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Abstract 
 

  A robust adaptive PID controller design motivated from the sliding mode control is 
proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, Kp, Ki, 
and Kd, are adjustable parameters and will be updated online with an adequate adaptation 
mechanism to minimize a previously designed sliding condition. By introducing a supervisory 
controller, the stability of the closed-loop PID control system under with the plant uncertainty 
and external disturbance can be guaranteed. Finally, a well-known Vanderpol oscillator is used 
as an illustrative to show the efectiveness of the proposed robust a PID controller. 
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1. Introduction 
The presence of chaos in physical systems has been extensively demonstrated. Chaotic systems 
are rather complex dynamical nonlinear system and the classical features appeared in output 
responses of chaotic systems have, for example, excessive sensitivity to initial conditions, broad 
spectrums of Fourier transform, and fractal properties of the motion in the phase space [1–3]. 
Due to its powerful applications in chemical reactions, power converters, and information 
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processing, etc., it is meaningful and practical to design certain control law to cope with these 
complex chaotic systems for real engineering applications. To do this, different techniques have 
been developed to achieve the chaotic control. For example, sliding mode control [1–3], bang-
bang control [4], optimal control [5,6], intelligent control base on using neural networks [7], 
feedback linearization [8], differential geometric method [9], adaptive control [10–12], and 
among many others [13].  

On the other hand, the use of PID control has a long history in control engineering and is 
acceptable for many real applications due to its simplicity in architecture. Hence, in many real 
industrial applications, the PID controller is still widely used even though lots of new control 
techniques have been proposed. However, to our knowledge, the control of chaotic system by 
using simple PID control has not been well discussed. 

The key for designing a PID controller is the determination of three parameters of PID 
controller, i.e., proportional gain Kp, integral gain Ki, and derivative gain Kd. In the past, the PID 
self-tuning methods based on the relay feedback technique have often presented for a class of 
SISO systems [14–17] and MIMO systems [18]. In general, the controlled plants considered in the 
above-proposed PID control systems mostly belong to linear systems plus time delays. Moreover, 
in recent years, a new and attractive control strategy that is to combine neural networks and/or 
fuzzy systems with the traditional adaptive control has been proposed for nonlinear systems. 
Two types of adaptive controls are generally investigated: 

 Indirect adaptive control. The unknown model of nonlinear system is first obtained and 
learned by using the neural/ fuzzy system and then a feedback linearization control law is 
designed based on this model [19–22].  

Direct adaptive control. The neural/fuzzy system is directly used as a controller in the 
feedback control system, i.e., the output of neural/fuzzy system is a control input to the nonlinear 
plant. Usually, an error signal between the desired and actual outputs is employed to online 
update adjustable parameters in the neural/fuzzy controller [21–25].  

In this paper, based on the use of the sliding mode, a robust adaptive PID control tuning is 
newly proposed to cope with the control problem for a class of uncertain chaotic systems with 
external disturbance. Three gains of PID controller, i.e., Kp, Ki, and Kd, are regarded as adjustable 
parameters and will be adjusted during control procedure. We wish to update these parameters 
with a proper adaptation mechanism such that a previously designed sliding condition is 
minimized as possibly. The stability of closed-loop PID control system can be guaranteed by 
using the Lyapunov approach with a supervisory controller [19, 21, 22, 26 ]. The detailed 
descriptions for the PID control gains tuning and for the analysis of system stability will be 
presented in the following. 
 
 

2.  PID CONTROLLER 
The continuous form of a PID controller, with input ( )e t and output ( )pidu t , is generally given as                

0

d
( ) ( ) ( )

d

t

pid p i du K e t K e d K e t
t

     
 
(1) 

Where, Kp is the proportional gain, Ti is the integral time constant, and Td is the derivative time 
constant, where Ki= Kp/Ti is the integral gain and Kd= KpTd is the derivative gain 

 

3.  . System definition for uncertain chaotic systems 
For simplification, we only consider a second-order uncertain chaotic systems, but the approach 



Yaghoub heidari, Rashin nimaee rad/ TJMCS Vol. 4 No. 1 (2012) 71 - 80 

73 

 

can be generalized to high-order systems. With the input ( )u t   and the output ( )y t  , the 

uncertain chaotic system is described as  
 

1 2

2 1

1

( , ) ( )

( ) ( )

x x

x x f X t u t

y t x t





    



 

 
(2)

 

Where,  1 2

T
X x x are measurable states vector of the system, (.)f is the plant uncertainty 

applied to the system . Let  
T

dE Y X e e   be an error signal between the desired and actual 

outputs. Define  
T

d d dY y y
T 

and assume that both dy  and 
.

dy _are bounded, i.e., (.) (.)uf f   . 

Then the error vector of system becomes  
T

dE Y X e e   . Suppose that we can choose a gain 

vector  0 1

T
K k k such that roots of 2

1 0 0s k s k      are in the open left-half complex plane. 

Now let a feedback linearization controller be given by  

. . 1 ( , ) T

F L du x f X t y K E     

 

Substituting (3) into (2), we have  

1 0 0e k e k e    (4)
 

  Consequently, from (5), we have e lim ( ) 0
t

e t


  i.e., dy y asymptotically. 

 Assumption 1. Let the constraint set x  for the state X  can be defined as  

 2 :x xX X M     (5)
 

 

Where xM  is a pre-specified parameter 

It is desired that the state trajectory of system X  never reach the boundary of 

x  during the control procedure. For simplicity of analysis, we may choose 

x dM Y


 . 

 

(3)
 

4.  Supervisory controller design and adaptation laws for PID controller 
Now let the control input in (2) be given by  

where pidu
 is the PID controller as shown in (2) and su

 is the extra supervisory controller that 
will be fired only when the states of the system exceeds some bound and guarantees the stability 
of the system. Based on concepts of sliding mode control, a proper adaptation law that is based 
on the use of gradient method is presented to minimize a designed sliding condition for updating 
PID control gains 
 

4.1. Supervisory controller design  

To design the supervisory controller us, substituting (6) into (2), we have, in view of (3),  

pid su u u 
 

(6) 
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2 1

1 . . . .

. .

( , )

( , )

[ ]

pid s

pid s F L F L

T

d pid s F L

x x f X t u u

x f X t u u u u

y K E u u u





     

       

     

 

 
(7)

 
This implies that  

. .[ ]T

pid s F Le K E u u u       (8)
 

Let 

 

0 1

0 1
,

0 1
T

A
k k

B

 
  

  



 

 
(9)

 

be a companion form. From (8) and (9), we have 

. .[ ]F L pid sE AE B u u u     (10)
 

Now consider a Lyapunov function candidate 
1

2

TV E PE  
(11)

 

Where, p  is a positive definite symmetric matrix satisfying the Lyapunov equation 
TA P PA Q    (12) 

And Q  is a positive definite symmetric matrix selected by designer. Define 

21
( )

2
m m x dV M Y


   

 
(13)                             

 
Where m  denotes the minimum eigenvalue of p . Note that if xX M , then, from (10), we have 

2 2

2

1 1
( )

2 2

1
( )

2

m m d

m x d m

V E X Y

M Y V

 




  

  

 

 
 
(14)

 
Hence if mV V , then xX M . Moreover, the time derivative of V  along the trajectories of the 

closed-loop system (10) satisfies 

. .

. .

. .

1
( ) [ ]

2

1
[ ]

2

1
( )

2

T T T

F L pid s

T T

F L pid s

T T T

F L pid s

V E A P PA E E PB u u u

E QE E PB u u u

E QE E PB u u E PBu

    

    

    

 

 
 
(15) 

From (4) and hypotheses of  (.) (.)uf f   we have 

. . 1 (.) T

F L u du x f y K E     (16) 

Hence, if the supervisory controller is chosen as 

1sgn( )[ (.)

]

T

s u

T

d pid

u E PB x f

y K E u

  

  
 

 
(17) 

Then, from (14) and (15), we can guarantee that 0V  in (13) if mV V  [21, 22, and 26].  

Chattering 
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1sat( )[ (.)

]

T

s u

T

d pid

u E PB x f

y K E u

  

  
 

 
(18) 

 
 

4.2. Adaptive laws for PID controller tuning  

On the other hand, in order to derive a proper adaptation law to update three control gains, let us 

define a designed signal dx  as 

1 0d dx y k e k e    (19) 

 Moreover, a sliding surface is defined as 

2 dS x x   (20) 

If the sliding mode occurs, i.e., 0S  , then 
0S   

Therefore, the sliding condition is defined as  

0V SS   
Using, (2) and (20), we have: 

2 1 ( , ) ( )d dS x x x f X t u t x        (21) 

Substituting (6) into (20) and multiplying both sides of (20) by S, the following is obtained: 

1 ( , ) ( ) ( )pid s dSS S x f X t u t u t x         (22) 

 Based on the gradient method and the chain rule, and using (2) and (21), the adaptation laws for 

three control gains
pK , iK , and dK  can be easily obtained as follows:  

( )
pid

p

p pid p

uSS SS
K Se t

K u K
  

 
     

    

 
(23) 

 

0
( )

tpid

i

i pid i

uSS SS
K S e d

K u K
    

 
     

     

 
(24) 

 

d
( )

d

pid

d

d pid d

uSS SS
K S e t

K u K t
  

 
    

    

 
(25) 

Where  is the learning rate. Notice that if the learning rate   or the initial values of PID control 

gains are not selected adequately, the resulted PID controller will probably make the states of 

system divergent. Fortunately, the supervisory controller as in (15) will play an important role 

that provides an extra input to pull the states back to the pre-specified constraint set x  and also 

guarantees the stability of the system. 
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5.  Implementation of a adaptive robust PID controller on Vanderpol 
oscillator 
The plant of interest considered in this study is a Vanderpol oscillator, and its nominal dynamic 
equations are described as [1]  

1 2

2

2 1 2 1

1

(1 ) ( )

( ) ( )

x x

x x x x u t

y t x t





    



 

 
(26) 

Where, 0 2  , with comparing (28) to (2) it can be resulted 2

2 1( , ) (1 )f X t x x    

, 1   
The sampling time is equal to 0.01 and the initial states of the system are assumed to be 

1(0) 0.1x  and 2 (0) 0x  . For obtaining (.)uf we must have (.) (.)uf f    

2 2

2 1 2 1(.) (1 ) 2 (1 ) (.)uf x x x x f        (27) 

The proposed robust adaptive PID controller is now applied to control the uncertain chaotic 
system with external disturbance. We wish that the output of uncertain chaotic system ( )y t can 

track the desired output sin( )dy t . Also we choose 0 9k  and 1 6k   so that the roots of s 
2
+ k1s 

+ k0 = 0 are in the left-half complex plane and let the learning rate 1  . From (9), we have  

0 1

9 6
A

 
  

  
 

From (12) with [18,18]Q diag ], we have 

45/ 6 1

1 1/ 6
P

 
  
 

 

 Moreover, the adaptation laws in (25)–(27) are used to online update the PID controller with 

initial gains (0) (0) (0) 5d p iK K K   . The value of xM  is deliberately selected to be large enough 

such that the system state X  never reach the boundary of x . The results are demonstrated in 

Figs. 1–9. Fig. 1 and 3 shows the time trajectories of the controller ( )u t . Figs. 4 and 5, respectively, 

show the output responses of 1x  and 2x  of the controlled vanderpol system. It can be easily seen 

from these results that the states of such a chaotic system can quickly track the desired states 
about after 5 s.  
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Fig1:control input U(t) 
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Fig2: Output Result 1x 
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Fig3:Output Result 2x 
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Fig4:control input U(t) 
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Fig5: Output Result 1x 
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Fig6: Error between output result of 1x and dy  
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Fig7: Output Result 2x 
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Fig8: Error between output result of 2x and dy  
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Fig9:Output tracking error respect to variation of 
a 

 
 

6.  Conclusions 
In this paper, a robust adaptive PID controller for a class of uncertain chaotic systems has been 
proposed. The proposed adaptation law for PID control gains tuning is to minimize the designed 
sliding condition that is motivated from the sliding mode control. Moreover, based on the use of 
by introducing a supervisory controller, it will force the states of the system inside the constraint 
region that is designed in advance. Therefore, the stability of the closed-loop PID control system 
is also guaranteed. Finally, the proposed scheme is applied to control a well-known vander pol as 
an illustrative example. From the simulation results, it can be obviously seen that a satisfactory 
control performance can be achieved by using the proposed method. 
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