The Journal of
Mathematics and Computer Science

Available online at

http://www.TIMCS.com

The Journal of Mathematics and Computer Science Vol . 3 No. 3 (2011) 301-305

ϕ-PSEUDO \tilde{W}_{4} FLAT LP-SASAKIAN MANIFOLDS
 AMIT PRAKASH

Received: August 2011, Revised: November 2011
Online Publication: December 2011

Abstract. The object of the present paper is to study pseudo \tilde{W}_{4} curvature tensor in a Lorentzian para-Sasakian manifolds.

1. Preliminaries

An n-dimensional differentiable manifold M^{n} is Lorentzian para-Sasakian (LPSasakian) manifold, if it admits a (1, 1)-tensor field ϕ, a vector field ξ, a 1-form η and a Lorentzian metric g, which satisfies

$$
\begin{gather*}
\phi^{2} X=X+\eta(X) \xi \tag{1.1}\\
\eta(\xi)=-1 \tag{1.2}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{1.3}\\
g(X, \xi)=\eta(X) \tag{1.4}\\
\left(D_{X} \phi\right)(Y)=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{1.5}\\
D_{X} \xi=\phi X \tag{1.6}
\end{gather*}
$$

for arbitrary vector fields X and Y; where D denotes the operator of covariant differentiation with respect to the Lorentzian metric g ([5], [6]).

In an LP-Sasakian manifold M^{n} with structure (ϕ, ξ, η, g) it is easily seen that

$$
\begin{equation*}
\text { (a) } \phi \xi=0,(b) \quad \eta(\phi X)=0,(c) \quad \operatorname{rank} \phi=(n-1) . \tag{1.7}
\end{equation*}
$$

Let us put

$$
\begin{equation*}
F(X, Y)=g(\phi X, Y) \tag{1.8}
\end{equation*}
$$

then the tensor field F is symmetric (0,2)-tensor field. Thus we have

$$
\begin{gather*}
F(X, Y)=F(Y, X), \tag{1.9}\\
F(X, Y)=\left(D_{X} \eta\right)(Y), \tag{1.10}\\
\left(D_{X} \eta\right)(Y)-\left(D_{Y} \eta\right)(X)=0 . \tag{1.11}
\end{gather*}
$$

An LP-Sasakian manifold M^{n} is said to be Einstein manifold if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=k g(X, Y) \tag{1.12}
\end{equation*}
$$

where k is some scaler functions on M^{n}.
An LP-Sasakian manifold M^{n} is said to be η-Einstein manifold if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=\alpha g(X,, Y)+\beta \eta(X) \eta(Y) \tag{1.13}
\end{equation*}
$$

for any vector fields X and Y, where α, β are functions on M^{n}.

[^0]Let M^{n} be an n-dimensional LP-Sasakian manifold with structure (ϕ, ξ, η, g). Then we have ([6], [7]).

$$
\begin{gather*}
g(R(X, Y) Z, \xi)=\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{1.14}\\
R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X \tag{1.15}\\
R(\xi, X) \xi=X+\eta(X) \xi \tag{1.16}\\
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{1.17}\\
S(X, \xi)=(n-1) \eta(X) \tag{1.18}
\end{gather*}
$$

and

$$
\begin{equation*}
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{1.19}
\end{equation*}
$$

for any vector fields X, Y, Z where $R(X, Y) Z$ is the Riemannian curvature tensor of type $(1,3), S$ is the Ricci tensor of type $(0,2), Q$ is $(1,1)$ Ricci tensor and r is the scalar curvature.

$$
g(Q X, Y)=S(X, Y) \quad \text { for all } X, Y
$$

Recently Prasad, Narain and Mourya defined Pseudo \tilde{W}_{4} curvature tensor on a Riemannian manifold $\left(M^{n}, g\right)(n>2)$ of type $(1,3)$ as follows

$$
\begin{gather*}
\tilde{W}_{4}(X, Y) Z=a R(X, Y) Z+b[g(X, Y) Q Z-g(X, Z) Q Y] \\
-\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(X, Y) Z-g(X, Z) Y] \tag{1.20}
\end{gather*}
$$

where a and b are constants such that $a, b \neq 0$. If $a=1$ and $b=-\frac{1}{(n-1)}$ then (1.20) takes the form

$$
\tilde{W}_{4}(X, Y) Z=R(X, Y) Z+\frac{1}{(n-1)}[g(X, Z) Q Y-g(X, Y) Q Z]=W_{4}(X, Y) Z
$$

where \tilde{W}_{4} is the pseudo \tilde{W}_{4} curvature tensor ([11]). Hence $W_{4}([13])$ curvature tensor is a particular case of the tensor \tilde{W}_{4}. For the reason \tilde{W}_{4} is called pseudo \tilde{W}_{4} curvature tensor.
2. Einstein LP-Sasakian manifold satisfying (Div) $\tilde{W}_{4}(X, Y) Z=0$

Definition 2.1: A manifold $\left(M^{n}, g\right)(n>2)$ is called pseudo \tilde{W}_{4} conservative if $(\operatorname{div}) \tilde{W}_{4}(X, Y) Z=0,([3])$

In this section we assume that

$$
\begin{equation*}
\operatorname{div} \tilde{W}_{4}=0 \tag{2.1}
\end{equation*}
$$

where div denotes divergence.
Now differentiating (1.20) covariantly with respect to U, we get

$$
\begin{align*}
\left(D_{U} \tilde{W}_{4}\right)(X, Y) Z=a\left(D_{U} R\right)(X, Y) Z & +b\left[g(X, Y)\left(D_{U} Q\right)(Z)-g(X, Z)\left(D_{U} Q\right)(Y)\right] \\
& -\frac{1}{n}\left[\frac{a}{n-1}+b\right]\left[D_{U} r\right][g(X, Y) Z-g(X, Z) Y] \tag{2.2}
\end{align*}
$$

Contraction of (2.2) gives

$$
\begin{array}{r}
\left(\operatorname{div} \tilde{W}_{4}\right)(X, Y) Z=a(\operatorname{div} R)(X, Y) Z+b[g(X, Y)(\operatorname{div} Q)(Z)-g(X, Z)(\operatorname{div} Q)(Y)] \\
-\frac{1}{n}\left[\frac{a}{n-1}+b\right][g(X, Y) \operatorname{dr}(Z)-g(X, Z) d r(Y)] \tag{2.3}
\end{array}
$$

But from [2], we have

AMIT PRAKASH/ TJMCS Vol . 3 No. 3 (2011) 301-305

$$
\begin{equation*}
(\operatorname{div} R)(X, Y) Z=\left(D_{X} S\right)(Y, Z)-\left(D_{Y} S\right)(X, Z) \tag{2.4}
\end{equation*}
$$

If LP-Sasakian manifold is an Einstein manifold, then from (1.12) and (2.4), we get

$$
\begin{equation*}
(\operatorname{div} R)(X, Y) Z=\left(D_{X} S\right)(Y, Z)-\left(D_{Y} S\right)(X, Z)=0 \tag{2.5}
\end{equation*}
$$

From (2.3) and (2.5), we get

$$
\begin{equation*}
\left(\operatorname{div} \tilde{W}_{4}\right)(X, Y) Z=\left[\frac{b(n-1)(n-2)-2 a}{2 n(n-1)}\right][g(X, Y) d r(Z)-g(X, Z) d r(Y)] \tag{2.6}
\end{equation*}
$$

From (2.1) and (2.6), we get

$$
\begin{equation*}
g(X, Y) d r(Z)-g(X, Z) d r(Y)=0, \quad \text { provided } 2 a-b(n-1)(n-2) \neq 0 \tag{2.7}
\end{equation*}
$$

which shows that r is constant. Again if r is constant then from (2.6), we get

$$
\begin{equation*}
\left(\operatorname{div} \tilde{W}_{4}\right)(X, Y) Z=0 \tag{2.8}
\end{equation*}
$$

Hence, we can state the following theorem :
Theorem 2.1. An Einstein LP-Sasakian manifold $\left(M^{n}, g\right)(n>2)$ is pseudo \tilde{W}_{4} conservative if and only if the scalar curvature is constant, provided $2 a-b(n-$ 1) $(n-2) \neq 0$.

3. $\phi-$ Pseudo \tilde{W}_{4} flat LP-Sasakian manifold.

Definition 3.1: A differentiable manifold $\left(M^{n}, g\right)(n>2)$ satisfying the condition ([1])

$$
\begin{equation*}
\phi^{2} \tilde{W}_{4}(\phi X, \phi Y) \phi Z=0 \tag{3.1}
\end{equation*}
$$

is called ϕ - pseudo \tilde{W}_{4} flat LP-Saskian manifold.
Suppose that $\left(M^{n}, g\right)(n>2)$, is a ϕ-pseudo \tilde{W}_{4} flat LP-Sasakian manifold. It is easy to see that

$$
\begin{align*}
& \phi^{2} \tilde{W}_{4}(\phi X, \phi Y) \phi Z=0, \text { holds if and only if } \\
& g\left(\tilde{W}_{4}(\phi X, \phi Y) \phi Z, \phi W\right)=0 \\
& \text { for any vector fields } X, Y, Z, W \text {. } \\
& \text { By the use of }(1.20), \phi-\text { pseudo } \tilde{W}_{4} \text { flat means, } \\
& a^{\prime} R(\phi X, \phi Y, \phi Z, \phi W)=-b[S(\phi Z, \phi W) g(\phi X, \phi Y)-S(\phi Y, \phi W) g(\phi X, \phi Z)] \\
& \quad+\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(\phi X, \phi Y) g(\phi Z, \phi W)-g(\phi X, \phi Z) g(\phi Y, \phi W)] \tag{3.2}
\end{align*}
$$

where ' $R(X, Y, Z, W)=g(R(X, Y) Z, W)$.
Let $\left\{e_{1}, e_{2}, \ldots \ldots, e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fields in M^{n}. By using the fact that $\left\{\phi e_{1}, \phi e_{2}, \ldots ., \phi e_{n-1}, \xi\right\}$ is also a local orthonormal basis, if we put $X=W=e_{i}$ in (3.2) and sum up with respect to i, then we have

$$
\begin{gather*}
\sum_{i=1}^{n-1} a^{\prime} R\left(\phi e_{i}, \phi Y, \phi Z, \phi e_{i}\right)=-b \sum_{i=1}^{n-1}\left[S\left(\phi Z, \phi e_{i}\right) g\left(\phi e_{i}, \phi Y\right)-S\left(\phi Y, \phi e_{i}\right) g\left(\phi e_{i}, \phi Z\right)\right] \\
\quad+\frac{r}{n}\left[\frac{a}{n-1}+b\right] \sum_{i=1}^{n-1}\left[g\left(\phi e_{i}, \phi Y\right) g\left(\phi Z, \phi e_{i}\right)-g\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)\right] \tag{3.3}
\end{gather*}
$$

On an LP-Sasakian manifold, we have ([9])

$$
\begin{gather*}
\sum_{i=1}^{n-1}{ }^{\prime} R\left(\phi e_{i}, \phi Y, \phi Z, \phi e_{i}\right)=S(\phi Y, \phi Z)+g(\phi Y, \phi Z), \tag{3.4}\\
\sum_{i=1}^{n-1} S\left(\phi e_{i}, \phi e_{i}\right)=r+n-1 \tag{3.5}\\
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi Z\right) S\left(\phi Y, \phi e_{i}\right)=S(\phi Y, \phi Z) \tag{3.6}\\
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi e_{i}\right)=n+1 \tag{3.7}\\
\sum_{i=1}^{n-1} g\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)=g(\phi Y, \phi Z) \tag{3.8}
\end{gather*}
$$

So by virtue of (3.4)-(3.8) and then using (1.3) and (1.19), the equation (3.3) takes the form,

$$
\begin{equation*}
a[S(Y, Z)+g(Y, Z)+n \eta(Y) \eta(Z)]=0 \tag{3.9}
\end{equation*}
$$

Since $a \neq 0$, then from (3.9) , we have

$$
\begin{equation*}
S(Y, Z)=-g(Y, Z)-n \eta(Y) \eta(Z) \tag{3.10}
\end{equation*}
$$

which shows that, M^{n} is an η-Einstein manifold.
Again contracting (3.10), we get $r=0$.
Hence, we can state the following theorem :
Theorem 3.1 Let M^{n} be an n-dimensional $(n>2) \phi-p s e u d o \tilde{W}_{4}$ flat LPSasakian manifold, then M^{n} is an η-Einstein manifold with zero scalar curvature.

References

[1] Cabrerizo, J. L., Fernandez, L. M., Fernandez, M. and Zhen, G., The structure of a class of k-contact manifolds, Acta Math. Hungar, 82 (4),(1999), 331-340.
[2] Eisenhart, L. P., Riemannian Geometry, Princeton Univ. Press,(1926), 82-91.
[3] Hicks, N. J., Notes on Differential Geometry, Affiliated East West Press Pvt. Ltd.(1969), p. 95.
[4] Khan, Q., On an Einstein projective Sasakian manifolds, NOVI SAD J. Math., 36(1),(2006), 97-102.
[5] Matsumoto, K. , On Lorentzian para-contact manifolds, Bull. of Yamagata Univ., Nat. Sci. 12(2) (1989), 151-156.
[6] Matsumoto, K. and Mihai, I. , On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor N. S., 47 (1988), 189-197.
[7] Mihai, I., Shaikh, A. A. and De, U. C., On Lorentzian para-Sasakian manifolds, Korean J. Math. Sciences. 6, 1-13.
[8] Mishra, R. S., Structure on a differentiable manifold and their applications, Chandrama Prakashan, 50 A, Balrampur House, Allahabad, India (1984).
[9] Özgür, C., ϕ-conformally flat LP-Sasakian manifolds, Radovi matematicki, 12 (2003), 99-106.
[10] Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc. 94 (3)(2002), 163-166.
[11] Prasad, B.,Narain,S. and Mourya A., A pseudo \tilde{W}_{4} curvature tensor on a Riemannian manifold, Acta Math cincia (Communicated).
[12] Narain, D.,Prakash, A., and Prasad, B., A pseudo projective curvature tensor on an Lorentzian para-Sasakian manifold,,ANALELE STIINTIFICE ALE UNIVERSITATII "AL.I.CUZA"DIN IASI(S.N.)MATHEMATICA,Tomul LV,(2009),fase.2, 275-284.
[13] Pokhariyal, G. P., Curvature tensor and their relativistic significanceIII, Yokohama mathematical Journal,20,(1972),115-119.

Department of Mathematics
Allenhouse Institute of Technology,
Rooma Kanpur U.P. India
E-mail address: apoct0185@rediffmail.com

[^0]: 2000 Mathematics Subject Classification. 53B05, 53B15, 53C25.
 Key words and phrases. LP-Sasakian manifold, pseudo \tilde{W}_{4} curvature tensor, pseudo \tilde{W}_{4} conservative, ϕ-pseudo \tilde{W}_{4} flat, η - Einstein manifold.

