The Journal of
Mathematics and Computer Science

Available online at
http://www.TIMCS.com
The Journal of Mathematics and Computer Science Vol . 3 No. 3 (2011) 339-345

A note on the existence of positive solution for a class of Laplacian nonlinear system with sign-changing weight

S.H. Rasouli ${ }^{a}$, Z. Halimi and Z. Mashhadban
${ }^{a}$ Department of Mathematics, Faculty of Basic Sciences, Babol University of Technology, Babol, Iran
e-mail: s.h.rasouli@nit.ac.ir
${ }^{b}$ Department of Mathematics, Islamic Azad University Ghaemshahr branch, Iran e-mail:zeinab.halimi@yahoo.com
e-mail:zahra.mashhadban@yahoo.com

Received: August 2011, Revised: November 2011
Online Publication: December 2011

Abstract

This study concerns the existence of positive solution for the system $$
\begin{cases}-\Delta u=\lambda a(x) f(v), & x \in \Omega \\ -\Delta v=\lambda b(x) g(u), & x \in \Omega \\ u=v=0, & x \in \partial \Omega\end{cases}
$$

where $\lambda>0$ is a parameter, Ω is a bounded domain in $R^{N}(N>1)$ with smooth boundary $\partial \Omega$ and Δ is the Laplacian operator. Here $a(x)$ and $b(x)$ are C^{1} sign-changing functions that maybe negative near the boundary and f, g are C^{1} nondecresing functions such that $f, g:[0, \infty) \rightarrow[0, \infty) ; f(s), g(s)>0 ; s>0$ and

$$
\lim _{x \rightarrow \infty} \frac{f(M g(x))}{x}=0
$$

for every $M>0$.
We discuss the existence of positive solution when $f, g, a(x)$ and $b(x)$ satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.

Keywords: Laplacian system; Sign-changing weight.
AMS Subject Classification: 35J55, 35J65.

1 Introduction

In this paper we consider the existence of positive solution for the system

$$
\begin{cases}-\Delta u=\lambda a(x) f(v), & x \in \Omega \tag{1}\\ -\Delta v=\lambda b(x) g(u), & x \in \Omega \\ u=v=0, & x \in \partial \Omega\end{cases}
$$

where $\lambda>0$ is a parameter, Δ is the Laplacian operator, Ω is a bounded domain in $R^{N}(N>1)$ with smooth boundary $\partial \Omega, a(x)$ and $b(x)$ are C^{1} sign-changing functions that maybe negative near the boundary and $f, g:[0, \infty) \rightarrow[0, \infty)$ are C^{1} nondecreasing functions such that $f(s), g(s)>0$ for $s>0$.

Systems of the form (1) arise in several context in biology and engineering (see [12]). It provides a simple model to describe, for instance, the interaction of two diffusing biological species. u and v represent the densities of two species. See [13] for details on the physical models involving more general elliptic system. We refer to $[1,2,3,9,10]$ for additional results on elliptic systems.

For the single-equation, namely equation of the form

$$
\begin{cases}-\Delta u=\lambda a(x) f(u), & x \in \Omega \tag{2}\\ u=0, & x \in \partial \Omega\end{cases}
$$

with sign-changing weight function has been studied by several authors (see [11, 7]). In a recent paper [4], the authors established the existence results to the problem (2) for the case when the Laplacian operator is replaced by a p-Laplacian operator.

This paper extends the recent works in [5, 10], where the authors studied the existence of positive solution of the system (1) without the weight functions. Here we focus on signchanging weight functions $a(x)$ and $b(x)$. Due to this weights functions, the extensions are challenging and nontrivial. Our approach is based on the method of sub-super solutions, see $[6,8]$.

To precisely state our existence result we consider the eigenvalue problem

$$
\begin{cases}-\Delta \phi=\lambda \phi, & x \in \Omega \tag{3}\\ \phi=0, & x \in \partial \Omega\end{cases}
$$

Let $\phi_{1} \in C^{1}(\bar{\Omega})$ be the eigenfunction corresponding to the first eigenvalue λ_{1} of (3) such that $\phi_{1}(x)>0$ in Ω, and $\left\|\phi_{1}\right\|_{\infty}=1$. It can be shown that $\frac{\partial \phi_{1}}{\partial n}<0$ on $\partial \Omega$. Here n is the outward normal. This result is well known and hence, depending on Ω, there exist positive constants m, δ, σ such that

$$
\begin{gather*}
\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2} \leq-m, \quad x \in \bar{\Omega}_{\delta} \tag{4}\\
\phi_{1} \geq \sigma, \quad x \in \Omega_{0}=\Omega \backslash \bar{\Omega}_{\delta} \tag{5}
\end{gather*}
$$

with $\bar{\Omega}_{\delta}=\{x \in \Omega \mid d(x, \partial \Omega) \leq \delta\}$. We will also consider the unique solution, $e(x) \in C^{1}(\bar{\Omega})$, of the boundary value problem

$$
\begin{cases}-\Delta e(x)=1, & x \in \Omega \\ e(x)=0, & x \in \partial \Omega\end{cases}
$$

to discuss our existence result. It is known that $e(x)>0$ in Ω and $\frac{\partial e(x)}{\partial n}<0$ on $\partial \Omega$.
Here we assume that the weight functions $a(x)$ and $b(x)$ take negative values in $\bar{\Omega}_{\delta}$, but require $a(x)$ and $b(x)$ be strictly positive in $\Omega-\bar{\Omega}_{\delta}$. To be precise we assume that there exist positive constants a_{0}, a_{1}, b_{0} and b_{1} Such that $a(x) \geq-a_{0}, b(x) \geq-b_{0}$ on $\bar{\Omega}_{\delta}$ and $a(x) \geq a_{1}$, $b(x) \geq b_{1}$ on $\Omega-\bar{\Omega}_{\delta}$.

2 Existence results

In this section, we shall establish our existence result via the method of sub and supersolutions. A pair of nonnegative functions $\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)$ are called a subsolution and supersolution of (1) if they satisfy $\left(\psi_{1}, \psi_{2}\right)=(0,0)=\left(z_{1}, z_{2}\right)$ on $\partial \Omega$ and

$$
\left\{\begin{array}{l}
-\Delta \psi_{1} \leq \lambda a(x) f\left(\psi_{2}\right), \\
-\Delta \psi_{2} \leq \lambda b(x) g\left(\psi_{1}\right),
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
-\Delta z_{1} \geq \lambda a(x) f\left(z_{2}\right), \\
-\Delta z_{2} \geq \lambda b(x) g\left(z_{1}\right) .
\end{array}\right.
$$

Then the following result holds:
Lemma 2.1. (See [6]) Suppose there exist sub and super- solutions $\left(\psi_{1}, \psi_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ respectively of (1) such that $\left(\psi_{1}, \psi_{2}\right) \leq\left(z_{1}, z_{2}\right)$. Then (1) has a solution (u, v) such that $(u, v) \in\left[\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)\right]$.

We make the following assumptions:
(H1) $f, g:[0, \infty) \rightarrow[0, \infty)$ are C^{1} nondecreasing functions such that $f(s), g(s)>0$ for $s>0$.
(H2) For all $M>0$,

$$
\lim _{x \rightarrow \infty} \frac{f(M g(x))}{x}=0
$$

(H3) Suppose that there exists $\epsilon>0$ such that:

$$
\begin{aligned}
& \frac{\lambda_{1} a_{0}}{m} f(\epsilon)<\min \left\{b_{1} g\left(\frac{1}{2} \epsilon \sigma^{2}\right), a_{1} f\left(\frac{1}{2} \epsilon \sigma^{2}\right)\right\}, \\
& \frac{\lambda_{1} b_{0}}{m} g(\epsilon)<\min \left\{b_{1} g\left(\frac{1}{2} \epsilon \sigma^{2}\right), a_{1} f\left(\frac{1}{2} \epsilon \sigma^{2}\right)\right\},
\end{aligned}
$$

and

$$
\max \left\{\frac{\epsilon \lambda_{1}}{b_{1} g\left(\frac{1}{2} \epsilon \sigma^{2}\right)}, \frac{\epsilon \lambda_{1}}{a_{1} f\left(\frac{1}{2} \epsilon \sigma^{2}\right)}\right\} \leq \frac{1}{\|b\|_{\infty}}
$$

Now we are ready to state our existence result.
Theorem 2.2. Let $(H 1)-(H 3)$ hold. Then there exists a positive solution of (1) for every $\lambda \in\left[\lambda_{*}(\epsilon), \lambda^{*}(\epsilon)\right]$, where

$$
\begin{align*}
& \lambda^{*}=\min \left\{\frac{\epsilon m}{a_{0} f(\epsilon)}, \frac{m \epsilon}{b_{0} g(\epsilon)}, \frac{1}{\|b\|_{\infty}}\right\} \tag{6}\\
& \lambda_{*}=\max \left\{\frac{\epsilon \lambda_{1}}{b_{1} g\left(\frac{1}{2} \epsilon \sigma^{2}\right)}, \frac{\epsilon \lambda_{1}}{a_{1} f\left(\frac{1}{2} \epsilon \sigma^{2}\right)}\right\} . \tag{7}
\end{align*}
$$

Remark 2.3. Note that (H3) implies $\lambda_{*}<\lambda^{*}$.
Example 2.4. Let $\alpha>0, f(x)=e^{\frac{\alpha x}{\alpha+x}}$ and $g(x)=e^{x}$. Clearly f, g satisfy (H1) and (H2) as

$$
\lim _{x \rightarrow \infty} \frac{f(M g(x))}{x}=\lim _{x \rightarrow \infty} \frac{e^{\frac{\alpha M e^{x}}{\alpha+M e^{x}}}}{x}=0
$$

We can choose $\epsilon>0$ so small that f, g satisfy (H3).

Proof of Theorem 2.2. We shall verify that $\left(\psi_{1}, \psi_{2}\right)=(\psi, \psi)$ where $\psi=\frac{1}{2} \epsilon \phi_{1}^{2}$ is a sub-solution of (1). Since $\nabla \psi=\epsilon \phi_{1} \nabla \phi_{1}$, a calculation shows that

$$
\begin{aligned}
-\Delta \psi & =-\left(\frac{1}{2}\right) \epsilon \Delta \phi_{1}^{2} \\
& =-\epsilon\left(\left|\nabla \phi_{1}\right|^{2}+\phi_{1} \Delta \phi_{1}\right) \\
& =\epsilon\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) .
\end{aligned}
$$

Thus ψ is a sub-solution if

$$
\epsilon\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) \leq \lambda a(x) f\left(\frac{1}{2} \epsilon \phi_{1}^{2}\right)
$$

First we consider the case when $x \in \bar{\Omega}_{\delta}$. We have $\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2} \leq-m$ on $\bar{\Omega}_{\delta}$ and since $\lambda \leq \lambda^{*}$, then $\lambda \leq \frac{m \epsilon}{a_{0} f(\epsilon)}$. Hence

$$
\begin{aligned}
-\Delta \psi=\epsilon\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) & \leq-m \epsilon \\
& \leq-\lambda a_{0} f(\epsilon) \\
& \leq-\lambda a_{0} f\left(\epsilon \frac{1}{2} \phi_{1}^{2}\right) \\
& \leq \lambda a(x) f(\psi) .
\end{aligned}
$$

A similar argument shows that

$$
-\Delta \psi \leq \lambda b(x) g(\psi)
$$

when $x \in \bar{\Omega}_{\delta}$.
On the other hand, on $\Omega \backslash \bar{\Omega}_{\delta}$, we note that $\phi_{1} \geq \sigma>0, a(x) \geq a_{1}, b(x) \geq b_{1}$ and since $\lambda \geq \lambda_{*}$, we have $\lambda \geq \frac{\epsilon \lambda_{1}}{a_{1} f\left(\frac{1}{2} \epsilon \sigma^{2}\right)}$. Hence

$$
\begin{aligned}
-\Delta \psi=\epsilon\left(\lambda_{1} \phi_{1}^{2}-\left|\nabla \phi_{1}\right|^{2}\right) & \leq \epsilon \lambda_{1} \\
& \leq \lambda a_{1} f\left(\frac{1}{2} \epsilon \sigma^{2}\right) \\
& \leq \lambda a(x) f(\psi) .
\end{aligned}
$$

A similar argument shows that:

$$
-\Delta \psi \leq \lambda b(x) g(\psi)
$$

Those we have shown that $\left(\psi_{1}, \psi_{2}\right)$ is sub-solution.

Now, we will prove there exist a c large enough so that $\left(z_{1}, z_{2}\right)=\left(\frac{c}{l} e, g(c) e\right)$ is a supersolution of (1) where $l=\|e(x)\|_{\infty}$. A calculation shows that:

$$
-\Delta z_{1}=\frac{c}{l} .
$$

By (H2) we can choose c large enough so that

$$
\left.c\left(\lambda\|a(x)\|_{\infty}\right) l\right)^{-1} \geq f(l g(c)) .
$$

Hence

$$
\begin{aligned}
-\Delta z_{1}=\frac{c}{l} & \geq \lambda\|a(x)\|_{\infty} f(l g(c)) \\
& \geq \lambda a(x) f(e(x) g(c)) \\
& =\lambda a(x) f\left(z_{2}\right)
\end{aligned}
$$

Next, since $\lambda \leq \lambda^{*}$ we have $\lambda \leq \frac{1}{\|b\|_{\infty}}$. Hence

$$
\begin{aligned}
-\Delta z_{2} & =g(c) \\
& \geq g\left(c \frac{e}{l}\right) \\
& \geq \lambda\|b\|_{\infty} g\left(c \frac{e}{l}\right) \\
& \geq \lambda b(x) g\left(z_{1}\right),
\end{aligned}
$$

i.e. $\left(z_{1}, z_{2}\right)$ is a super-solution of (1) with $z_{i} \geq \psi_{i}$ for c large, $i=1,2$. (Note $|\nabla e(x)| \neq 0$ on $\partial \Omega)$. Thus, there exists a positive solution (u, v) of (1) such that $(\psi, \psi) \leq(u, v) \leq\left(z_{1}, z_{2}\right)$. This completes the proof of Theorem 2.2.

References

[1] G.A. Afrouzi and S.H. Rasouli, A remark on the existence of multiple solutions to a multiparameter nonlinear elliptic system, Nonl. Anal. 71 (2009), 445-455.
[2] G.A. Afrouzi and S.H. Rasouli, A remark on the linearized stability of positive solutions for systems involving the p-Laplacian, Positivity. 11 (2) (2007), 351-356.
[3] Jaffar Ali, R. Shivaji, Positive solutions for a class of p-Laplacian systems with multiple parameters, Journal of Mathematical Analysis and Applications. 335 (2007), 1013-1019.
[4] J. Ali, R. Shivaji, An existence result for a semipositone problem with a sign-changing weight, Abstr. Appl. Anal. 2006 (2006), 5 pages.
[5] J. Ali, R. Shivaji and M. Ramaswamy, Multiple positive solutions for a class of elliptic systems with combined nonlinear effects, Diff. Intg. Eqs. 19 (2006), 669-680.
[6] A. Canada, P. Drabek and J.L. Gamez, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc. 349 (1997), 4231-4249.
[7] M. Delgado, A. Suarez, On the existence and multiplicity of positive solutions for indefinite nonlinear eigenvalue problems, Proc. Amer. Math. Soc. 132 (2004), 1721-1728.
[8] P. Drabek and J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonl. Anal, 44 (2001), no. 2, 189-204.
[9] D.D. Hai. On a class of sublinear quasilinear elliptic problems, Proc. Amer. Math. Soc, 131 (2003), no. 842409-2414.
[10] D.D. Hai and R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh, 134 (2004), no. 1, 137-141.
[11] B. Ko, K.J. Brown, The existence of positive solutions for a class of indefinite weight semilinear elliptic boundary value problems, Nonl. Anal. 39 (2000), 587-597.
[12] A. Leung, Systems of nonlinear partial differential equations. Applications to biology and engineering, Math. Appl. (Kluwer Academic Publishers, Dordrecht, 1989).
[13] C.V. Pao, Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992.

