
Bhawna Minocha, Saswati Tripathi / TJMCS Vol .3 No.2 (2011) 192 - 201 

192 

 

 
 
 
 

Available online at 

http://www.TJMCS.com 
  

The Journal of Mathematics and Computer Science Vol .3 No.2 (2011) 192 - 201 

 
Solving Time Constrained Vehicle Routing Problem 

 using Hybrid Genetic Algorithm 
 

Bhawna Minocha1, Saswati Tripathi2 

1Amity School of Computer Sciences, Noida, India 
2Indian Institute of Foreign Trade, Kolkata, India 

 
Received: May 2011, Revised: June 2011 
Online Publication: December 2011 

 

Abstract: 
 
Vehicle Routing Problem with Time windows (VRPTW) is an example of scheduling in constrained 
environment. It is a well known NP hard combinatorial scheduling optimization problem in which 
minimum number of routes have to be determined to serve all the customers within their specified time 
windows. So far different analytic and heuristic approaches have been tried to solve such problems. In this 
paper we proposed algorithms which incorporate new local search techniques with genetic algorithm 
approach to solve VRPTW scheduling problems in various scenarios. 
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1.  Introduction  
 
Scheduling and routing problems have attracted considerable attention in recent years due to their wide 
applicability and importance in determining efficient distribution strategies to reduce operational cost in 
transportation logistics. VRPTW is an extension of the Vehicle Routing Problems (VRP) arising in 
transportation logistics that usually involve scheduling in constrained environment.  
 
VRP may be described as follows: Given a set of vehicles with fixed and identical capacity located at 
common depot and a set of geographically scattered locations (cities, stores, schools, customers, 
warehouses etc.) which have varying demands, it is desired to determine minimum cost routes of the 
vehicles in such a way that each location is visited once and only once by one of the vehicles under the 
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restriction that all routes start and ultimately end at the depot. The routes are designed in such a way that 
the total demands at locations enroute do not exceed the carrying capacity of the vehicle.  
 
VRPTW is an extension of the VRP with the additional restriction that at each location there is a time 
window. The vehicle can visit the location in this specified time window only. The windows are of two 
types:  Soft time windows and hard time windows. A soft time window can be violated at some cost 
whereas a hard time window has to be strictly adhered to. It does not accept a vehicle after the latest time 
specified in the time window. However, if a vehicle arrives at such a destination prior to earliest specified 
time of the window, it will have to wait till start of the time window. However this waiting penalizes the 
management either in the direct waiting cost or the increased number of vehicles to be used as because of 
such a waiting it will be able to service fewer destinations later even when capacity is available in the 
vehicle. Figure 1 shows a graphical model of VRPTW and its solution. 
 
The objective of VRPTW is to service all the customers as per their requirement while minimizing the 
number of vehicles required as well as the total travel distance of all the vehicles used without violating 
capacity constraints of the vehicles and the customer’s time window requirement such that each customer 
is visited in any way once and only once by one of the vehicles. All the routes are to start and ultimately end 
at the depot. 
Routing and scheduling problems arise in a wide range of practical decision making situations. VRPTW 
arises in retail distribution, school bus/taxi scheduling, waste collection, courier/mail delivery/pickup, and 
airline/railway fleet routing etc. VRPTW is NP-hard. It has been extensively investigated in recent years 
using analytic optimization techniques, heuristics and meta-heuristics approaches.   
 

 
Figure 1: Typical output for VRPTW 

 
The early work on VRPTW can be broadly divided into two categories: exact optimization and heuristic 
algorithms. Using exact optimization techniques, Kohl et al. [11], Larsen [12] and Chabrier [4] obtained 
significant improvements in Solomon's benchmark problem instances. Survey of the VRPTW literature by 
heuristics and meta-heuristics approaches has been given by Bräysy et al. [3] and Minocha et al. [14]. 
Cordeau et al. [5] and Rochat et al. [16] tried to solve these problems using tabu search whereas 
Gambardella et al. [7] considered ant colony optimization approach. Shaw [18] applied large neighborhood 
search (LNS). This was extended by Ropke et al. [17] as Adaptive-LNS approach to solve VRPTW problems. 
Homberger et al. [9] proposed parallelization of a two-phase metaheuristic technique for solving VRPTW. A 
complete survey of the VRPTW literature has been given by Cordeau et al. [6] which includes both the 
categories. 
 
The Genetic Algorithm (GA) approach was proposed by Holland [8] in 1975. It is an adaptive heuristic 
search method that mimics evolution through natural selection. It works by combining selection, crossover 
and mutation operations of genes. The selection procedure drives the population toward a better solution 
while crossover uses genes of selected parents to produce new offsprings that form the next generation. 
Mutation is used to escape from local minima. The genetic algorithm approach has now become popular as 
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it helps in finding reasonably good solutions for complex mathematical problems, NP-hard problems like 
VRP. 
 
Blanton et al. [2] were the first to use GA approach to solve VRPTW. They hybridized GA approach with a 
greedy heuristic. A cluster-first, route-second method using genetic and local search optimization was used 
by Thangiah [22] and GENEROUS by Potvin et al. [15]. A multi-objective representation of VRPTW using 
pareto-ranking was used by Ombuki et al [13]. Others such as Berger et al. [1], Tan et al. [21] and many 
more also used GA for solving VRPTW problems.  
 
In this study we consider an alternative approach based on the merger of genetic algorithm approach with 
new local search heuristics for solving VRPTW problems. In section 2 we formally describe the VRPTW 
problem. In section 3 we present our proposed hybrid of GA with heuristics based local search. Section 4 
shows the results we obtained in solving some of the Solomon’s benchmark problem by using proposed 
algorithm followed by conclusion in section 5. 
 
2.  Vehicle Routing Problem with Time Windows (VRPTW) 
 
The VRPTW is represented by a set of uniform vehicles denoted by V and directed graph G such that G = (N, 
A) is a connected directed graph with node set N = C U {0, n+1} and arc set A, where C stands for customers, 
each of which can be serviced only within a specified time interval. The set A of arcs represents all possible 
connections between the nodes (including node representing depot). Nodes 0 and n+1 represent the 
central depot, i.e. exiting and returning depot respectively. We associate a cost cij and time tij with each arc 
(i, j) ε A of the routing network. Each vehicle has a capacity limit q, and each customer i, i ε C has a varying 
demand di. Each customer, i   ε C must be serviced within a pre-defined time window [ai , bi]. Vehicles 
arriving later than the latest arrival time i.e. after bi are penalized while those which reach the customer vi 
earlier than earliest arrival time i.e. before the ai, incur waiting time wi, until service is possible. Vehicles 
must also leave the depot within the depot time window [a0, b0] and must return before or at time bn+1. 
The aim of the VRPTW is to service all the C customers using the V vehicles such that the following 
objectives are met and the following constraints are satisfied. 
 
Objectives: 

 Minimize the total number of vehicles used to service the customers. 
 Minimize the distance traveled by the vehicles. 

Constraints: 
 Each customer is serviced only once. 
 Time window constraint should be observed. 
 Vehicle capacity constraint is observed. 
 Each vehicle starts from node 0 and ends at node n+1. 

 

3. HYBRID GENETIC ALGORITHM 
 
Although GA perform well in global search, but they usually take long time to converge to the global 
optimal solution. On contrary local searches (valid in a small region of search space) are quick in finding an 
optimal solution. Thus to improve the efficiency of GA we try to incorporate local searches with them. We 
call these as hybridized GA.  
 
After building the initial population, all individuals are evaluated according to the fitness criteria. The 
evolution continues with tournament selection, where good individuals are selected for reproduction. Two 
best individuals are kept for next generation without going through genetic operations. Crossover and 
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mutation are then applied to modify the selected individuals to form a new feasible generation. To further 
improve the individuals, local search heuristics are applied. We generate a random number r between 0 
and 1, if r is less than 0.8; one of the local search algorithms is then executed, otherwise no local search 
algorithm executed. The Process is continued iteratively till the best solution does not change for a 
specified number of generations or till an overall specified number of generations have been performed. 
The best solution is taken as the desired optimal solution. The working of the proposed algorithm is 
summarized in the flowchart is shown in Figure 2. 

 
3.1 Chromosome & Individual Representation  
 
The representation of the GA chromosome in the present work is very simple. Each customer has an unique 
integer identifier i, where i ε N. An individual, which is a collection of chromosomes, represents a complete 
routing solution. Each chromosome represents a route, which is variable in length, contains a sequence of 
customers in the order in which they are visited by the vehicle. A different vehicle is needed to serve every 
chromosome of the individual. Every individual and every route must be feasible, in terms of capacity and 
time window constraints. The central depot is not considered in this representation, because all routes 
necessarily start and end in it. Figure 3 represents a complete routing solution for a problem instance with 
25 customers, consisting of 3 routes which are served by 3 vehicles; genetically we call it as 3 
chromosomes and complete solution as individual. 
 

 
 

Figure 2: Flowchart of proposed Algorithm 
 

3.2 Initial Population 
 
An initial population is built such that each solution is a feasible candidate solution i.e. every individual and 
every chromosome/route in the population satisfies time window and capacity constraints. We first 
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generate a feasible solution using Push Forward Insertion Heuristics (PFIH) first introduced by Solomon 
[19]. This method has been frequently used in literature. Details of this method are available in Thangiah 
[22]. Rest of the solutions of initial population are generated by selecting the customers in a random 
manner and inserting them in an existing route, if one exists, otherwise a new route is created. Any 
customer that violates any constraint is deleted and a new route is added to serve the customer. This 
process is repeated until all the customers get served and a feasible initial population has been generated. 
 

 
 
 
 

 
 
 
 

Figure 3:   An individual with 3 chromosomes / vehicles / routes. It represents a solution for a problem 
instance with 25 customers. 

 
 
3.3 Fitness 
 
The fitness function measures the quality of the represented solutions. As soon as all the individuals have 
been created, they are ranked as per their fitness. It is commonly obtained from the objective function of 
the optimization problem but not necessarily coincide with it. In the study inverse of the traveled distance 
was used to calculate the fitness of the individuals. 
 

3.4 Selection and Elitism 
 
In selection, parents are selected for crossover. There are many methods proposed in the literature for this. 
In this study, an n-way tournament selection procedure has been used. Here n individuals are randomly 
selected and then the individual with highest fitness is declared as the winner. This process is repeated 
until the number of selected individuals equals to the number necessary for crossover. In this study, 
tournament size, i.e. n has been taken to be 3. 
 
In the elitism process the good individuals are retained for reproduction. This ensures that the best 
solution obtained from the present population is copied unaltered in the next population. We replace the 
4% worst individuals in the new population with the best 4% individuals of the parent population. 
 
3.5 Reproduction 
 
The classical single/double point crossover is not appropriate for scheduling problems like TSP or VRP 
because duplication and omission of vertices produce infeasible sequences in the offspring. Therefore in 
this study we have used route-exchange crossover. Once a pair of individuals is selected for crossover, 
efforts are made to exchange a route that has minimum number of nodes in each of the two individuals. To 
ensure that all individuals are feasible routing solutions after crossover, any duplication is deleted. 
 
Mutation is necessary for inserting new characteristics that are not present in the current individuals. 
Without mutation the search gets limited to a very small area in the feasible region. In this study effort is 
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made to transfer customers from route that has minimum number of nodes to other routes if possible to 
decrease the number of routes. 
 
3.6 Local Search Heuristics 
 
In this study we incorporate two new local search heuristics to search for better routing solutions of 
VRPTW. These searches are ‘Replacing Next Neighbour’ and ‘Reinserting Random Customer’. 

 
i) Replacing Next Neighbor (RNN): In this local search heuristics after having selected an 

individual randomly, a node say Cj is randomly chosen on one of its routes and an effort is made 
to replace its next neighbor Cj+1 by some alternative acceptable node, say Ck and then reinsert all 
the nodes from Cj+1 onwards of this route in other routes. Necessary modifications are carried to 
generate a new feasible solution.   

 

ii) Reinserting Random Customer (RRC): This heuristic chooses a random customer from a 
randomly selected individual and tries to reinsert it in some other route. If possible we insert it 
and modify the existing solution else return the same individual. 

 
 
4. Experimental Results & Comparison 

 
In this section we summarize the results of the computational experiments performed by us using the 
proposed algorithms on a set of benchmark test problems selected from Solomon’s set of problems.  
 
Benchmark Problems: Solomon [19] generated a set of 56 problems which have been frequently used in 
literature to assess and compare the performance of algorithms developed for solving VRPTW problems. 
The problems vary in available fleet size, vehicle capacity, traveling time of vehicles and spatial and 
temporal distribution of customers to be served. Problems have been grouped in three categories namely 
R, C and RC. In problems of R category, the customers are uniformly distributed. Customers in C category 
problems are clustered either geographically or according to time windows. Category RC is a hybrid of 
problems of category R and C having an inter mix of features of problems of these two categories. 
 
Problems in categories R, C and RC are further sub classified as R1, C1, RC1 and R2, C2, RC2. Problem sets 
R1, C1 and RC1 have a short scheduling horizon and allow only a few customers per route. In contrast, 
problems in sets R2, C2 and RC2 have a long scheduling horizon permitting many customers to be serviced 
by the same vehicle. Problems differ with respect to the width of the time windows sizes.  Some have very 
tight time windows, while others have time windows which are hardly constraining. Larger problems have 
one hundred customers to be served. Smaller problems have been created out of these by considering only 
the first 25 or first 50 customers. 
 
Each problem has been analyzed ten times using inverted distance as fitness criteria and two local search 
algorithms as discussed in previous section for generating new solutions from the existing ones. The two 
approaches which have been used to generate new solution from one of the existing ones are: 
 
Algo I: - In this we randomly choose either RNN or RRC to generate a new feasible solution. For this we 
randomly generate a number r, between 0 and 1.  
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 Algo II: - In this we try both RNN and RRC approaches. We accept the result of the approach which 
succeeds in generating a new feasible solution. If both succeed we accept the one which gives lesser 
objective value. 
 
In our present study we have chosen from these sets: 15 problems of 25 customers; 10 problems of 50 
customers and 5 problems of 100 customers. The best and the worst results (fitness criteria wise) are 
listed in Table 1 for 25 node problems. Table 2 shows results for 50 node problems and Table 3 for 100 
node problems. Following parameters have been used: Population Size = 100; Generation size = 1000; 
Crossover rate = 0.80; Mutation rate = 0.20. 
 
Table 1, 2 and 3 present a summary of our results and compare them with the best-known routing 
solutions available in literature. Bold numbers in Table 1, 2 and 3 indicate that the obtained solutions are 
the same as the best-known or there is an improvement on the currently best known solution. The 
proposed algorithm has been coded in C++ language and implemented on Intel(R) Core(TM) 2 Duo 2.0 GHz 
processor. Regarding the complexity of the algorithms it is of order O(MN2).  Here M is the number of 
objectives and N is the total feasible solutions. This is due the fact that for each objective each feasible 
solution has to be evaluated and for ranking each of the N solutions are compared with each other. 
 
The proposed algorithms have produced new improved results in RC203-RC208 for 25 nodes with smaller 
number of vehicles but with slightly higher routing cost, as reported in Table 1. For RC201 and RC205, we 
obtained best-known result using Algo I. Similarly for 50 node problems, with Algo I and Algo II, C2 and R2 
show some good solutions which need lesser vehicles. In 100 node problems, for R101, we obtained the 
best-known solution. In RC101, there are two reported solutions in the Table 3 that have better distance 
scores than the best known solution. Similarly for R105 in Table 3, we obtained one solution which is 
better than best-known. However, they need more vehicles than the best-known solutions. For rest of the 
cases, almost all the results are within (10%) of the best-known results. In some cases like R201, R202 and 
R203 there are two reported solutions in the Table 2 which have lesser number of vehicles than the best-
known with higher routing cost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Comparison of Best Known results with the results generated by 
 Proposed Algorithms for Solomon’s 25 customers set Problem 

  

Problem Algo I Algo II Best 
Known [Ref.] 

Best Worst Best Worst 

C201 2/ 215.54 2/ 237.15 2/ 215.54 2/ 237.15 2/ 214.7     [11] 
R101 8/ 618.33 9/ 657.90 8/ 618.33 8/ 651.89 8/ 617.1     [11] 
R102 7/ 581.45 7/ 671.91 7/ 576.79 8/ 637.84 7/ 547.1     [11] 
R105 6/ 539.62 6/ 593.11 6/ 531.80 6/ 610.14 6/ 530.5     [11] 
R109 5/ 493.46 6/ 570.96 5/ 472.26 6/ 583.03 5/ 441.3     [11] 
RC105 4/ 477.04 5/ 552.47 4/ 458.28 5/ 503.63 4/ 411.3     [11] 
RC106 3/ 364.53 4/ 450.64 3/ 362.39 4/ 427.03 3/ 345.5     [11] 
RC201 3/ 360.2 3/ 486.80 3/ 411.53 2/ 596. 62 3/ 360.2     [12] 
RC202 3/ 373.50 2/ 508.93 3/ 378.63 3/ 469.80 3/ 338.0     [10] 
RC203 2/ 438.51 3/ 457.28 2/ 466.83 3/ 490.02 3/ 326.9     [4] 
RC204 2/ 421.26 2/ 491.01 2/ 446.57 2/ 490.50 3/ 299.7     [4] 
RC205 3/ 338.0 3/ 495.35 2/ 595.07 2/ 681.88 3/ 338.0     [12] 
RC206 2/ 501.01 2/ 549.85 2/ 499.83 2/ 538.61 3/ 324.0     [10] 
RC207 2/ 465.17 2/ 535.70 2/ 448.60 2/ 578.75 3/ 298.3     [10] 
RC208 1/ 429.53 1/ 461.87 1/ 382.56 1/ 429.66 2/ 269.1     [4] 



Bhawna Minocha, Saswati Tripathi / TJMCS Vol .3 No.2 (2011) 192 - 201 

199 

 

Problem Algo I Algo II Best 
Known [Ref.] 

Best Worst Best Worst 

C101 5/ 363.25 6/ 476.30 5/ 363.25 6/ 410.89 5/ 362.5     [11] 
C201 2/ 444. 96 3/ 489.65 3/ 408.73 3/ 478.16 3/ 360.2     [12] 
C205 2/ 721.91 2/ 835.18 2/ 818.15 2/ 887.38 3/ 360.2     [12] 
R101 12/ 1081.13 13/ 

1134.52 
12/ 
1086.00 

13/ 
1138.14 

12/ 1044    [11] 

R201 4/ 1185.35 
5/ 1107.42 

5/ 1185.06 
 

4/1093.36 5/ 1138.92 6/ 791.9     [10] 

R202 3/ 1218.46 
4/ 1107.71 

4/ 1230.82 
 

4/ 
1050.81 

4/ 1242.94 5/ 698.5     [10] 

R203 3/ 1172.54 
4/ 1067.59 

4/ 1162.75 4/ 
1069.20 

4/ 1161.61  5/ 605.3     [4] 

R206 3/ 969.97 3/ 1160.83 3/1065.67 3/ 1161.31 4/ 632.4     [4] 
R209 3/ 1018.91 3/1188.28 3/ 

1125.86 
4/ 1068.51  4/ 600.6    [10] 

RC101 9/ 1033.05 10/ 
1105.99 

9/ 1015.56 10/ 
1101.67 

 8/ 944       [11] 

 
Table 2: Comparison of Best Known results with the results generated by  

Proposed Algorithms for Solomon’s 50 customers set Problem 

  
Problem Algo I Algo II Best 

Known [Ref.] 
Best Worst Best Worst 

C101 10/ 828.94 13/ 
1175.81 

10/ 828.94 13/ 
1008.71 

10/ 828.94    
[16] 

R101 20/ 1751.74 21/ 
1833.90 

20/ 
1755.39 

21/ 
1829.45 

19/ 1650.8    
[16] 

R102 18/ 1516.67 20/  
1792.63 

18/ 
1519.92 

20/ 
1747.09 

17/ 1486.12  
[16] 

R105 15/1375.55 18/ 
1813.68 

15/1385.63 17/ 
1629.78 

14/ 1377.11  
[18] 

RC101 15/ 
1628.08 

18/ 
2008.90 

15/ 
1640.98 

18/ 
1882.90 

14/ 1696.94  
[20] 

 
Table 3: Comparison of Best Known results with the results generated by  

Proposed Algorithms for Solomon’s 100 customers set Problem 

 
5. Concluding Remarks 
 
Vehicle routing problem with time windows involves the optimization of routes for multiple vehicles so as 
to meet all constraints and to minimize the number of vehicles needed and total distance traveled. The 
proposed hybrid algorithm incorporates GA approach with new heuristics in local search. Performance of 
proposed algorithms is comparable to those available in literature and in some cases even better in terms 
of number of vehicles which means less fuel, manpower and vehicle maintenance cost with more distance 
to travel. As for future work, it may be interesting to test proposed algorithm on some application of 
VRPTW. 
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