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Abstract

A square matrix over the complex field with non-negative integral trace is called a
quasi-permutation matrix.Thus every permutation matrix over C is a quasi-permutation
matrix . The minimal degree of a faithful representation of G by quasi-permutation
matrices over the complex numbers is denoted by ¢(G), and r(G) denotes the minimal

degree of a faithful rational valued complex character of G. In this paper c¢(G) and

r(G) are calculated for the Borel or maximal parabolic subgroups of SP(4,2").

Keywords: General linear group, Quasi-permutation.

1- Introduction

In 1963 Wong defined a quasi-permutation group of degree n to be a finite
group G of automorphisms of an n-dimensional complex vector space such that every
element of G has non-negative integral trace .The terminology drives from the fact that if
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G is afinite group of permutations of a set Q ofsize n ,and we thinkof G as acting
on the complex vector space with basis Q , then the trace of an element geG is equal

to the number of points of Q fixed by ¢

Wong studied the extent to which some facts about permutation groups generalize
to the quasi-permutation group situation.Then in 1994 Hartley with his colleague
investigate further the analogy between permutation groups and quasi-permutation
groups by studying the relation between the minimal degree of a faithful permutation
representation of a given finite group G and the minimal degree of a faithful
quasi-permutation representation . They also worked over the rational field and found
some interesting results.(See [2],[8]).

If F is a subfield of the complex numbers C, then a square matrix over F with
non-negative integral trace is called a quasi-permutation matrix over F .Thus every
permutation matrix over C is a quasi-permutation matrix. For a given finite group G, let
c(G) be the minimal degree of a faithful representation of G by complex

quasi-permutation matrices.
By a rational valued character we mean a character y corresponding to a complex

representation of G such that y(g)eQ forall geG. As the values of the character of

a complex representation are algebraic numbers, a rational valued character is in fact
integer valued. A quasi-permutation representation of G is then simply a complex
representation of G whose character values are rational and non-negative. The module
of such a representation will be called a quasi-permutation module. We will call a
homomorphism from G to GL(n,Q) a rational representation of G and its

corresponding character will be called a rational character of G. Let r(G) denote the

minimal degree of a faithful rational valued character of G.
If £eC isan algebraic number over Q, then the Galois group of Q(g) over Q

is denoted by T'.
Finding the above quantities have been carried out in some papers, for example in

[31[4] , [5] and [7] we found these for the groups GL(2 q),SU(3,q%),PSU(3, q°%),
SL(3,q),PSL(3,q) and G,(2") respectively.

In this paper we will calculate ¢(G) and r(G) for Borel or maximal parabolic
subgroups of SP(4,2").

2-Notation and preliminary results

Assume that E is a splitting field for G and that F is a subfield of E. If
xwelr.(G) we say that y and y are Galois conjugate over F if F(y)=F(y)

and there exists oeGal(F(y)/F) such that y° =y, where F(y) denotes the field
obtained by adding the values yx(g), for all geG, to F. It is clear that this defines an
equivalence relation on Irr.(G).

Let 5, for 0<i<r be Galois conjugacy classes of irreducible complex characters

of G. For O0<i<r let ¢, be a representative of the class 7,, with ¢, =1;. Write
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WP :Zl-en-li and K, =kerp,. We know that K, =ker¥,. For 1c{0,1,2,-r}, put
K, = ﬂidKi . By definition of r(G) , c¢(G) and usingabove notations we have:
r(G)=min{&(1):£=>" nW¥,n >0,K, =1forl ={i,i=0,n >0}}

c(G) =min{&(1): &= n¥,n >0,K, =1for I ={i,i=0,n >0}}

where n,=—-min{£(g)|geG} .

In [1] we defined d(y),m(y) and c(y) [See Definition 3.4]. Here we can redefine
it as follows:

Definition 2.1.
Let y be a complex charater of G, such that kery =1 and y =y +---+y, for

some y, € Irr(G). Then define

M) d()=>._ L) %0,
0 if y=1;,

(2) m(x)= |min{zn: > x7(9):9<G}| otherwise
i=laeri(;(i)
3) c(n)= Zinﬂzaeri X TMLs.

So
r(G)=min{d(y):ker y =1},
and
c(G) =min{c(y)(1): ker y =1}.
We can see all the following statements in [1].

Corollary 2.2.
Let yelrr(G) ,then Zaer(l);(“ is a rational valued character of G . Moreover

c(y) isanon-negative rational valued characterof G and c(y)=d(y)+m(y).

Lemma 2.3.
Let yelrr(G), y #1; .Then c(y)(1)=d(y)+1=> y(1)+1 .

Lemma 2.4.
Let yelrr(G). Then

(1) c((D)zd(x) = 2(1) ;
(2) c(x)()<2d(y) .Equality occursifand onlyif Z(y)/kery isofeven order.

3. Quasi-permutation representations

We begin with a brief summary of facts relevant to our treatment of the group .
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Let K be the finite field with q elements, where q=p' and p is a prime
number. Let K be the algebraic closure of K ,and put
K, :{XER|Xqi =x}.

Then K, is the subfield of K with q' elements , and K, =K. Let x« be a fixed

generator of the multiplicative group K, and put r=x%10=x""n=6"" and

y=6%". Then we have <#>=K, and <y>=K". Choose a fixed isomorphism from

the multiplicative group K, into the multiplicative group of complex numbers, and let

7,0,n and y betheimagesof 7,0,7 and y respectively under thisisomorphism.
Let G bethe 4-—dimensional symplectic group over K ,thatis,
G={AeGL@ K)|' AJA= 17},

1
1
where J = -1 and 'A isthetransposed matrixof A .For teK ,define
-1
1t 1
1 1t

X, (t) = 1 —t], %)= 1 ,

1 1

1 t 1 t

1 t 1

Xaup () = 1 s Yo (1) = 1 )

1 1

and put A" ={a,b,a+b,2a+b}. Then for reA",E, ={x (t)|[te K} is a subgroup of G
isomorphism to the additive group of K ,and we have the folloing commutator relations,
where the commutator X'y ~'xy is denoted by [x,y] :

[Xa (t)v Xp (U)] = Xasb (tu)X2a+b (_tZU),
[Xa (t), Xa+b (U)] = X2a+b (ztU),

[x, (t),x,(u)] =1, for all other pairs of r,seA".
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Next ,  define h(z,,z,) = ! for z, eK, and  put

U=E,5Z2,.,%5,.,.9={(z,2,)]z7eK’} and B=pU. Then U is a Sylow
p-subgroup of G, and B is the normalizer of U in G (called the Borel subgroup of
G).Put @ =x(1)'% (-1)x (1) for reA". Especially,

Then G is generated by Bu{w,,®,} The maximal parabolic subgroups of G

generated by BuU{w,,} and Bu{w,,} aredenotedby P and Q respectively.

We know that every irreducible character of Borel subgroup B is the induced
character of some linear character of a subgroup , that is, B is an M —group . The
character table of B is given in Table (I) and the character tables of P and Q are
given in Tables (II,11l) ofthe Appendix of [6].

In the next theorem we shall determine r(G) and c¢(G) for a Borel subgroup of

SP(4.2").

Theorem 3.1.
Let G be aBorel subgroup of SP(4,2") ,then

2mq(q-1) ifq>4m+1,
1)r(B)=1q(q-1)* otherwise

2)c(B) =4q%(q-1) otherwise where m=[T'(x,(K))]|.

Proof. By Definition 2.1, in order to calculate r(G) and c(G) , we need to
determine d(y) and c(y)(1) for all characters that are faithful or ﬂZKer;(:l.

Then by Corollary 2.2, Lemmas 2.3 and 2.4 and Table(l) of [6], for the

Borel subgroup B we have:

d () =| 1“()(1(k,|))|ﬂa(k,l)(1)+|F(92(k))|6'2(k)(1)Zq(q—z_l)zJr1 and c(x)(1) 21+ qz(qz_l),
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d(2) = T (k) | 1 KD) + 1 T0, () | 6, (k)D) > ‘l)(q; ~9%2) and o(y,)0) > ‘“("‘2‘“2)

(9-1)(9*-q+2)
2

d(25) =1 T (k) | 25D + [ TG, (K)) | 6, (K)(D) and ¢(z,)) > ‘“‘“‘2‘“2)

)

d(7a) = T(za (k) | 24 (YD) +T(0,(K)) | 6, (K)(D) = q(qT— a+D)

and () > TEHD

d(25) = T (2 (K) | 25 () +I TG, () | 6, (K)(D) > q(q—z‘l) and c(z.)(1) > _‘f(qz 1)

d(75) = T(0) |60+ |T(6,(K) | 6,(K)D) > w and c(z)(D) >q2(q-1),

d(x7) = Tk, D) | (k. (@) +T(65(k)) | €5 (k)(D) = q(q—2—1)2 +1 and c(z,)(1) 2 1+qz(q—2_1);

(9-1)(9*-q+2)
2

and (7)) > 10042,

and o) > 40042,

d (%) = T(22(K) | 2. (K)(Q) + [T (65(k)) | 5 (k)(D) =

d (%) = T2 (K)) | 25 (K)(D) + (65 (k) | 5 (k)(D) =

(a-1(9*-q+2)
2

d(210) =1 T(ra(K)) | 2, (K)(@) + [ T(G5(K)) | G5 (K)(L) = q(q—z_l) and ¢(z,,)(0) >3 (qz +1) ,

d(a0) = T (s (K)) | s (K)D) + [T (65 (k) | 65 (K)(L) > &2_1) and c(x,)(1) = qz(qz +1) ,

d(x2) =1 T(0)16,(1)+[1(65(K)) | G5 (k)(2) = @—1)2# and c(z,,)D) 20°(9-1),

d () = T (k) | 25 (@) + 1T () |25 (K)(D) 229(q-1) and () =297,

40,000 = TG00 16,000 = XD ang c(o, oy =AY,

d(6,(k)) = T (B, (k) | 6, (K)(1) :@ and c(6,(K)() = 3 (q2 -1

An overall picture is provided by the Table(I):

Table (I)
X d(z) c(x)(1)
7 >q(g-1)°%/2+1 >1+0%(q-1)/2
X >(q-1)(9°-q+2)/2 | 2q(q* -q+2)/2
X >(q-1)(9°-q+2)/2 | 2q(q* -q+2)/2
X >q(q® -1)/2 >q°(q+1)/2
X >q(q° -1)/2 >q°(q+1)/2
Xe >(q-1)°(q+2)/2 >q°(q-1)
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2 >q(q-1)°%/2+1 >1+0%(q-1)/2
X >(q-1)(9° -q+2)/2 | >q(q* —q+2)/2
Xo >(q-1)(9°-q+2)/2 | >q(q* —q+2)/2
Yo >q(q° -1)/2 >q°(q+1)/2

Xu >q(q° -1)/2 >q°(q+1)/2

Yo >(q-1)°(q+2)/2 >q°(q-1)

A3 >2q(q-1) > 2q°

6, (k) q(q-1)%/2 9°(q-1)/2

6, (k) q(a-1)*/2 q°(q-1)/2

Note that the characters 6,(k) and 6,(k) are rational , now let |I'(y,(k))|=m
where T'(z,(k)) =I'(Q(x,(k)):Q) =I'(Q(xs(k)):Q) .
Now by above table and Definition 2.1 and Table (1) of [6], we have
2mg(q-1) ifg=4m+1,
i . = = _1)?
min {d(y):Kery=1}=<q(q-1) othenwise,
2mq? ifqg>4m+1,
in {c(x¥)(1) :Kery=1}=<q°(q-
min {e(7)(1) Z=1 a°@-1 otherwise.
2mq(g-1) ifg>4m+1,
Hence r(B)=1q(q-1)?

otherwis
5 €

and
2mq? ifqg>4m+1,

¢(B)=1a’(q-1) otherwise.W

In the following theorem, we constructed the r(G) and c¢(G) of parabolic
subgroup Q of SP(42") .
Theorem 3.2

Let G beamaximal parabolic subgroup P or Q of SP(42") ,then

2)c(6)= 192 (qz_l)

Proof. Since the groups P and Q have similar proofs, we will prove only Q.In
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order to calculate r(G) and c(G) , we need to determine d(y) and c(y)(1) for all
characters that are faithful or ﬂlKer v =1

Then by Corollary 2.2 , Lemmas 2.3,2.4 and Table (llII) of [6], for the
maximal parabolic subgroup Q we have:

d(%) =T k) K@ +IT (s K) | 2 (K@) 2a(@® -1 +1 and c(x)D) 29’ +9°+1,
d(2,) A T(H k) | A KD+ Tz (k) | 2 (K)D) 2q(q-1)*+1 and c(x,)(1) 29’ -q°+1,

-1) (@°+9”+2)
)2,

d(%s) = F(Zi(k))Ixi(k)(1)+|F(9;(k))|9£(k)(1)Zq(qT_Jrl and  C(zs)

d(22) AT ()| 2 (KW + T K) |6, > q(q—z‘l)zu and c(z,)(1) > w

d (%) = Tz (N | 2 (K@) + 1T (K) [ 5 (K)D) 20° and c(x5)(D) 29°+09° +q+1,
d (%) = T2 () | 2 (K@) + T (2 (k) | 26 (K)D) 2a(a* -29+2) and c(z)1) 2q°~q°+q+1,

d(z:) = r(z;(k»|z;(k>(1)+|r(0;(k»|9;(k)(1)zq(“—z”) and c(z,)(1) >

(9°+9°+2q+2)
2 )

d (%) = T(r2(K) | 2 (K)D) + T(6; (k) | 63 (K)(2) > 9 and  ¢(z,)(1) 2 (
d (%) ATz (k) 2: (DA +IT (2 (KD | 25 (K)D) = (@+1)(a° —q+1) and c(x)1) >q*+9*+q+2,
d(220) = T(ra (kD) |2k DO+ T (6 (kD | 26D = (@+D) +a(@-1)* and c(3,,)1) =9 -q* +q+2,

d(z) =1 TG D) | 2506 DA+ TG (0) 65 (K)D) > (q+1)(a>—q+2/2 and ¢(4,)1) z%

a(@*-29+3) 0°—q°+2q+2)
2 2 '

A05) A TGAK D) 24D + M@0 1000 > DI and oy, yay > @40 1200

d () = T2 (K) | 2, (KD + T (s (k) | 25 (K)(D) 2 (a° ~1)(a+1) and c(x:)(D) 29*(q+2),
d () = Tz () |25 (@) + T (6 (k) | 26 (KD = (@-1)(9° +1) and c(z,)(D) 20°,

d () = Tz () |7, (@) + TO, () [ 6, (@) > (@ +2(a? ~1)/2 and ¢(z5)(1) 2 02 i

(9-1)(9*+q+2)
2

Q+3)

d(76) = T (2 () | 24 (K)D) +T(G; (k) 165 (K)(D) > and ¢(z,5)(1) L a'(@+ (q;l)

d () = TG (K L (K D@ + T (s (k) [ 25 ()@ 2 (@-1)(a° +a+1) and ¢(x,)D) >a(@® +q+1),
d(726) = TG (K D) | 27 (K, D@ + 1T (6 (K)) | 25 ()@ 2 (@-1)(a° —q+1) and c(x,)(D) 2a(@* -q+1),

d(z0) = Tz (k1) | 2 (K )D) + TG, (k) | 6,k > @ ‘l)(q; 942 and ey,)0 = q(q;?’)

d(z) A T (K1) | 7, (D) + ] TG, 1 6,00D) = ‘1)(“22 —4+2)

d(x2) = TE) 16O +IT(2s(K) | 25 (K)D) = 2a-1)(q° ~1) and c(z,)(D) 22(a°+9°-1),
d(22) A T@E) 0, +IT (2 (K) |15 (K)D) 2 (q+1)(q-1)* and c(r2,)(1) >229°(4-1),

and o(z,)p) > 392,
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d(x2) = ()16, +1T(0, (k) | 6, (K)(D) =

(3“‘2)2(“2‘1) and c(z)(1) >

q°(3q-1)
2 )

Bq+2)(q-1)° 39°(q-1)
2 2

d(x2) = T() 1 6,(0)+[T(0,(K) | 6, (K)(D) = and ¢(5)(1) =

d (% (k) = T(xs(K) | 2 ()@ 2a(q° ~1) and c(z(k)ND) 2a*(q+1),
d (% (K) = T(z6(K) | 2 (K)D) 2 a(@-D* and c(x(K)ND) 2a°(q-1),

d(6,(k)) = T(@,(K)) | 6,(k)(1) = q(q_2—1)

and (8, () = @D

2

40,09 =100 10,000 = 2 and @00y = TG

The values are set out in the following table :

Table (II)
X d(7) c(x)(1)
7 >q(q*-1) +1 >0 +0°+1
X >q(q-1)°+1 >q°-q°+1
s >q(9°-1)/2 +1 >(q°+9°+2)/2
Za >q(q-1)°%/2+1 >(q°-qg°+2)/2
s >q° >0*+q°+q+1
X >q(9° -2q+2) >q°—q°+q+1
Ve >q(g* +1)/2 >(q°+9°+2q+2)/2
e >q(9° —2q+3)/2 >(9°-q° +2q+2)/2
X >(q+1)(q* -q+1) >q°+0°+0+2
Xo >(q+1)+a(q-1)° >q°-q°+q+2
I >(q+1)(9°—q+2/2 | >(q°+9°+2q+4)/2
X >(q+1)+q(q-1)°/2 | 2(q°-q° +2q+4)/2
X > (q+1)(q* -1) >q°(q+2)
X > (q-1)(q” +1) >q°
Xs >(q+2)(q* -1)/2 >q°(q+3)/2
Xae >(q-1)(q* +q+2)/2 >q°(q+1)/2
X >(q-1)(q*+q+1) >q(q° +q+1)
Xs >(q-1)(q* -q+1) >q(q° -q+1)
o >(q-1)(q* +q+2)/2 >q°(q+3)/2
X0 >(q-1)(9°-q+2/2 | >q(q°—q+2)2
X >(29-1)(9*-1) >2(q°+9° -1)
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X >(2q9+1)(q-1)° >2q%(q-1)

X3 > (30-2)(q° -1)/2 >q°(3q-1)/2

Xos > (3q+2)(q-1)°/2 >3q°(q-1)/2
25 (k) >q(9°-1) >q°(q+1)
26(K) >q(q-1)° >q°(q-1)
6,(k) q(q® -1)/2 q°(q+1)/2
6, (k) q(a-1)%/2 q*(q-1)/2

Now by Table (IlI) and Definition 2.1 ,we have

2
min {d(y):Kery :1}:@ and

min {c(z)(1) : Kery =1} = qz(q—z_l)

Hence r(G)= w , ¢(G) = w, and the result follows.
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