The Journal of
Mathematics and Computer Science

Available online at

http://www.TIMCS.com

The Journal of Mathematics and Computer Science Vol. 4 No. 1 (2012) 53-59

Existence solution for class of \mathbf{p}-laplacian equations

Malihe bagheri
Department of mathematic, Golestan Institute of Higher Education,Golestan Province,Iran bagherima@yahoo.com
mahnaz bagheri
Department of mathematice, Islamic Azad University, behshar Branch, Iran m.bagheri@iaubs.ac.ir

Received: December 2011, Revised: March 2012
Online Publication: May 2012

Abstract

We study existence of positive solution of the equation

$$
-\Delta_{\mathrm{p}} \mathrm{u}=\lambda|\mathrm{u}|^{\mathrm{p}-2} \mathrm{u}+\mathrm{f}(\mathrm{x}, \mathrm{u})
$$

with zero Dirichlet boundary conditions in bounded domain $\Omega \subset \mathbb{R}^{n}$ where Δ_{p} denotes the plaplacian operator defined by $-\Delta_{\mathrm{p}} \mathrm{z}=\operatorname{div}\left(|\nabla \mathrm{z}|^{\mathrm{p}-2} \nabla \mathrm{z}\right) ; \mathrm{p}, \lambda \in \mathbb{R}$ and $\mathrm{p}>1$.Our main result establishes the existence of weak solution.

Keywords: p-laplacian, weak solution, homogenous.

1. Introduction

In this paper, we are concerned with the existence of positive weak solution for the following problem

$$
\begin{cases}-\Delta_{\mathrm{p}} \mathrm{u}=\lambda|\mathrm{u}|^{\mathrm{p}-2} \mathrm{u}+\mathrm{f}(\mathrm{x}, \mathrm{u}) & , \mathrm{x} \in \Omega \tag{1.1}\\ \mathrm{u}=0 & ,\end{cases}
$$

Malihe bagheri, mahnaz bagheri/ TJMCS Vol. 4 No. 1 (2012) 53-59

Where $-\Delta_{\mathrm{p}} \mathrm{z}=\operatorname{div}\left(|\nabla \mathrm{z}|^{\mathrm{p}-2} \nabla \mathrm{z}\right) ; \mathrm{p}>1$ and Ω is a bounded domain in \mathbb{R}^{n}.
This problem is studied in connection with the corresponding eigenvalue problem for the plaplacian

$$
\begin{equation*}
-\Delta_{\mathrm{p}} \mathrm{u}=\lambda|\mathrm{u}|^{\mathrm{p}-2} \mathrm{u} \tag{1.2}
\end{equation*}
$$

With the Dirichlet condition

$$
\begin{equation*}
\mathrm{u}=0 \tag{1.3}
\end{equation*}
$$

We concentrate on the existence of positive solution to (1.1) when $\lambda<\lambda_{1}$.
The similar equation (1.1) in the whole of \mathbb{R}^{n} is studied in [1,2].Essentially the similar result as here we proved in [2] using a bifurcatin argument combined with a critical point theory.we study the problem (1.1) using the fibrering method introduce in [3,4].In section 2 we present some notation and preliminary result.

2. Notation and preliminary results

DIFINITION 1. Let $\boldsymbol{\Omega}$ be a bounded domain in $\mathbb{R}^{n}, 1<p<\infty$.we will work in the Sobolev space $W=W_{0}^{1, P}(\Omega)$ equipped with the norm

$$
\begin{equation*}
\|u\|_{w}=\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

DIFINITION 2. we say that $u \in W$ is a weak solution of (1.1) if

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x=\lambda \int_{\Omega}|u|^{p-2} u v d x+\int_{\Omega} v f(x, u) d x \tag{2.2}
\end{equation*}
$$

For any $v \in W$.
We will denote by $(., .)_{w}$ the duality pairing between W^{*} (the dual space) and W so that the principal part (2.2) can be written as

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x=\left(-\Delta_{p} u, v\right)_{w} .
$$

DIFINITION 3. A real number λ is called an eigenvalue and $\in W, u(x) \not \equiv 0$ is a corresponding eigenfunction to the problem (1.2), (1.3) if

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x=\lambda \int_{\Omega}|u|^{p-2} u v d x \tag{2.3}
\end{equation*}
$$

Holds for every $v \in W$.

Malihe bagheri, mahnaz bagheri/ тJMCS Vol. 4 No. 1 (2012) 53-59

LEMMA 1. (See [5, 6]) there exists the first positive eigenvalue λ_{1} of the problem (1.2),(1.3) which is characterize as the minimum of the Rayleigh quotient:

$$
\begin{equation*}
\lambda_{1}=\min _{\substack{\left.u \in W \\ \int_{\Omega}|u|\right|^{W} d x>0}} \frac{\int_{\Omega}|\nabla u|^{p} d x}{\int_{\Omega}|u|^{p} d x}>0 \tag{2.4}
\end{equation*}
$$

It follows from the continuity of the Nemytskii operator [6] and the Sobolev Embedding theorem implies that:
$\left(A_{0}\right)$ The functional

$$
u \rightarrow \int_{\Omega}|u|^{p} d x
$$

Is weakly continous on W.
Analogously, It follows from $F \in L^{\infty}(\Omega)$ that :
$\left(A_{1}\right)$ The functional

$$
u \rightarrow \int_{\Omega} F(x, u) d x
$$

Is weakly continous on W.
Let us consider the Euler functional

$$
\begin{equation*}
I_{\lambda}(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\frac{\lambda}{p} \int_{\Omega}|u|^{p} d x+\int_{\Omega} F(x, u) d x \tag{2.5}
\end{equation*}
$$

Associated with (1.1) where $F(x, u)$ is primery function f.
It is clear a ciritical point of I_{λ} corresponds to a weak solution of boundary-value problem (1.1).
We will assume that the function $F(x, u)$ is α-homogenous for every $u \in W$.let us split the function $u \in W$ as follows:

$$
\begin{equation*}
u(x)=r v(x) \tag{2.6}
\end{equation*}
$$

$r \in \mathbb{R}, u \in W$ and subsititute (2.6) into (2.5). We get

$$
\begin{equation*}
I_{\lambda}(r v)=\frac{|r|^{p}}{p} \int_{\Omega}|\nabla v|^{p} d x-\frac{\lambda|r|^{p}}{p} \int_{\Omega}|v|^{p} d x+r^{\alpha} \int_{\Omega} F(x, v) d x \tag{2.7}
\end{equation*}
$$

Let $u \in$ Wbe the critical point of $I_{\lambda}(u)$.then

$$
\begin{gathered}
\frac{\partial I_{\lambda}(r v)}{\partial r}=0 \\
|r|^{p-2} r \int_{\Omega}|\nabla v|^{p} d x-\lambda|r|^{p-2} r \int_{\Omega}|v|^{p} d x+\alpha r^{\alpha} \int_{\Omega} F(x, v) d x=0
\end{gathered}
$$

Looking for nontirivial solutions $u \not \equiv 0$, we have to consider $r \neq 0$ under the assumption $\alpha, r>0, F(x, u) \neq 0$ and $\int_{\Omega}|\nabla v|^{p} d x-\lambda \int_{\Omega}|v|^{p} d x \neq 0$, Hence

$$
\int_{\Omega}|\nabla v|^{p} d x-\lambda \int_{\Omega}|v|^{p} d x+\alpha r^{\alpha-p} \int_{\Omega} F(x, v) d x=0
$$

We get from here that

$$
\begin{equation*}
\mathrm{r}^{\alpha-\mathrm{p}}=\frac{\int_{\Omega}|\nabla \mathrm{v}|^{\mathrm{p}} \mathrm{dx}-\lambda \int_{\Omega}|\mathrm{v}|^{\mathrm{p}} \mathrm{dx}}{\alpha \int_{\Omega} \mathrm{F}(\mathrm{x}, \mathrm{v}) \mathrm{dx}}>0 \tag{2.8}
\end{equation*}
$$

If we calculate r from (2.8) and substitute it into (2.7), we get

$$
\begin{gather*}
\tilde{I}_{\lambda}(\mathrm{v})=\mathrm{I}_{\lambda}(\mathrm{r}(\mathrm{v}) \mathrm{v}) \\
=\left(\frac{1}{\mathrm{p}}-1\right) \cdot \frac{\left.\left|\int_{\Omega}\right| \nabla \mathrm{v}\right|^{\mathrm{p}} \mathrm{dx}-\left.\lambda \int_{\Omega}|\mathrm{v}|^{\mathrm{p}} \mathrm{dx}\right|^{\frac{\alpha}{\alpha-\mathrm{p}}}}{\left|\alpha \int_{\Omega} \mathrm{F}(\mathrm{x}, \mathrm{u}) \mathrm{dx}\right|^{\frac{p}{\alpha-\mathrm{p}}}} \operatorname{sgn}\left(\alpha \int_{\Omega} \mathrm{F}(\mathrm{x}, \mathrm{v}) \mathrm{dx}\right) \tag{2.9}
\end{gather*}
$$

REMARK 1. we would like to point out that $\mathrm{r}=\mathrm{r}(\mathrm{v})$ is well defined (and consequently the function $r \rightarrow I_{\lambda}(r v)$ has a unique turning point) provided either
(i) $\quad \int_{\Omega} F(x, v) d x>0$ and $\int_{\Omega}|\nabla v|^{p} d x-\lambda \int_{\Omega}|v|^{p} d x>0$
or
(ii) $\quad \int_{\Omega} \mathrm{F}(\mathrm{x}, \mathrm{v}) \mathrm{dx}<0$ and $\int_{\Omega}|\nabla \mathrm{v}|^{\mathrm{p}} \mathrm{dx}-\lambda \int_{\Omega}|\mathrm{v}|^{\mathrm{p}} \mathrm{dx}<0$

LEMMA 2. Let us consider the constraint $H(v)=c$, where the function $H: W \rightarrow \mathbb{R}$ satisfies the following condition:

$$
\begin{equation*}
\left(\mathrm{H}^{\prime}(\mathrm{v}), \mathrm{v}\right)_{\mathrm{w}} \neq 0 \text { if } \mathrm{H}(\mathrm{v})=\mathrm{c} \tag{2.10}
\end{equation*}
$$

then every conditional critical point of the problem

$$
\begin{equation*}
\operatorname{crit}\left\{\tilde{I}_{\lambda}(v) ; H(v)=c\right\} \tag{2.11}
\end{equation*}
$$

LEMMA 3. Every critical point $v_{c} \neq 0$ of \tilde{I}_{λ} satisfying (i) or (ii) generates a critical point $u_{c} \in W$ $u_{c} \neq 0$ of I_{λ} by the formula

$$
\begin{equation*}
\mathrm{u}_{\mathrm{c}}=\mathrm{r}_{\mathrm{c}} \mathrm{v}_{\mathrm{c}}(\mathrm{x}) \tag{2.12}
\end{equation*}
$$

Where $r_{c}>0$ is define by (2.8).

3. Main result

Let us consider the conditional variational problem:

$$
\begin{cases}-\Delta_{\mathrm{p}} \mathrm{u}=\lambda|\mathrm{u}|^{\mathrm{p}-2} \mathrm{u}+\mathrm{f}(\mathrm{x}, \mathrm{u}) & , \quad \mathrm{x} \in \Omega \tag{3.1}\\ \mathrm{u}=0 & ,\end{cases}
$$

Let $\lambda_{1}>0$ be the first positive eigenvalue of (1.2) with the Dirichlet condition $u=0$ on $\partial \Omega$ and $u_{1}=u_{1}(x)$ be the corresponding positive eigenfunction.

We will assume $0 \leq \lambda<\lambda_{1}$ and function $F(x, u)$ is α-homogenous for every $u \in W$. Set

$$
\begin{equation*}
\mathrm{H}_{\lambda}(\mathrm{v})=\int_{\Omega}|\nabla v|^{p} \mathrm{dx}-\lambda \int_{\Omega}|v|^{p} d x \tag{3.2}
\end{equation*}
$$

It follows from Lemma 1 that $H_{\lambda}(v) \geq 0$ for any $v \in W$ and it follows from (3.2) that

$$
\left(\mathrm{H}_{\lambda}^{\prime}(\mathrm{v}), \mathrm{v}\right)_{\mathrm{w}}=\mathrm{pH}_{\lambda}(\mathrm{v}), \mathrm{v} \in \mathrm{~W} .
$$

There fore (2.10) is fulfilled if we assume

$$
H_{\lambda}(v)=1
$$

As a contraint and we have to consider the critical point of $\tilde{I}_{\lambda}(v)$ satisfying $\int_{\Omega} F(x, u) d x>0$.due to the case (i) from Remark 1.

Let us consider the conditional variational problem:
$\left(p_{\lambda}\right)$ find a maximiser $v_{c} \in W$ of the problem
$0<M_{\lambda}=\operatorname{Sup}\left\{\int_{\Omega} F(x, v) d x ; \int_{\Omega} F(x, v) d x>0, H_{\lambda}(v)=1\right\}$
Then v_{c} is a solution to $\left(p_{\lambda}\right)$ if and only if v_{c} is a minimiser of \tilde{I}_{λ} subject to the constraint $H_{\lambda}(v)=1$ due Lemma 2.

Proof.Let us consider the set

$$
W_{\lambda}=\left\{v \in W ; H_{\lambda}(v)=1\right\}
$$

From the variational characterisation of λ_{1} and $0 \leq \lambda<\lambda_{1}$, it follows that $W_{\lambda} \neq \emptyset$. Next we prove that this set is bounded in w. Due to the variational characterisation (2.4) of λ_{1}, we get for any $v \in W_{\lambda}$:

$$
\begin{equation*}
\int_{\Omega}|\nabla v|^{p} d x-\lambda \int_{\Omega}|v|^{p} d x+1 \leq \frac{\lambda}{\lambda_{1}} \int_{\Omega}|\nabla v|^{p} d x+1 \tag{3.3}
\end{equation*}
$$

It follows from (3.3) that for $0 \leq \lambda<\lambda_{1}, v \in W_{\lambda}$:

$$
\int_{\Omega}|\nabla \mathrm{v}|^{\mathrm{p}} \mathrm{dx} \leq \frac{\lambda_{1}}{\lambda_{1}-\lambda} .
$$

Hence the maximising sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ for $\left(p_{\lambda}\right)$ is bounded in W. Consequently, we may assume that

$$
\mathrm{v}_{\mathrm{n}} \rightarrow \mathrm{v}_{\mathrm{c}} \text { in } \mathrm{W}
$$

Due to $\left(A_{1}\right)$, we have

$$
\begin{equation*}
\int_{\Omega} \mathrm{F}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}\right) \mathrm{dx} \rightarrow \int_{\Omega} \mathrm{F}(\mathrm{x}, \mathrm{u}) \mathrm{dx}=\mathrm{M}_{\lambda}>0 \tag{3.4}
\end{equation*}
$$

Moreover, we have $H_{\lambda}\left(v_{n}\right)=1$ and due to the weak lower semicontinuity of the norm $\|.\|_{w}$ and $\left(\mathrm{A}_{0}\right)$ we get

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla \mathrm{v}_{\mathrm{c}}\right|^{\mathrm{p}} \mathrm{dx} \leq \liminf _{\mathrm{n} \rightarrow \infty} \int_{\Omega}\left|\nabla \mathrm{v}_{\mathrm{n}}\right|^{\mathrm{p}} \mathrm{dx}, \\
& \quad \int_{\Omega} \mathrm{F}\left(\mathrm{x}, \mathrm{v}_{\mathrm{c}}\right) \mathrm{dx}=\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega} \mathrm{F}\left(\mathrm{x}, \mathrm{v}_{\mathrm{n}}\right) \mathrm{dx}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\mathrm{H}_{\lambda}\left(\mathrm{v}_{\mathrm{c}}\right)=\int_{\Omega}\left|\nabla \mathrm{v}_{\mathrm{c}}\right|^{\mathrm{p}} \mathrm{dx}-\lambda \int_{\Omega}\left|\mathrm{v}_{\mathrm{c}}\right|^{\mathrm{p}} \mathrm{dx} \leq 1 \tag{3.5}
\end{equation*}
$$

it follows from (3.4) that $\mathrm{v}_{\mathrm{c}} \neq 0$ and we may also assume $\mathrm{v}_{\mathrm{c}} \geq 0$.we prove that, in fact, equality holds in (3.5) .assume that this is not true,

$$
\mathrm{H}_{\lambda}\left(\mathrm{v}_{\mathrm{c}}\right)<1,
$$

We find $\mathrm{k}_{\mathrm{c}}>1$ such that

$$
\mathrm{H}_{\lambda}\left(\mathrm{k}_{\mathrm{c}} \mathrm{v}_{\mathrm{c}}\right)=1
$$

Then $\tilde{v}_{\mathrm{c}}=\mathrm{k}_{\mathrm{c}} \mathrm{v}_{\mathrm{c}} \in \mathrm{W}_{\lambda}$ and

$$
\int_{\Omega} \mathrm{F}\left(\mathrm{x}, \tilde{\mathrm{u}}_{\mathrm{c}}\right) \mathrm{dx}=\mathrm{k}_{\mathrm{c}}{ }^{\alpha} \int_{\Omega} \mathrm{F}\left(\mathrm{x}, \mathrm{v}_{\mathrm{c}}\right) \mathrm{dx}=\mathrm{k}_{\mathrm{c}}{ }^{\alpha} \mathrm{M}_{\lambda}>0
$$

Which is a contradiction. Hence $v_{c} \in W_{\lambda}$ is the solution of $\left(p_{\lambda}\right)$.

Malihe bagheri, mahnaz bagheri/ тJMCS Vol. 4 No. 1 (2012) 53-59

Refernces

1. P.Drabek and y. Hung Bifurcation problems for the p-Laplacian in \mathbb{R}^{n}. Trans. Amer.Math .Soe.
2. p.Drabek and Y. Hung. Multiple positive solutions of quasilinear elliptic equations in \mathbb{R}^{n}.Nonlinear.Anal.Theory,Meth.and Appl.
3. S.I.Pohozaev. On one approach to nonlinear equations .Dokl.Akad.Nauk 247 (1979), 1327 31
4. S.I.Pohozaev. On fibering method for the solution of nonlinear boundary value problems.Trudy Mat.Inst.Steklov. 192 (1990), 140-63
5. A.Anane simplicite et isolation de la premiere valeure proper du p-Laplacian avec poids.C.R.Acad.Sci.Paris Ser.I 305(1987), 725-8
6. G.Barles. Remarks on uniqueness results of the first eigenvalue of the p-Laplacian. Ann.Fac.Sci.Toulouse9 (1988), 76-75
