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Abstract 
 
 This paper generalizes a method of determining the objective value range of 

quadratic programming problems to a general class of interval convex programming ones, 
where all coefficients in objective function and constraints are interval numbers. The upper 
bound and lower bound of the objective values of the interval quadratic program is 
calculated by formulating a pair of two-level mathematical programs. Based on the duality 
theorem and by applying the variable transformation technique, the pair of two-level 
mathematical programs is transformed into conventional one-level convex programming 
problem. Solving the pair of convex programs produces the interval of the objective values 
of the problem. Numerical results confirms the procedure of the presented approach. 
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1  Introduction 

 Recently, interval optimization problems as an extension of optimization problems 
with interval parameters and coefficients have been interested by many scientist. Various 
applications of these problems in study of uncertain systems and multiobjective 
programming problems and also their flexibility in providing different concept of solutions 
are some reasons to be concerned (see [1, 3, 6, 5]). One can see in [9] and [10], attempts to 
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examine the optimality conditions in some classes of these problems, considering a 
solution concept. One category of nonlinear optimization problems where the objective to 
be minimized and the constraints are both convex is called convex optimization problem. A 
class of interval convex optimization problems that the objective and constraints functions 
are the linear positive combination of convex functions and the combination coefficients 
are interval can be formulated as  

 
=1

= ( ),
t

k k

k

min Z fx
x  (1) 

 
=1

( ) , = 1, , ,
s

ij iij

j

q g b i r x   (2) 

 0.x  
 
where ( ), = 1, ,kf k tx   and ( ), =1,2, , , =1,2, ,ijg i r j sx    are convex functions, 
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Q q i r j s   is the matrix of constraint positive interval coefficients, 

= ( ), = 1, , , = ( ), = 1, , , = ( ), = 1, ,ik zk t b i m x z ng b x    are vectors of interval objective 

positive coefficients, interval right hand side and decision variables, respectively. 
The aim of this paper is to extend the method of given in [8] and its modified form 

[7] for finding the upper bound and the lower bound of the range of the objective values in 
problem (1)-(2), by employing a two-level mathematical programming technique.  

 

2  The upper and lower bound problems 
 First we consider some notations in presenting the interval of parameters and 

coefficients in problem (1)-(2). In general, each interval quantity a  is denoted as [ , ]l ua a , 

where la  and ua  are real numbers. Since the coefficients in objective function (1) are 
interval, so the objective value is interval. To find the bounds of interval objective value, 
suffices to find the lower bound and upper bound of the objective value of problem (1)-(2). 
Denote  
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The values of , ,k ij iq b  that attain the smallest and largest objective value for Z  can be 

determined from mathematical programming problems  
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The pair of mathematical programs (3)-(4) and (5)-(6) expresses the bound of the 
objective values. But these models are not solvable in the current form. In the next section 
we discuss how to transform these models to conventional programming.  
 

3  Finding upper and lower bound 

 The interval of the objective values of problem (1)-(2) is obtained by giving its 
lower bound and upper bound. Now we discuss about obtaining the lower bound. 

Lower bound 
Clearly program (3)-(4) can be written as an equivalent problem below  
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In searching for the minimal value of the objective function, the parameter , = 1, ,k k t   

must reach its lower bound. Consequently we have  
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It is easy to see that the largest feasible region defined by inequality constraint 

=1
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ij ij ij
q g b x  in problem (7)-(8) appears when the interval parameter ib  is equal to its 

upper bound and 
ijq  is at its lower bound. Problem (7)-(8) then becomes  
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which is a conventional programming problem. The obtained objective value is a global 

optimum solution. Thus optimal solution lZ  is the lower bound of the objective values of 
the interval convex programming. 
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Upper bound 
The upper bound of the objective value of the interval convex optimization problem 

(1)-(2) can be calculated from the two-level program of model (5)-(6). However, solving 
model (5)-(6) is not so straightforward because the outer program and inner program have 
different directions for optimization, i.e. one of them is maximization and another is 
minimization. So by writing the dual problem of inner program we transform minimization 
problem to maximization one. The Lagrangian dual problem of (5)-(6) is to maximize  
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 Since objective and constraint functions are convex and summation of convex functions is 
convex and so ( , ) l d  is convex. A necessary and sufficient condition for a minimum is that 

the gradient must vanish [2], that is:  
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 The dual form of the inner program in (5)-(6) can be written as follows:  
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 By Lagrangian duality if both problems are feasible then they both have optimal solutions 
and have the same objective value. In other words, models (5)-(6) can be reformulated as  
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 Now both the inner program and outer program have the same maximization operation, 
they can be merged in to a one-level program with constraints at the two -level considered 
at the same time :  

 , ,

=1 =1 =1 =1

= = ( ) ( ( ) ) ,
t r s n

u

k k i ij ij i z z

k i j z

Z Max Z f q g b x       x l d x x  (17) 

 

=1 =1 =1

( )( )
( ) = 0, = 1, , ,

, = 1, , ,

, = 1, , , = 1, , ,

, = 1, , ,

, 0, = 1, , , = 1, , .

t r s
ijk

k i ij z

k i jz z

l u

k k k

l u

ij ij ij

l u

i i i

i z

gf
q z n

x x

k t

q q q i r j s

b b b i r

i r z n

  

  

 


 

 

 

 

 



  
xx





 



 

 (18) 



Akbar Hashemi Borzabadi, Leila Heidarian/ TJMCS Vol .3 No.4 (2011) 396 - 402 

400 
 

  
To reach the maximal value of the objective function the interval parameters ,k ijq  must 

reach their upper bound and ib  must reach its lower bound. Thus we have  
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This model is conventional programming, and the obtained objective value is a global 

optimum solution. The optimal solution uZ  is the upper bound of the objective values of 

the interval convex program. With lZ  solved in (9)-(10), [ , ]l uZ Z  constitutes the interval 

that the objective values of the interval convex program lie.  

 
4  Numerical results  
 
 Example 4.1. Consider the following convex programming with interval 

parameters: 
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The upper bound of the objective value uZ  according to model (19) -(20) can be 
formulated as:  
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By using LINGO, we obtain * *

1 2= 0, = 0, = 9ux x Z .  

According to model (9) -(10), the lower bound of objective value lZ  can be 
formulated as:  
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and * *

1 2= 0, = 0, =1.lx x Z  Combining these two results we conclude that the objective 

values of this interval convex programming lie in the range of [1,9]. 

 
Example 4.2. Now consider the following problem  
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The optimal solution of this problem is * *

1 2= 0, = 0, =1x x Z . 

The upper bound of the objective value uZ  according to model (19) -(20) can be 
formulated as:  
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By using MATLAB (fmincon), we obtain * *

1 2= 0, = 0, =1ux x Z . 

According to model (9)-(10), the lower bound of objective value lZ  can be 
formulated as:  

 

2 4

1 2

2 2

1 2

1
2

1 2

: 2

. . 4,

3,

, 0.

l

x

Z min x x

s t x x

e x

x x



 

 



 

and * *

1 2= 0.9357, = 0.4511, = 0.9584lx x Z . Combining these two results we conclude that 

the objective values of this interval convex programming lie in the range of [0.9584,1] .  

 
5  Conclusion 
 In this paper we have generalized a numerical scheme to convex programming that 

objective function and constraint functions are convex. 
Since the objective value is interval, we calculate the upper bound and lower bound 

of objective function where upper bound of programming is two-level problem. By using 
Lagrangian function we transformed a two-level problem to one-level. By numerical 
results, the proficiency of the given approach has been examined.  
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