X$ such that $\|w\|^{3}>3 r$ and

$$
\max _{(x, t) \in[0,1] \times[-\sqrt[3]{12 r}, \sqrt[3]{12 r]}} F(x, t)<3 r \frac{\int_{0}^{1} F(x, w(x)) d x}{\|w\|^{3}} .
$$

Proof: We put

$$
w(x)= \begin{cases}4 d x^{2}, & 0 \leq x \leq \frac{1}{4} \\ \frac{d}{4}, & \frac{1}{4} \leq x \leq \frac{3}{4} \\ 4 d(1-x)^{2}, & \frac{3}{4} \leq x \leq 1\end{cases}
$$

and $r=3 c^{3}$. It is easy to see that $w \in X$ and, in particular, one has

$$
\|w\|^{3}=\frac{113}{112} d^{3}
$$

Hence, taking into account that $\sqrt[3]{113} d>\sqrt[3]{28} c$, one has

$$
3 r<\|w\|^{3} .
$$

Since $0 \leq w(x) \leq \frac{d}{4}$ for each $x \in[0,1]$, condition (i) ensures that

$$
\begin{equation*}
\int_{0}^{\frac{1}{4}} F(x, w(x)) d x+\int_{\frac{3}{4}}^{1} F(x, w(x)) d x \geq 0 . \tag{8}
\end{equation*}
$$

Moreover, from (ii) and (8), we have

$$
\max _{(x, t) \in[0,1] \times[-\sqrt[3]{12 r}, \sqrt[3]{12 r}]} F(x, t)<\frac{28}{113}\left(\frac{c}{d}\right)^{3} \int_{\frac{1}{4}}^{\frac{3}{4}} F\left(x, \frac{d}{4}\right) d x \leq 3 r \frac{\int_{0}^{1} F(x, w(x)) d x}{\|w\|^{3}} .
$$

Namely,

$$
\max _{(x, t) \in[0,1] \times[-\sqrt[3]{12 r}, \sqrt[3]{12 r}]} F(x, t)<3 r \frac{\int_{0}^{1} F(x, w(x)) d x}{\|w\|^{3}} .
$$

So, the proof is complete.
Now, we state our main results:
Theorem 2.4. Assume that there exist three positive constants c, d, s with $\sqrt[3]{113} d>\sqrt[3]{28} c$, $s<3$ and a positive function $a \in L^{1}$ such that
(i) $F(x, t) \geq 0$ for each $(x, t) \in\left(\left[0, \frac{1}{4}\right] \cup\left[\frac{3}{4}, 1\right]\right) \times\left[0, \frac{d}{4}\right]$,
(ii) $\frac{113}{c^{3}} \max _{(x, t) \in[0,1] \times[-c, c]} F(x, t)<\frac{28}{d^{3}} \int_{\frac{1}{4}}^{\frac{3}{4}} F\left(x, \frac{d}{4}\right) d x$,
(iii) $F(x, t) \leq a(x)\left(1+|t|^{s}\right)$ almost everywhere in $[0,1]$ and for each $t \in R$.

Then, there exist a non-empty open set $A \subseteq] 0,+\infty[$ and a real number $q>0$ with the following property: for every $\lambda \in A$ and for an arbitrary L^{1}-Carathéodory function g : $[0,1] \times R \rightarrow R$, there exists $\delta>0$ such that, for each $\mu \in[0, \delta]$, the problem (1) has at least three weak solutions in X whose norms are less than q.

Proof: For each $u \in X$, we put

$$
\begin{gathered}
\Phi(u)=\frac{\|u\|^{3}}{3} \\
J(u)=-\int_{0}^{1} F(x, u(x)) d x
\end{gathered}
$$

Of course, Φ is a continuously Gâteaux differentiable and sequentially weakly lower semi continuous functional whose Gâteaux derivative admits a continuous inverse on X^{*} and J is a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. In particular, for all $u, v \in X$ one has

$$
\begin{gathered}
\Phi^{\prime}(u)(v)=\int_{0}^{1}\left|u^{\prime}(x)\right| u^{\prime}(x) v^{\prime}(x) d x+\int_{0}^{1} u(x) v(x) d x \\
J^{\prime}(u)(v)=-\int_{0}^{1} f(x, u(x)) v(x) d x
\end{gathered}
$$

Furthermore, thanks to (iii), for each $\lambda>0$, one has that

$$
\lim _{\|u\| \rightarrow+\infty}(\Phi(u)+\lambda J(u))=+\infty
$$

We claim that there exist $r>0$ and $w \in X$ such that

$$
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)}(-J(u))<r \frac{(-J(w))}{\Phi(w)}
$$

However, taking into account that for every $u \in X$, one has

$$
\max _{x \in[0,1]}|u(x)| \leq \sqrt[3]{4}\|u\|
$$

it follows that

$$
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)}(-J(u))=\sup _{\|u\|^{3} \leq 3 r} \int_{0}^{1} F(x, u(x)) d x \leq \max _{(x, t) \in[0,1] \times[-\sqrt[3]{12 r}, \sqrt[3]{12 r}]} F(x, t) .
$$

Now, thanks to Lemma 2.3, there exist $r>0$ and $w \in X$ such that $\|w\|^{3}>3 r$ and

$$
\max _{(x, t) \in[0,1] \times[-\sqrt[3]{12 r}, \sqrt[3]{12 r]}} F(x, t)<3 r \frac{\int_{0}^{1} F(x, w(x)) d x}{\|w\|^{3}}
$$

so, our claim is true. Fix ρ such that

$$
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)}(-J(u))<\rho<r \frac{(-J(w))}{\Phi(w)}
$$

and with $x_{0}=0$ and $x_{1}=w$, from Proposition 2.2, we obtain the minimax inequality

$$
\sup _{\lambda \geq 0} \inf _{u \in X}(\Phi(u)+\lambda J(u)+\rho \lambda)<\inf _{u \in X} \sup _{\lambda \geq 0}(\Phi(u)+\lambda J(u)+\rho \lambda) .
$$

For any fixed L^{1}-Carathéodory function $g:[0,1] \times R \rightarrow R$, set

$$
\Psi(u)=-\int_{0}^{1}\left(\int_{0}^{u(t)} g(t, \xi) d \xi\right) d t
$$

It is well known that Ψ is a continuously differentiable functional whose differential $\Psi^{\prime}(u) \in$ X^{*}, at $u \in X$ is given by

$$
\Psi^{\prime}(u) v=-\int_{0}^{1} g(t, u(x)) v(x) d x \text { for every } v \in X
$$

such that $\Psi^{\prime}: X \rightarrow X^{*}$ is a compact operator. Now, all the assumptions of Theorem 2.1, are satisfied. Now, applying Theorem 2.1, taking into account that the critical points of the functional $\Phi+\lambda J+\mu \Psi$ are exactly the weak solutions of the problem (1), we have the conclusion. Hence, our conclusion follows from Theorem 2.1.

Let $h_{1} \in C([0,1])$ and $h_{2} \in C(R)$ be two functions. Put

$$
H(t)=\int_{0}^{t} h_{2}(\xi) d \xi
$$

for all $t \in R$. We have the following consequence of Theorem 2.4:
Corollary 2.5. Assume that there exist three positive constants c, d, s with $\sqrt[3]{113} d>\sqrt[3]{28} c$, $s<3$ and a positive function $b \in L^{1}$ such that
(j) $h_{1}(x) \geq 0$ for each $x \in\left[0, \frac{1}{4}\right] \cup\left[\frac{3}{4}, 1\right]$ and $h_{2}(t) \geq 0$ for each $t \in\left[0, \frac{d}{4}\right]$,
(jj) $\frac{113}{c^{3}} \max _{(x, t) \in[0,1] \times[-c, c]} h_{1}(x) H(t)<\frac{28}{d^{3}} H\left(\frac{d}{4}\right) \int_{\frac{1}{4}}^{\frac{3}{4}} h_{1}(x) d x$,
$(j j j) H(t) \leq b(x)\left(1+|t|^{s}\right)$ almost everywhere in $[0,1]$ and for each $t \in R$.
Then, there exist a non-empty open set $A \subseteq] 0,+\infty[$ and a real number $q>0$ with the following property: for every $\lambda \in A$ and for an arbitrary L^{1}-Carathéodory function g : $[0,1] \times R \rightarrow R$, there exists $\delta>0$ such that, for each $\mu \in[0, \delta]$, the problem (6) has at least three weak solutions in X whose norms are less than q.

Proof: Put $f(x, t)=h_{1}(x) h_{2}(t)$ for each $(x, t) \in[0,1] \times R$, and note that

$$
\max _{(x, t) \in \bar{\Omega} \times[-c, c]} F(x, t)=\max _{(x, t) \in[0,1] \times[-c, c]} h_{1}(x) H(t),
$$

choosing $b(x)=\frac{a(x)}{h_{1}(x)}$ for almost every $x \in[0,1]$, it is easy to verify that all the assumptions of Theorem 2.4 are fulfilled. So, the proof is complete.

We now want to point out a consequence of Theorem 2.4 when the function f does not depend on x :

Theorem 2.6. Let $f: R \rightarrow R$ be a continuous function. Put $F(t)=\int_{0}^{t} f(\xi) d \xi$ for each $t \in R$ and assume that there exist four positive constants c, d, s and η with $\sqrt[3]{113} d>\sqrt[3]{28} c$ and $s<3$ such that
($\left.i^{\prime}\right) F(t) \geq 0$ for each $t \in\left[0, \frac{d}{4}\right]$,
(ii') $113 \frac{\max _{t \in[-c, c]} F(t)}{c^{3}}<28 \frac{F\left(\frac{d}{4}\right)}{d^{3}}$,
(iii') $F(t) \leq \eta\left(1+|t|^{s}\right)$ for each $t \in R$.
Then, there exist a non-empty open set $A \subseteq] 0,+\infty[$ and a real number $q>0$ with the following property: for every $\lambda \in A$ and for an arbitrary continuous function $g: R \rightarrow R$, there exists $\delta>0$ such that, for each $\mu \in[0, \delta]$, the problem (7) has at least three weak solutions in X whose norms are less than q.

Finally, we illustrate the results of Theorem 2.6:
Example 2.7. Consider the problem

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}\right| u^{\prime}\right)^{\prime}+u=\lambda\left(2 u^{19} e^{-u^{2}}\left(10-u^{2}\right)\right)+\mu g(u) \tag{9}\\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

By choosing, for instance $c=1, d=8, s=2$ and η sufficiently large, all the assumptions of Theorem 2.6 are satisfied. So , there exist a non-empty open set $A \subseteq] 0,+\infty[$ and a real number $q>0$ with the following property: for every $\lambda \in A$ and for an arbitrary continuous function $g: R \rightarrow R$, there exists $\delta>0$ such that, for each $\mu \in[0, \delta]$, the problem (9) has at least three weak solutions in $W^{1,3}([0,1])$ whose norms are less than q.

References

[1] G.A. Afrouzi, S. Heidarkhani, Three solutions for a Dirichlet boundary value problem involving the p-Laplacian, Nonlinear Anal. 66 (2007) 2281-2288.
[2] D. Averna, G. Bonanno, Three solutions for a Neumann boundary value problem involving the p-Laplacian, Le Matematiche 59 (2005), Fasc. I, 81-91.
[3] R.I. Avery, J. Henderson, Three symmetric positive solutions for a second-order boundary value problem, Appl. Math. Lett. 13 (2000) 1-7.
[4] G. Bonanno, Existence of three solutions for a two point boundary value problem, Appl. Math. Lett. 13 (2000) 53-57.
[5] G. Bonanno, Multiple solutions for a Neumann boundary value problem, J. Nonlinear Convex Anal. 4 (2003) 287-290.
[6] G. Bonanno, P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel) 80 (2003) 424-429.
[7] A.R. Miciano, R. Shivaji, Multiple positive solutions for a class of semipositone Neumann two point boundary value problems, J. Math. Anal. Appl. 178 (1993) 102-115.
[8] M. Ramaswamy, R. Shivaji, Multiple positive solutions for classes of p-Laplacian equations, Differential and Integral Equations 17(11-12) (2004) 1255-1261.
[9] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009) 3084-3089.
[10] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problem, Math. Comput. Modelling 32 (2000) 1485-1494.
[11] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000) 220-226.

