CHARACTERIZATION THE DELETABLE SET OF VERTICES IN THE ($p-3$)- REGULAR GRAPHS

Akram B. Attar
Department of Mathematics,University of Thi-Qar, College of Education, Iraq. akramattar70@yahoo.com

Received: April 2011, Revised: June 2011
Online Publication: July 2011

Abstract

In this paper we characterized the ($p-3$)- regular graphs which have a 3-deletable and a 4-deletable set of vertices.

Mathematics Subject Classification (2000): 05C35,05C69, 05C60. Keywords: reducibility; regular graphs; dominating set; and dominating number.

1. Introduction

The roots of our study in deletable set of vertices are in the problem of reducibility of graphs. The concept of reducibility is well studied for some classes of lattices by Bordalo and Monjardet [1996]. In fact they proved that the class of pseudo complemented lattices as well as the class of semimodular lattices is reducible. Kharat and Waphare [2001] identified some classes of posets which are reducible. Further, they have introduced a concept of reducibility number for posets. Akram and Waphare [2008] introduced analogous concepts in graphs. In fact they defined the deletable vertex or the deletable set of vertices and the reducible class of graphs as follows.

Definition 1.1: Let \mathcal{G} be a class of graphs satisfying some property P. A vertex (edge) v is called deletable with respect to \mathcal{G} if $G-v \in \mathcal{G}$. In general, a set S of vertices (edges) is called deletable with respect to \mathcal{G} if $G-S \in \mathcal{G}$. Generally, if $|S|=k$ then we say that S is a k - deletable set.

Definition 1.2: Let \mathcal{G} be a class of graphs satisfying certain property P. The class \mathcal{G} is called vertex (edge) reducible if for any $G \in \mathcal{G}$ either G is the trivial graph (null graph) or it contains a vertex (edge) v such that $G-v \in \mathcal{G}$.

We use the concept of dominating set as given in Slater [1995].
Definition 1.3: A set $S \subseteq V$ of vertices in a graph $G=(V, E)$ is called dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S.

For the undefined concepts and terminology we refer the reader to Wilson [1978],Clark [1991], Harary [1969], West [1999] and Tutte [1984].

We need the following lemma in Akram [2008].
Lemma 1.4: Let R be an r-regular graph with p vertices. Suppose $U=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ is a deletable set of vertices with respect to the class of regular graphs \mathcal{R}. Then the following statements are true.

1. $r-d_{[U]}\left(u_{i}\right) \leq p-k, i=1,2, \cdots k$, where $[U]$ denotes the vertex induced subgraph induced by U.
2. $\frac{r k-2 m}{p-k}=r-j$ where $m=|E([U])|$ and the $j=$ the degree of every vertex in $R-U$. In particular, $p-k$ divides $r k-2 m$ for some $0 \leq m \leq \frac{r k}{2}$.
3. $r-j \leq k$, where j is the degree of every vertex in $R-U$.

2. Characterization the deletable set of vertices

In this section we characterized the $(p-3)-$ regular graphs which contain a 3 - deletable and a 4 - deletable set of vertices.

Proposition 2.1: Let G be $a(p-3)$ - regular graph on p vertices.Then G contains a 3 - deletable set and a 4 - deletable set if and only if $G \cong C_{5}, G \cong K_{3,3}, G \cong$ one of the eight graphs in Figure 1 or $G \cong N_{3}+\left[\left(P_{1} \cup P_{1}\right)+H\right]$ for some $(p-10)-$ regular graph H on ($p-7$) vertices.

G1

G2

G3

G5a
Figure 1(continued)

G7

Figure 1

Figure 2
Proof: Suppose that $A=\{u, v, w\}$ and $B=\{a, b, c, d\}$ are two deletable sets in G. By Lemma 1.4, we have $\frac{3(p-3)-2 i}{p-3}$ and $\frac{4(p-3)-2 j}{p-4}$ are integers for some $i=0,1,2,3$ and $j=0,1, \cdots, 6$. Therefore $(p-3)$ divides 2 i and $(p-4)$ divides $4(p-3)-2 j$.
For $i=1$, we have $p=5$ and $G \cong C_{5}$.
For $i=2$, we have $p=5$ or 7 . If $p=5$, then $G \cong C_{5}$. Suppose $p=7$, then $r=7-3=4$.
In this case $[A]$ is a path and $G-A$ is a 4-cycle. The only 4-regular graphs are G_{1} and G_{2} as shown in Figure 1.
For $i=3$, we have $p=5,6$ or 9 and $[A] \cong C_{3}$. As there is no 2 -regular graph on 5 vertices containing a triangle the case $p=5$ is impossible. If $p=6$, then $G \cong G_{3}$ as shown in Figure 1. If $p=9$, then $G-A$ is a 4-regular graph on 6 vertices, since $\frac{4(p-3)-2 j}{p-4}=\frac{24-2 j}{5}$ is an integer. We have $D \cong[B] \cong P_{2} \cup N_{1}$ or $P_{1} \cup P_{1}$. By Lemma 1.4 (1) the first case is impossible. The
only possible graph is G_{8} as shown in Figure 2. In G_{8} we do not have a set of three vertices forming a triangle and which is deletable. Hence this case is impossible.
Lastly we consider $i=0$. Suppose $j=0$. As $\frac{4(p-3)}{(p-4)}$ is an integer, $p=5,6$ or 8 and the corresponding quotient $p=\frac{4(p-3)}{p-4}$, is 8,6 or 5 respectively, which is impossible by Lemma 1.4(3).

Suppose $j=1$. As $\frac{2(2 p-7)}{p-4}=\frac{[2(p-4)+2(p-3)]}{p-4}$ is an integer, $p=5$ or 6 and the quotient $\frac{2(2 p-7)}{p-4}$ is 6 or 5 respectively, which is impossible by Lemma 1.4(3).
Suppose $j=3$. As $\frac{4(p-3)-6}{p-4}=\frac{2(2 p-6-3)}{p-4}=\frac{2(p-4)+2(p-5)}{p-4}$ is an integer, $p=5$ or 6 and the corresponding quotient $\frac{4(p-3)-6}{p-4}$ is 2 or 3 respectively. There is no 2 -regular graph on 5 vertices having 3 non-adjacent vertices. $p=6$ and in this case $G \cong K_{3,3}$.
Suppose $j=4$. Then $\frac{4(p-3)-8}{p-4}=\frac{4(p-5)}{p-4}$ is an integer. Hence $p=5,6$ or 8 . As above $p=5$ is impossible. For $p=6$, we must have $G \cong K_{3,3}$.
Let $p=8$. In this case there is a unique 5-regular graph containing 3-non-adjacent vertices, namely, $G_{4} \cong N_{3}+C_{5}$ as shown in Figure 1.
Suppose $j=5$. Then $\frac{4(p-3)-10}{p-4}=\frac{2(2 p-6-5)}{p-4}=\frac{2(p-4+p-7)}{p-4}$ is an integer. Hence $\frac{2(p-7)}{p-4}=\frac{2(p-4)-6}{p-4}$ is an integer, which implies that $\frac{6}{p-4}$ is an integer. Hence $p=5,6,7$ or 10 .
The case $p=5$ is impossible by Lemma 1.4. For $p=6, r=3$. We cannot have both $N_{3}, N_{1}+P_{2}$ as induced subgraphs in a 3-regular graph on 6 vertices. Thus this case is impossible.
For $p=7$, we have $G \cong N_{3}+\left(P_{1} \cup P_{1}\right) \cong G_{7}$ as shown in Figure 1 .
For $p=10$, we must have $|\{a, b, c, d\} \cap\{u, v, w\}|=1$. The common vertex must have degree 3 in [$\{a, b, c, d\}]$. Then it is easy to see that $G \cong G_{5 a}$ or $G \cong G_{5 b}$.
Suppose $j=6$. Then $\frac{4(p-3)-12}{p-4}=\frac{4(p-3-3)}{p-4}=\frac{4(p-6)}{p-4}=\frac{4(p-4-2)}{p-4}=\frac{4(p-4)-8}{p-4}$ is an integer. This implies that $\frac{8}{p-4}$ is an integer. Hence $p=5,6,8$ or 12 .
It can be observed that $p=5$ or 6 is impossible, since we cannot have both K_{4}, N_{3} as induced subgraphs in a regular graph with $p=5$, or 6 .
Suppose $\mathrm{p}=8$. In this case also we can see that $|A \cap B| \neq 0,2,3$. The intersection being a singleton is also impossible as a vertex in A which is not in B will have three neighbors in $\{a, b, c, d\}$ and that is not possible since any vertex not in B should have precisely two neighbors in B. Hence there is no graph with $p=8$, having a 3 -deletable set as well as a 4deletable set.

Now consider the case $p=12$. As the quotient $\frac{4(p-3)-2 j}{p-4}=3$, each vertex not in B has precisely three neighbors in B. Also we have $|A \cap B|=1$, as $G-[A \cup B]$ is a 4-regular graph on 6 vertices, and there is a unique 4-regular graph on 6 vertices. Thus we get that there is a unique graph $G \cong G_{6}$ in Figure 1 on 12 vertices with 3 -deletable and 4 -deletable subsets.

It only remains to consider the case $i=0$ and $j=2$. In this case $\frac{3(p-3)}{p-3}=3$ and $\frac{4(p-3)-4}{p-4}=4$. Therefore u, v, w are non-adjacent and are joined to all the remaining vertices. Again $[B]$ has two edges and each vertex is joined to all the remaining vertices. Note that if a vertex is isolated in $[B]$ then its degree in G is at most $p-4$ which is impossible.
Hence $[\{a, b, c, d\}] \cong P_{1} \cup P_{1}$. Now it can be observed that $A \cap B=\emptyset$. Therefore, we get that either $p=7$ or $p \geq 10$. If $p=7$ then $G \cong N_{3}+\left[P_{1} \cup P_{1}\right] \cong G_{7}$, and if $p \geq 10$, then we must have $G \cong N_{3}+\left[\left(P_{1} \cup P_{1}\right)+H\right]$, where H is a $(p-10)$-regular graph on $(p-7)$ vertices.

Conversely, if $G \cong N_{3}+\left[\left(P_{1} \cup P_{1}\right)+H\right], C_{5}, K_{3,3}$ or $G \cong$ one of the eight graphs in Figure 1, then clearly G contains a 3-deletable set as well as a 4-deletable set (see Figure 1).

Corollary 2.2: There is no 6 -regular graph on 9 vertices which contains a 3-deletable subset as well as a 4-deletable subset.

Proposition 2.3: There is no 9-regular graph on 30 vertices having a 3-deletable set and a 4deletable set.
Proof: Let G be a 9-regular graph on 30 vertices. Suppose $A=\{u, v, w\}$ and $B=\{a, b, c, d\}$ are deletable subsets in G. By Lemma 1.4, we have $\frac{3(9)-2 i}{30-3}, \frac{4(9)-2 j}{30-4}$ are integers for some $i=0,1,2,3$ and $j=0,1, \cdots, 6$. We have $i=0, j=5$ and each of the corresponding quotient is 1. Therefore, $[A] \cong N_{3},[B] \cong N_{1}+P_{3}, A$ is an independent dominating set, B is a dominating set, $N(a)-B, N(b)-B, N(c)-B$ and $N(d)-B$ are mutually disjoint and $N(u), N(v)$ and $N(w)$ are also mutually disjoint. Clearly, exactly two of B are in one of $N[u]$, $N[v], N[w]$, say $a, b \in N[u]$. If a, b are both different from u, then u is a common neighbor for a, b, which is impossible. If u is one of a, b then one of v, w is not adjacent to any of a, b, c, d which is impossible.

Proposition 2.4: There is no 11-regular graph on 36 vertices having a 3-deletable set and a 4-deletable set.
Proof: Let G be an 11-regular graph on 36 vertices.
Suppose $A=\{u, v, w\}$ and $B=\{a, b, c, d\}$ are deletable subsets in G. By Lemma 1.4, $\frac{3(11)-2 i}{36-3}, \frac{4(11)-2 j}{36-4}$ are integers for some $i=0,1,2,3$ and $j=0, \cdots, 6$. We have $i=0$ and $j=6$.
Therefore $[A] \cong N_{3}$, and A is dominating and $N(u), N(v), N(w)$ are mutually disjoint.
Similarly, $[B] \cong K_{4}$, and B is dominating and $N(a)-B, N(b)-B, N(c)-B, N(d)-B$ are mutually disjoint. If $A \cap B=\varnothing$, then two of a, b, c, d are in one of $N(u), N(v), N(w)$, which is impossible. $|A \cap B| \neq 2$ or 3 , as $[A] \cong N_{3}$ and $[B] \cong K_{4}$. If $|A \cap B|=1$, say $a=u$, then $b, c, d \in N(u)$. Hence each of $v, w \notin N(a, b, c, d)$, which is impossible.

Proposition 2.5: There is no 9-regular graph on 28 vertices having a 3-deletable set and a 4deletable set.

Proof: Let G be a 9-regular graph on 28 vertices. Suppose $A=\{u, v, w\}$ and $B=\{a, b, c, d\}$ are deletable subsets in G. By Lemma 1.4, we have $\frac{3(9)-2 i}{28-3}=\frac{4(9)-2 j}{28-4}$ are integers for some $i=0,1,2,3$ and $j=0, \cdots, 6$. We have $i=1$ and $j=6$. Therefore $[A] \cong P_{1} \cup N_{1}$, say u is adjacent to $v . A$ is dominating and $N(u), N(v), N(w)$ are mutually disjoint. Similarly, $[B] \cong K_{4}, B$ is dominating and $N(a)-B, N(b)-B, N(c)-B, N(d)-B$ are mutually disjoint. If $A \cap B=\varnothing$, then two of a, b, c, d are in one of $N(u), N(v), N(w)$, which is impossible. If $|A \cap B|=2$ or 3 , then we cannot get $[B] \cong K_{4}$. If $|A \cap B|=1$, with $a=u$, then $b, c, d \in N(u)-v$ and $w \notin N(a, b, c, d)$, which is impossible. Similarly, we arrive at a contradiction when $|A \cap B|=1$, with $a=v$ or $a=w$.

Proposition 2.6: There is no 7-regular graph on 18 vertices having a 3-deletable set and a 4deletable set.
Proof: Let G be an 7-regular graph on 18 vertices. Suppose $A=\{u, v, w\}$ and $B=\{a, b, c, d\}$ are deletable subsets in G. By Lemma 1.4, $\frac{3(7)-2 i}{18-3}=\frac{4(7)-2 j}{18-4}$ are integers for some $i=0,1,2,3$ and $j=0, \cdots, 6$. We have $i=3$ and $j=0$. Therefore $[A] \cong C_{3}, A$ is dominating and $N(u)-A$, $N(v)-A, N(w)-A$ are mutually disjoint. Similarly, $[B] \cong N_{4}, B$ is dominating and each vertex in $V(G)-B$ is adjacent to exactly two from $\{a, b, c, d\}$. If $A \cap B=\emptyset$, then two of $\{a, b, c, d\}$ are in one of $N(u), N(v), N(w)$, then we have either one from $\{u, v, w\} \notin$ $N(a, b, c, d)$ or two of $\{u, v, w\}$ are adjacent by only one from a, b, c, d, which is impossible. $|A \cap B| \neq 2$ or 3 , as $[B] \cong N_{4}$ and $[A] \cong C_{3}$ If $|A \cap B|=1$, then either 3 or 4 vertices from $\{a, b, c, d\}$ have a common neighbor, which is impossible.

Proposition 2.7: There is no 10-regular graph on 18 vertices having a 3-deletable set and a 4-deletable set.
Proof: Let G be an 10 -regular graph on 18 vertices. Suppose $A=\{u, v, w\}$ and $B=$ $\{a, b, c, d\}$ are deletable subsets in G. By Lemma 1.4, $\frac{3(10)-2 i}{18-3}=\frac{4(10)-2 j}{18-4}$ are integers for some $i=0,1,2,3$ and $j=0, \cdots, 6$. We have $i=0$ and $j=6$. Therefore $[A] \cong N_{3}, A$ is dominating and every vertex in $V(G)-A$, is adjacent to two from $\{u, v, w\}$. Similarly, $[B] \cong$ K_{4}, B is dominating and each vertex in $V(G)-B$ is adjacent to two from $\{a, b, c, d\}$. If $A \cap B=\emptyset$, then it is clear we cannot get $[B] \cong K_{4}$ in $V(G)-\{u, v, w\}$ such that each vertex of $\{u, v, w\}$ is adjacent by two from $\{a, b, c, d\}$. If $A \cap B=2$ or 3 , it is clear that we cannot get $[B] \cong K_{4}$. Then we have $|A \cap B|=1$, say $u=a$. Then $b, c, d \in N(u)$. It is clear that one from $\{v, w\}$ is adjacent to only one from $\{a, b, c, d\}$, which is impossible.

Proposition 2.8: There is no 18-regular graph on 28 vertices having a 3-deletable set and a 4-deletable set.
Proof: Let G be an 18-regular graph on 28 vertices.
Suppose $A=\{u, v, w\}$ and $B=\{a, b, c, d\}$ are deletable subsets in G. By Lemma 1.4, $\frac{3(18)-2 i}{28-3}=\frac{4(18)-2 j}{28-4}$ are integers for some $i=0,1,2,3$ and $j=0, \cdots, 6$. We have $i=2$ and $j=0$. Therefore $[A] \cong P_{2}, A$ is dominating and each vertex in $V(G)-A$, is adjacent to two from
$\{u, v, w\}$. Similarly, $[B] \cong N_{4}, B$ is dominating and each vertex in $V(G)-B$ is adjacent to three from $\{a, b, c, d\}$. If $A \cap B=\emptyset$, then one from $\{u, v, w\}$ is adjacent to only two from $\{a, b, c, d\}$ which is impossible. If $|A \cap B|=2$ or 3 , then we cannot get $[B] \cong K_{4}$. If $|A \cap B|=1$, then $\{a, b, c, d\}$ have a common neighbor, which is impossible.

Proposition 2.9: There is no 24-regular graph on 36 vertices having a 3-deletable set and a 4-deletable set.
Proof: Let G be an 24 -regular graph on 36 vertices.
Suppose $A=\{u, v, w\}$ and $B=\{a, b, c, d\}$ are deletable subsets in G. By Lemma 1.4, $\frac{3(24)-2 i}{36-3}=\frac{4(24)-2 j}{36-4}$ are integers for some $i=0,1,2,3$ and $j=0, \cdots, 6$. We have $i=3$ and $j=0$. Therefore $[A] \cong C_{3}, A$ is dominating and each vertex in $V(G)-A$, is adjacent to two from $\{u, v, w\}$. Similarly, $[B] \cong N_{4}, B$ is dominating and each vertex in $V(G)-B$ is adjacent to three vertices from $\{a, b, c, d\}$. If $|A \cap B|=\emptyset ;$, then one from $\{u, v, w\}$ is adjacent to only two from $\{a, b, c, d\}$, which is impossible. If $|A \cap B|=2$ or 3 , then we cannot get $[B] \cong N_{4}$. If $|A \cap B|=1$, then a, b, c, d have a common neighbor, which is impossible.

Proposition 2.10: There is no 20 -regular graph on 30 vertices having a 3-deletable set and a 4-deletable set.
Proof: Let G be an 20-regular graph on 30 vertices.
Suppose $A=\{u, v, w\}$ and $B=\{a, b, c, d\}$ are deletable subsets in G. By Lemma 1.4, $\frac{3(20)-2 i}{30-3}=\frac{4(20)-2 j}{30-4}$ are integers for some $i=0,1,2,3$ and $j=0, \cdots, 6$. We have $i=3$ and $j=1$. Therefore $[A] \cong C_{3}, A$ is dominating and each vertex in $V(G)-A$, is adjacent to two from $\{u, v, w\}$. Similarly, $[B] \cong P_{1} \cup N_{2}, B$ is dominating and each vertex in $V(G)-B$ is adjacent to three from $\{a, b, c, d\}$. If $|A \cap B|=\emptyset$, then there is a vertex from $\{u, v, w\}$ which is adjacent to only two from a, b, c, d, which is impossible. If $|A \cap B|=2$ or 3 , then we cannot get $[B] \cong P_{1} \cup N_{2}$. If $|A \cap B|=1$, then we have one from $\{u, v, w\}$ is a common neighbor for $\{a, b, c, d\}$, which is impossible.

Proposition 2.11: There is no 16 -regular graph on 24 vertices having a 3-deletable set and a 4-deletable set.
Proof: Suppose $A=\{u, v, w\}$ and $B=\{a, b, c, d\}$ are deletable subsets in G. By Lemma 1.4, $\frac{3(16)-2 i}{24-3}=\frac{4(16)-2 j}{24-4}$ are integers for some $i=0,1,2,3$ and $j=0, \cdots, 6$. We have $i=3$ and $j=2$. Therefore $[A] \cong C_{3}, \mathrm{~A}$ is dominating and each vertex in $V(G)-A$ is adjacent to two from $\{u, v, w\}$. Similarly, $[B] \cong P_{1} \cup P_{1}$ or $P_{2} \cup N_{1}, B$ is dominating and each vertex in $V(G)-A$ is adjacent to three from $\{a, b, c, d\}$.
Let $[B] \cong P_{1} \cup P_{1}$. if $|A \cap B|=\varnothing$, then there is a vertex from $\{u, v, w\}$ which is adjacent to only two from $\{a, b, c, d\}$, which is impossible. If $|A \cap B|=2$ or 3 , then we cannot get $[B] \cong P_{1} \cup P_{1}$. If $|A \cap B|=1$ then a, b, c, d have a common neighbor, which is impossible. Let $[B] \cong P_{2} \cup N_{1}$, then by the same arguments as above, we have a contradiction.

REFERENCES

[1] Akram, B. Attar and Waphare B. N.[2008]: Reducibility of Eulerian Graphs and Digraphs . Journal of Al-Qadisiyah for Pure Science, Vol 13(4), 183-194.
[2] Bordalo, G. and Monjardet, B. [1996]: Reducible classes of finite lattices, Order 13, 379390.
[3] Clark, J. and Holton, D.A. [1991]: A First Look at Graph Theory, World Scientific, London.
[4] Harary, F. [1969]: Graph Theory, Addison-Wesley, Reading MA.
[5] Kharat, V. S. and Waphare, B. N. [2001]: Reducibility in finite posets, Europ. J. Combinatorics 22, 197-205.
[6] Slater, P.J. [1995]: Locating dominating sets and locating-dominating sets., In Y.Alavi and Schwenk, editors, Graph theory, Combinatorics, and Applications, Proc. Seventh Quad. Internat. Conf. On the Theory and Applications of Graphs, Pages 1073-1079, John Wiley and Sons, Inc.
[7] Tutte, W. T. [1984]: Graph Theory, Addison-Wesley.
[8] West, D. B. [1999]: Introduction to Graph Theory, University of Illinois-Urbana, Prentice Hall of India.
[9] Wilson, R. J. and Beineke, L. W. [1978]: Selected Topics in Graph Theory, Academic Press, London.

