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1 Introduction

In recent years, the application of the homotopy perturbation method
(HPM) [1-8] in nonlinear problems has been developed by scientists and
engineers, because this method deforms the difficult problem under study into
a simple problem which is easy to solve. Most perturbation methods assume a
small parameter exists, but most nonlinear problems have no small parameter
at all. Many new methods, such as variational method [9,10], variational
iterations method [11-13], and others [14,15], are proposed to eliminate the
shortcomings arising in the small parameter assumption. A review of recently
developed nonlinear analysis methods can be found in [16]. Recently, the
applications of homotopy perturbation theory have appeared in the works
of many scientists [17-20], which has become a powerful mathematical tool
[21,22]. Recently, S. Abbasbandy [18] applied this method to functional
integral equations. In this paper, we propose MHPM to solve Fourth order
Volterra integro-differential equations and comparisons are made between the
exact solutions and the modified homotopy perturbation method.

2 Homotopy-perturbation method

In this letter, we apply the Homotopy-perturbation method to the discussed
problems. To illustrate the basic ideas of the new method, we consider the
following nonlinear differential equation,

A(u)− f(r) = 0, (1)
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with the boundary condition of:

B(u,
∂u

∂n
) = 0, (2)

where A(u) is defined as follows:

A(u) = L(u) +N(u). (3)

Homotopy-perturbation structure is shown as:

H(v, p) = L(v)− L(u0) + p L(u0) + p [N(v)− f(r)] = 0, (4)

or
H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, (5)

where,
v(r, p) : Ω× [0, 1] −→ R. (6)

Obviously, considering Eqs. (4) and (5) we have:

H(v, 0) = L(v)− L(u0) = 0, H(v, 1) = A(v)− f(r) = 0, (7)

where p ∈ [0, 1] is an embedding parameter and u0 is the first approximation
that satisfies the boundary condition. The process of the changes in p from
zero to unity is that of v(r, p) changing from u0 to ur. We consider v as:

v = v0 + p v1 + p2v2 + . . . , (8)

and the best approximation is:

u = lim
p−→1

v = v0 + v1 + v2 + . . . . (9)

the above convergence is discussed in [30,31].

3 Description of modified homotopy perturba-

tion method

This section is devoted to reviewing MHPM for solving fourth order Volterra
integro-differential equation:

f (4)(x) = g(x) +

∫ x

0

k(t, f(t), f ′(t), ..., f (4)(x)) dt. (10)

To explain HPM, we consider the above integro-differential equation as

L(u) = u(4)(x)− g(x)−

∫ x

0

k(t, f(t), f ′(t), ..., f (4)(x)) dt = 0, (11)
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with solution f(x). As a possible remedy, we can define homotopy H(u, p)
by

H(u, 0) = F (u), H(u, 1) = L(u),

where F (u) is a functional operator with known solution v0, which can be
obtained easily. In MHPM, we difine

v0(x) = a+ b x+ c x2 + d x3,

which is dependent on the order of differentiation. Typically, we may choose
a convex homotopy by

H(u, p) = (1− p) F (u) + p L(u) = 0, (12)

and continuously trace an implicitly defined curve from a starting point
H(v0, 0) to a solution function H(f, 1).

The embedding parameter p monotonously increases from zero to unit as
trivial problem F (u) = 0 is continuously deformed to the original problem
L(u) = 0. The embedding parameter p ∈ (0, 1] can be considered as an
expanding parameter [5].

The HPM uses the homotopy parameter p as an expanding parameter to
obtain [23]

u = v0 + p v1 + p2v2 ++ . . . . (13)

When p → 1, (13) corresponds to (12) and becomes the approximate solution
of (11), i.e.,

f = lim
p−→1

u = v0 + v1 + v2 + . . . . (14)

Series (14) is convergent for most cases, and the rate of convergence depends
on L(u) [5].

4 Numerical example

In this section, three examples are presented. The examples are linear
and nonlinear fourth order volterra integro-differential equations that using
MHPM and the results are compared with the exact solutions.

Example 4.1. Consider the following linear fourth order integro-differential
equation with the exact solution as u(x) = 1 + x ex.

u(4)(x) = x (1 + ex) + 3 ex + u(x)−

∫ x

0

u(t) dt, (15)

with the boundary conditions:

u(0) = 1, u(1) = 1 + e, u′′(0) = 2, u′′(1) = 3e. (16)

181

G.A. Afrouzi, D. D. Ganji, H. Hosseinzadeh, R.A. Talarposhti/ TJMCS Vol .3 No.2 (2011) 179 - 191



let F (u) = u(4)(x) − g(x) = 0,In order to solve Eq.(15) using MHPM, we
construct the following homotopy we need a initially equation

v0(x) = a+ b x+ c x2 + d x3,

Hence, we may choose a convex homotopy such that

H(u, p) = (1− p) (u(4)(x)− x (1 + ex)− 3 ex
− u(x))

+p (u(4)(x)− x (1 + ex)− 3 ex
− u(x) +

∫ x

0

u(t) dt) = 0. (17)

Substituting (13) into (17), and equating the terms with identical powers of
p, we have

p0 : v
(4)
0 (x) = x ex + x+ v0(x) + 3 ex, (18)

p1 : v
(4)
1 (x) = v1(x)−

∫ x

0

v0(t) dt), (19)

p2 : v
(4)
2 (x) = v2(x)−

∫ x

0

v1(t) dt), (20)

...

The solutions of Eqs. (18)-(20) may be written as follows:

v0(x) = a+ b x+ c x2 + d x3, (21)

v1(x) = 6d+ a x+
1

2
b x2 +

1

3
c x3 +

1

4
d x4, (22)

v2(x) = 2 c+ 12 d x+
1

2
a x2 +

1

6
b x3 +

1

12
c x4 +

1

20
d x5, (23)

The solution of linear fourth order volterra intogro-differential equation,
whenp −→ 1, will be follows:

f(x) = v0(x) + v1(x) + v2(x). (24)

Incorporating the boundary conditions, Eq. (15), into f(x), we have:

f(0) = a+ b+ 2 c = 2, (25)

f(0) = a+ 6 d+ 2 c = 1, (26)

f(1) = 5 c+ 10 d+ 2 b+ a = 3e, (27)

f(1) =
5

2
a+

5

3
b+

41

12
c+

193

10
d = 1 + e, (28)
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Solving Eqs. (24)-(27) simultaneously, we obtain:

b = 1.599415315, a = −1.970351743, d = 0.999025525e−1, c = 1.185468215.

Therefore, the approximate solution of Example 4.1 can be readily obtained
by

u(x) = f(x) = 1.000000002 + 0.827894202x+ 1.000000001x2

+ 0.7616278434x3 + 0.1237646560x4 + 0.004995127625x5. (29)

In practice, all terms of series f(x) =
∑∞

n=0 vn(x) cannot be determined and
so we use an approximation of the solution by the following truncated series:

ϕm(x) =

m−1∑
n=0

vm(x) with f(x) = lim
m→∞

ϕm(x). (30)

The results of which are shown in Table 1 (with three terms). fig1. shows
the numerical result of exact solution and MHPM solution, it is clear that
the results are in excellent agreement.

Table 1

Numerical results of Example 4.1

x Exactsolution MHPM error

0 1 1.000000002 0.2E-8
0.1 1.110517092 1.093563476 0.16953616E-1
0.2 1.244280552 1.211871486 0.32409066E-1
0.3 1.404957642 1.359946847 0.45010795E-1
0.4 1.596729879 1.543121390 0.53608489E-1
0.5 1.824360636 1.767041972 0.57318664E-1
0.6 2.093271280 2.037676457 0.55594823E-1
0.7 2.409626895 2.361319719 0.48307176E-1
0.8 2.780432742 2.744599627 0.35833115E-1
0.9 3.213642800 3.194483047 0.19159753E-1
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Figure 1: The numerical result of u(x) of Eq. (15) with MHPM which is
equal to the exact solution.

Example 4.2. Consider the following nonlinear integro-differential equation
with the exact solution as u(x) = ex.:

u(4)(x) = ex
−
1

2
e2x +

1

2
−

∫ x

0

u(t) u′′(t) dt, (31)

with the boundary conditions:

u(0) = 1, u(1) = e, u′(0) = 1, u′′(0) = 1. (32)

let F (u) = u(4)(x) − g(x) = 0, In order to solve Eq.(31) using MHPM, we

construct the following homotopy we need a initially equation

v0(x) = a+ b x+ c x2 + d x3,

Hence, we may choose a convex homotopy such that

H(u, p) = (1− p) (u(4)(x)− ex + 1
2 e2x

−
1
2 )

+p (u(4)(x)− ex +
1

2
e2x

−
1

2
+

∫ x

0

u(t) u′′(t) dt) = 0. (33)

Substituting (13) into (33), and equating the terms with identical powers of
p, we have

p0 : v
(4)
0 (x) =

1

2
+ ex

−
1

2
e2x, (34)

p1 : v
(4)
1 (x) = −

∫ x

0

v0(t) v′′0 (t) dt, (35)
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p2 : v
(4)
2 (x) = −

∫ x

0

v1(t) v′′1 (t) dt, (36)

...

The solutions of Eqs. (34)-(36) may be written as follows:

v0(x) = a+ b x+ c x2 + d x3, (37)

v1(x) =
−1

60
a c x5

−
1

360
x6 b c−

1

120
x6 a d−

1

420
x7 b d

−
1

1260
x7 c2

−
1

840
c d x8

−
1

2520
d2 x9, (38)

v2(x) =
−1

27799200
a2c2x13

−
1

27799200
a2c2x13

−
1

1854391226688000

(53603550 a2c d+ 17867850 b a c2) x14
−

1

2528715309120000
(1624350

b2 c2 + 27010620 b a c d+ 5754840 a c3) x15
−

1

3371620412160000
(1021020

b c3+14619150 a2d2+3063060 b2 c d+12762750 a c2d+9189180 b a d2) x16

−
1

4409042077440000
(1413720 b2d2 + 157080 c4 + 2631090 b c2 d

−
1

5668768385280000
(2151435 b c d2 + 510510 c3d+ 1859715 a d3) x18

+8678670 a c d2) x17
−

1

7180439954688000
(554268 b d3 + 593164 c2d2) x19

−
1

30767688000
cd3 x20

−
1

215373816000
d4 x21. (39)

The solution of nonlinear fourth order volterra intogro-differential equation,
whenp −→ 1, will be follows:

f(x) = v0(x) + v1(x) + v2(x). (40)

Incorporating the boundary conditions, Eq. (31), into f(x), and solving
equations simultaneously, we obtain:

b = 1, c = 0.5, a = 1, d = 0.2308342493.

Therefore, the approximate solution of Example 4.2 can be readily obtained
by
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u(x) = f(x) = 1 + x+ 0.5 x2 + 0.2308342493 x3
− 0.008333333334 x5

−0.003312507633 x6
− 0.0007480180539 x7

− 0.0001374013388 x8

−0.00002114462327 x9
− 0.8993064548× 10−8 x13

−0.574513617× 10−8 x14
− 0.1985950713× 10−8 x15

−0.5063789010× 10−9 x16
− 0.1061913876× 10−9 x17

−0.1674502694× 10−10 x18
− 0.2049878884× 10−11 x19

−0.1998830099× 10−12 x20
− 0.1318281272× 10−13 x21. (41)

In practice, all terms of series f(x) =
∑∞

n=0 vn(x) cannot be determined and
so we use an approximation of the solution by the following truncated series:

ϕm(x) =

m−1∑
n=0

vm(x) with f(x) = lim
m→∞

ϕm(x). (42)

The results of which are shown in Table 2 (with three terms). fig2. shows
the numerical result of exact solution and MHPM solution, it is clear that
the results are in excellent agreement.

Table 2

Numerical results of Example 4.2

x Exactsolution MHPM error

0 1 1 0
0.1 1.105170918 1.105230748 0.59830E-4
0.2 1.221402758 1.221843785 0.441027E-3
0.3 1.349858808 1.351209687 0.1350879E-2
0.4 1.491824698 1.494673169 0.2848471E-2
0.5 1.648721271 1.653535684 0.4814413E-2
0.6 1.822118800 1.829034189 0.6915389E-2
0.7 2.013752707 2.022315475 0.8562768E-2
0.8 2.225540928 2.234405354 0.8864426E-2
0.9 2.459603111 2.466171899 0.6568788E-2
1 2.718281828 2.718281826 0.2E-8
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Figure 2: The numerical result of u(x) of Eq. (31) with MHPM which is
equal to the exact solution.

Example 4.3. Consider the following nonlinear integro-differential equation
with the exact solution as u(x) = e−x.

u(4)(x) = e−x + e−3x
− 1 + 3

∫ x

0

u3(t) dt, (43)

with the boundary conditions:

u(0) = 1, u′(0) = −1, u′′(0) = 1, u′′′(0) = 1. (44)

let F (u) = u(4)(x) − g(x) = 0, In order to solve Eq.(43) using MHPM, we

construct the following homotopy we need a initially equation

v0(x) = a+ b x+ c x2 + d x3,

Hence, we may choose a convex homotopy such that

H(u, p) = (1− p) (u(4)(x)− e−x
− e−3x + 1)

+p (u(4)(x)− e−x
− e−3x + 1− 3

∫ x

0

u3(t) dt) = 0. (45)

Substituting (13) into (45), and equating the terms with identical powers of
p, we have

p0 : v
(4)
0 (x) = e−x + e−3x

− 1, (46)

p1 : v
(4)
1 (x) = 3

∫ x

0

v3
0(t) dt, (47)

p2 : v
(4)
2 (x) = 3

∫ x

0

v3
1(t) dt, (48)
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...

The solutions of Eqs. (46)-(48) may be written as follows:

v0(x) = a+ b x+ c x2 + d x3, (49)

v1(x) =
1

40
a3x5 +

1

80
a2b x6 +

1

235200
(840b2a+ 840ca2)x7

+
1

470400
(1260cab+210b3+630da2)x8+

1

846720
(504ac2+504b2c+1008dab)x9

+
1

1411200
(420bc2+840acd+420b2d)x10+

1

2217600
(720bcd+360ad2+120c3)x11

+
1

3326400
(315c2d+ 315 bd2)x12 +

1

17160
cd2x13 +

1

80080
d3x14, (50)

v2(x) =
1

134400
a4x10 +

3

492800
a3bx11 +

1

2131024896000

(5765760ca3 + 3243240b2a2)x12 +
1

3078147072000
(3363360ca2b+ 720720ab3

+4724720da3)x13 +
1

4309405900800
(2426424da2b+ 72072b4 + 1105104cb2a

+672672c2a2)x14 +
1

5876462592000
(524160bac2 + 152880b3c+ 742560db2a

+808080dca2)x15 +
1

7835283456000
(202020d2a2 + 87360ac3 + 644280dcab

+120120b2c2 + 100100db3)x16 +
1

10246139904000
(151200db2c+ 43680bc3

+159600dac2 + 179760d2ab)x17 +
1

13173608448000
(6240c4 + 45240b2d2

+82680dbc2 + 94080acd2)x18 +
1

16686570700800
(51408bcd2 + 16016c3d

+18816ad3)x19 ++
1

20858213376000
(10815bd3 + 15435c2d2)x20

+
1

3834230400
cd3x21 +

1

28117689600
d4x22. (51)

The solution of nonlinear fourth order volterra intogro-differential equation,
whenp −→ 1, will be follows:

f(x) = v0(x) + v1(x) + v2(x). (52)
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Incorporating the boundary conditions, Eq. (43), into f(x), and solving
equations simultaneously, we obtain:

b = −1, c = 0.5, d = 0.1666666667, a = 1.

Therefore, the approximate solution of Example 4.3 can be readily obtained
by

u(x) = f(x) = 1− x+ 0.5x2 + 0.1666666667x3 + 0.025x5
− 0.0125x6

+0.005357142857x7
− 0.0015625x8 + 0.2480158730× 10−3x9

+0.3224206351× 10−4x10
− 0.2187049063× 10−4x11

+0.4189965126× 10−5x12 + 0.2847268481× 10−6x13

+0.1479382060× 10−6x14
− 0.2787391178× 10−8x15

− 0.1757234772x19

−0.3039030663×10−8x16+0.8585347015×10−9x17
−0.3732209500×10−10x18

+0.2738396362×10−11x20+0.6037234528×10−12x21+0.2744197514×10−13x22.

(53)

In practice, all terms of series f(x) =
∑∞

n=0 vn(x) cannot be determined and
so we use an approximation of the solution by the following truncated series:

ϕm(x) =
m−1∑
n=0

vm(x) with f(x) = lim
m→∞

ϕm(x). (54)

The results of which are shown in Table 3 (with three terms). fig3. shows
the numerical result of exact solution and MHPM solution, it is clear that
the results are in excellent agreement.

Table 3
Numerical results of Example 4.3

x Exactsolution MHPM error

0 1 1 0
0.04 0.9607894392 0.9608106692 0.212300E-4
0.08 0.9231163464 0.9232854120 0.1690656E-3
0.12 0.8869204367 0.8874885866 0.5681499E-3
0.16 0.8521437890 0.8534850921 0.13413031E-2
0.2 0.8187307531 0.8213405980 0.26098449E-2
0.24 0.7866278611 0.7911217470 0.44938859E-2
0.28 0.7557837415 0.7628963355 0.71125940E-2
0.32 0.7261490371 0.7367334755 0.105844384E-1
0.36 0.6976763261 0.7127037390 0.150274129E-1
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Figure 3: The numerical result of u(x) of Eq. (43) with MHPM which is
equal to the exact solution.

5 Conclusion

In this work, we proposed the MHPM for solving the linear and nonlinear integro-
differential equations and compared our results with the exact solution. The figures
clearly show that result by MHPM are in excellent agreement with the exact solutions.
MHPM provides highly accurate numerical solutions in comparison with other methods
and this is powerful mathematical tool can solve a large class of nonlinear differential sys-
tems,especially nonlinear integral systems and equations used in engineering and physics.
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