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Abstract  

    This paper presents a numerical method for solving Abel’s integral equation as 

singular Volterra integral equations. In the proposed method, the functions in Abel’s 

integral equation are approximated based on Bernstein polynomials (BPs) and therefore, 

the solving of Abel’s integral equation is reduced to the solving of linear algebraic 

equations. Illustrative examples are included to demonstrate the validity and applicability 

of the technique. 

  

Keywords: Abel’s integral equations, Singular Volterra integral equations, Bernstein   

polynomials. 

 

1. Introduction 

 

    Abel integral equation was derived by Abel when he was generalizing and solving the 

Tautochrone problem. It allows users to compute the total time required for a particle to 

fall along a given curve. This integral equation has two forms [1]. 
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where )(tg  is a given function and )(ty  is an unknown function. The Abel problem is to 

find a path )(ty  that with a specified total time of descent from a given initial height, 

)(tg , a particle will follow if it moves without initial velocity and only under the 

influence of gravity. 

 

Abel’s equation is one of the integral equations derived directly from a concrete problem 

of mechanics or physics (without passing through a differential equation). Historically, 

Abel’s problem is the first one to lead to the study of integral equations. 

    The generalized Abel’s integral equations on a finite segment appeared for the first 

time in the paper of Zeilon  [2]. 

     Several numerical methods for approximating the solution of integral equations are 

known. For Fredholm–Hammerstein integral equations, the classical method of 

successive approximations was introduced in  [3]. A variation of the Nystrom method 

was presented in [4]. A collocation type method was developed in [5]. In [6], Brunner 

applied a collocation-type method to nonlinear Volterra–Hammerstein integral equations 

and integro-differential equations, and discussed its connection with the iterated 

collocation method. Guoqiang [7] introduced and discussed the asymptotic error 

expansion of a collocation-type method for Volterra–Hammerstein integral equations. 

The methods in [5, 7] transform a given integral equation into a system of nonlinear 

equations, which has to be solved with some kind of iterative method. A numerical 

solution of weakly singular Volterra integral equations was introduced in [8]. However, 

very few references have been found in technical literature dealing with integral 

equations. 

 

    The rest of this paper is as follows. In Section 2, BPs are introduced, therefore we 

approximate functions by using BPs and also we discuss best approximation and 

convergence analysis. Also, we get a new operational matrix for Abel’s integral equation 

by BPs in Section 3. In Section 4, we apply BPs for solving the first and second of Abel’s 

integral equation. Finally, section 5 concludes our work in this paper. 
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2. Bernstein polynomials and their properties 

 

 

2.1. Definition of Bernstein polynomials 

 

    The Bernstein polynomials (BPs) of mth-degree are defined on the interval ]1,0[ as 

follows: 
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Set  )(,,)(,)( ,,1,0 xBxBxB mmmm   in Hilbert space ]1,0[2L  is a complete basis. Therefore, 

any polynomial of degree m  can be expanded in terms of linear combination of  

),,1,0()(, mixB mi   as follows 
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By using binomial expansion of imx  )1( , we have 
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for .,,1,0 mi   Now, we define 
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Matrix A  is a )1()1(  mm  upper triangular matrix and 0)det(
0


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therefore A  is an invertible matrix. 

 

2.2. Approximation of functions by using BPs  

 

    Suppose that  1,02LH   is a Hilbert space with the inner product that is defined by 


1

0
)()(, dxxgxfgf  and   HBBB mmmm ,,1,0 ,,,   be the set of BPs of m th-

degree. Let  mmmmm BBBSpanS ,,1,0 ,,,   and f  be an arbitrary element in H . Since 

mS  is a finite dimensional and closed subspace, therefore mS  is a complete subset of H . 

So, f  has the unique best approximation out of mS  such as mSs 0 . Therefore, exist the 

unique coefficients mici ,,1,0,   such that [9] 

 

)8(,)()()()(
0

,0 xcxBcxsxf m

T
m

i

mii  


 

where  m
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T fc  such that 
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Lemma 2.1. Suppose that the function   Rf 1,0:  is 1m  times continuously 
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approximation f  out of S  then 

 

 
)11(,

32)!1(

ˆ

1,02




mm

K
Bcf

L

T  

where 
 

)(maxˆ )1(

1,0
xfK m

x




 . 

 

Proof.  We know that Set },,,1{ mxx   is a basis for polynomials space of degree m . 

Therefore we define )0(
!

)0(
!2

)0()0()( )(
2

1

m
m

f
m

x
f

x
fxfxy   . From Taylor 

expansion we have 



Mohsen Alipour, Davood Rostamy/ TJMCS Vol .3 No.4 (2011) 403 - 412
 

407 

 

 

)12(,
!)1(

)()()(
1

)1(

1







m

x
fxyxf

m

x

m 

 

where )1,0(x . Since BcT  is the best approximation f  out of S  , mSy 1  and from 

(12) we have 
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Then by taking square roots, the proof is complete. □ 

 

The previous Lemma shows that the error vanishes as m . 

 

 

3. Solution of Abel integral equation 

 

     In this section, Abel integral equations (1) and (2) are solved by using BPs. At first, 

the functions )(tg  and )(ty  are approximated by (8) as follows 
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Substituting (13) and (14) into (1) and (2), the integral equations are transformed as 
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where   denotes the convolution product and  
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where )1()1(  mmD  and 1)1( mT  are as follows: 
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 with respect to BPs by using (8). 

Therefore, we continue our work as follows: 
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Eqs. (31) and (32) are a linear systems in terms of C and the solution is 
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4. Numerical examples 

 

    We applied the method presented in this paper and solved two examples given in [10]. 

This method differs from the collocation method given in [5, 6] and method of [8] and 

thus could be used as a basis for comparison. 

 

Example 4.1. Consider the second kind of Abel’s integral equation: 
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Example 4.2. Consider the first kind of Abel’s integral equation: 
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Also, F  is similar to the previous example. 

 

Therefore 1)()( 23

33  tttCty T   which is the exact solution. 

 

 

Conclusion  

 

   The aim of present work is to develop an efficient and accurate method for solving 

singular Volterra integral equations by BPs. the original integral equations are 

transformed to a system of linear algebraic equations. In this method we get good 
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approximation with low terms of basis. Illustrative examples are included to demonstrate 

the validity and applicability of the technique. 
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