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Abstract:  
In this article, we present a reliable combination of variational iterative method and Padé 
approximants to investigate two dimensional exponential stretching sheet problem. The 
proposed method is called variational iterative Pade´ method (VIPM). The method is 
capable of reducing the size of calculation and easily overcomes the difficulty of  
perturbation methods or Adomian polynomials. The results reveal that the VIPM is very 
effective and is easy to apply. 
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1. Introduction 

Due to numerous industrial processes the boundary layer concept for flow of an 
incompressible fluid over a exponential stretching sheet is quite popular among the 
researchers recently. Such processes include aerodynamic extrusion of plastic sheets, hot 
rolling, gluing of labels on hot bodies, fiber-glass, paper production and applications in 
polymer industries. A broad range of analytical and numerical methods have been used in 
the analysis of these scientific models. Mathematical modeling of many physical systems 
leads to nonlinear ordinary or partial differential equations in various fields of physics and 
engineering. An effective method is required to analyze the mathematical model which 
provides solutions conforming to physical reality. Common analytic procedures linearize 
the system or assume that nonlinearities are relatively insignificant. Such assumptions, 
sometimes strongly, affect the solution with respect to the real physics of the phenomenon. 
Thus seeking exact solutions of nonlinear ordinary or partial differential equation is of 
great importance. Various powerful mathematical techniques such as Adomian 
decomposition method ]51[  , homotopy perturbation method ]106[  , and Laplace 

decomposition method ]1511[  , have been proposed for obtaining exact and approximate 

analytic solutions. 
The variational iteration method (VIM) was first proposed by He ]2016[  , systematically 

illustrated in 1999 and used to give approximate solutions of the problem of seepage flow 
in porous media with fractional derivatives. The VIM is useful to obtain exact and 
approximate solutions of linear and nonlinear differential equations.  
In this method, general Lagrange multipliers are introduced to construct correction 
functional for the problems. The multipliers can be identified optimally via the variational 
theory. There is no need for linearization, discretization and large computational work. It 
has been used to solve effectively, easily and accurately a large class of nonlinear problems 
with approximation ]2321[  . It has been shown by many authors that this method is more 

powerful than existing techniques such as the Adomian method ]2524[  . The Padé 

approximants, that often show superior performance over series approximations, provide a 
successful tool and promising scheme for applications ]26[ . 

The objective of this article is to use variational iteration method and Padé approximant to 
solve exponential stretching sheet equations for the two-dimensional steady, laminar and 
viscous flow. The paper is organized as follows. In Section 2, the basic concepts of VIM is 
presented. Section 3 contains basic idea of Pade approximants. Section 4, contains 
governing equations. The conclusions are given in last section. 
 

1. Variational iterative method 

To illustrate the basic concept of the variational iteration method (VIM), we consider the 
following general differential equation: 

),(xgNuLu                          (1) 

where L  is a linear operator, N  is a nonlinear operator, and  )(xg   is the forcing 
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term. According to variational iteration method ]2016[  , we can construct a correction 

functional as follows: 

  ,)()()()(
0

1  dgNuLuuu

x

nnnn                   (2) 

where   is a Lagrange multiplier ]2016[  , which can be identified optimally via 

variational iteration method. The subscripts  n   denote the  nth   approximation, nu~  

is considered as a restricted variation, that is, 0~ nu  Relational )2(  is called as a 

correctional functional. The solution of the linear problems can be solved in a single 
iteration step due to the exact identification of the Lagrange multiplier. The principles of 
variational iteration method and its applicability for various kinds of differential equations 
are given in  ]2016[    . In this method, it is required first to determine the Lagrange 

multiplier     optimally. The successive approximation  1nu   0, n  of the solution 

u  will be readily obtained upon using the determined Lagrange multiplier and any 

selective function. Consequently, the solution is given by  

.lim n
n

uu


                              (3) 

 

2. Padé approximants 

A Padé approximant is the ratio of two polynomials constructed from the coefficients of the 
Taylor series expansion of a function )(xu . The ]/[ ML  Padé approximants to a function 

)(xu  are given by ( Baker, ,1975  ])26[   

,
)(

)(

xQ

xP

M

L

M

L







                          (4) 

 

where )(xPL  is a polynomial of degree at most L  and )(xQM  is a degree of at most 

M . The power series in terms of x  is given below 

,)(
0

i

i

i

xaxu 




                             (5) 

 

).(
)(

)(
)( 1 ML

M

L xO
xQ

xP
xu                      (6) 

 

Determine the coefficients of )(xPL  and )(xQM  by Eq. )6( . We can multiply the 

numerator and denominator by a constant and leave ]/[ ML  unchanged, we imposed the 

normalization condition as follows 
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.1)( xQM                            (7) 

 
Expanding polynomials )(xPL  and )(xQM  in power series in terms of x  of order L  

and M  which is given below :  
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Using Eq. )8(  in Eq. )6( , we can write Eq. )6(  in the notation of formal power series as  
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By cross-multiplication of Eq. )9( , we get 
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From Eq. )10( , we obtain the set of linear equations 
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and  
 

























.0

,0...

,0...

11

2112

111

MLMLML

MMLLL

MMLLL

qaqaa

qaqaa

qaqaa


               (12) 

 
From Eq. )12( , we can obtain ,iq  Mi 1 . Once the values of Mqqq ,...,, 21  are all 

known Eq. )11( , gives an explicit formula for the unknown quantities .,...,, 21 Lppp  We 

calculate diagonal approximants which are more accurate than non diagonal approximants 
and can be calculated easily by built-in utilities of Mathematica  and Maple . 
 

3. Mathematical formulation of the problem 

Let us consider flow of an incompressible viscous fluid over exponential stretching sheet at
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0y . Under the assumptions of boundary layer theory the continuity and momentum 

equations are given by  

,0






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                         (13) 
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                     (14) 

 
where u  and v  are the velocity components in the  x  and y  directions 

respectively,     is the kinematic viscosity which is the ratio of dynamic viscosity to the 
density of the fluid  i.e.   / . The boundary conditions corresponding to the 

exponential stretching sheet are: 

,0at     ,0 ,0  yveUu L
x

                (15) 
, as  0  yu                        (16) 

 
where 0U  is the reference velocity and L  is a constant. Upon making use of the 

following similarity transformations in Eqs. )16()13(   :  
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The resulting non-linear differential equations with corresponding boundary conditions 
are of the following form 

2

2 0,f f ff                             (18) 

                          
.0)(  ,1)0(  ,0)0(  fff                     (19) 

 
In this section, we mainly solve our governing equation  )18(   with boundary condition 

given in Eq. )19( , by He's variational iterative method. The initial guess for f  is given 

below  
                                       

,
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where .0)0( 


f  To solve Eq. ),19()18(   with the help of variational iterative 

method, we construct a correctional functional which is given below 
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where   is a Lagrangian multiplier which can be determine optimally and )(
~
nf  is 

considered as a restricted variation i-e., .0)(
~

 nf  To find the optimal values of   we 

have 
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Following ]16[ , the stationary conditions are given below 
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On solving above Eq. )24( , we get 
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2

1 2                         (25) 

Substituting this values of Lagrange multiplier in functional )21( , we get an iterative 

formula 
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Now the components of the series solution are 
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The series solution is given by 
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Our aim in this section is mainly concerned with the mathematical behavior of the solution 

)(f  in order to determine the value of free parameter ).0(f   It was formally 

shown by that this goal can easily be achieved by forming the Padé approximants ]26[  

which have the advantage of manipulating the polynomial approximation into a rational 
function to obtain the more information about ).(f  It is well known fact that Padé 

approximants will converges on the entire real axis if )(f  is free of singularities on the 

entire real axis. More importantly, the diagonal approximants are most accurate 
approximants, therefore we will construct only diagonal approximants. Using the boundary 
condition ,0)( f  the diagonal approximants ]/[ MM  vanish if the coefficients of   

with the highest power in the numerator vanishes. Choosing the coefficients of the highest 
power of   equal to zero, we get a polynomial equations in   which can be solved very 

easily by using the built in utilities in the most manipulation languages. 
 
 

Table. 1: Numerical values of free parameter ).0(f   
 
 
 
 
 
 
 
 
 
 
 
 

Padé approximants       Present Method (VIPM)  

[21/21]                       -1.28138 

[22/22]                       -1.28075 

[23/23]                       -1.27982 

[24/24]                       -1.28028 

[25/25]                       -1.28217 

[26/26]                       -1.28184 

[27/27]                       -1.28181 

[28/28]                       -1.28181 

[29/29]                       -1.28181 

[30/30]                       -1.28181 
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Fig. 1: Solution and velocity curves by VIPM: Line with stars indicates 10th –order 

solution curve and line with circles shows [10/10] Padé velocity curve.  
 

 
Table 1 and Fig. ,1  clearly elucidates that present solution method namely VIPM shows 

fast convergent results. This analysis shows that VIPM suits for exponential flow problems 
and with the use of Padé approximants we accelerate convergence of our obtained series. 

 

4. Concluding Remarks 

The main aim of this work is to provide the series solution of the boundary layer equation 
of two-dimensional flow over a exponential stretching sheet by using variational iterative 
Padé method (VIPM). The new proposed variational iterative Padé method (VIPM) is a 
powerful tool to search for solutions of various nonlinear problems. The method 
overcomes the difficulty in other methods because it is efficient. We derived fast 
convergent results by combining the series, obtained by the variational iterative method, 
with the diagonal Padé approximants. The convergence of VIPM is also shown in Table 1 . 
The analysis given here shows confidence on VIPM. 
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