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Abstract. In this work, a technique based on combination between collocation and spline

method along with the shooting method is proposed for the solution of boundary value

problem of order 2. Numerical results show that the method is simple and effective.
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1 Introduction

It is not in general easy to find a closed-form solution of differential equations [1,2]. A

part form numerical integration methods, several analytical ones, such as Adomian de-

composition method [3-6] and the variational iteration method (VIM) [7-12] are proposed

to find approximate, and if possible in closed form, solutions of differential equations.

In this paper, we discuss the numerical solution of boundary value problem of the form

[a2D
2 + a1D + a0D

0]y(t) = f(t), 0 < t < T, (1)

subject to

y(0) = α y(T ) = β. (2)102

R. Darzi, A. Neamaty, Y. Darzi, B Mohammadzadeh/ TJMCS Vol. 4 No. 1 (2012) 102 - 109



where a0, a1, a2, α and β are constants with a2 6= 0 and y ∈ L1[0, T ].

The method of solution is based on a conjugating collocation and spline analysis combined

with multiple shooting method. Note that similar study can be done for a general case

when the boundary conditions are M1y(0) +N1y
′(0) = α,

M2y(T ) +N2y
′(T ) = β,

where M1, N1,M2, N2, α and β are constants.

The use of spline approximation [13] and collocation method [14] has been effectively

implemented for the solution of initial value problem. Additionally, the cubic spline col-

location method to solve two classes of special boundary value problem has been used [15].

2 Method of solution

The following is a brief derivation of the algorithm used to solve problem (1) subject to

(2).

3.1.Collocation method

For sake of simplicity we discuss the solution of (1) as initial value problem with

y(0) = α, y′(0) = β̂1, (3)

where β̂1 is unknown constant which will be determined later. We firstly subdivide the

interval [0, T ] into N uniform subintervals In = [tn, tn+1] where n = 0, ...., N − 1. Let

HN = {tn = nh : n = 0, ...., N −1} with h = T
N

. Assume that the exact solution of Eq.(1)

subject to condition (3) can be approximated by an element u in the space of piecewise

polynomials of degree m+d which are d-times continuously differentiable on I represented

by

S
(d)
m+d(HN) = {u ∈ C(d)(I) : u|σn is a polynomial of degre m+ d}

for known integers m ≥ 1 and d ≥ 0 (the number of the initial conditions minus one i.e.

d = 1 in the present work). It should be noted that the integer m represents the number

of collocation points in each subinterval In, (n = 0, ...., N −1); those points are defined as

Xn = {tn,i = tn + cih : i = 1, ....,m}, 0 < c1 ≤ ... ≤ cm ≤ 1.
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Consequently, the exact solution, y, of (1) and (3) needs to be approximated on I by an

element u ∈ S(d)
m+d(ZN) satisfying

[a2D
2 + a1D + a0D

0]u(t) = f(t), t ∈
N−1⋃
n=0

Xn, (4)

subject to

u(0) = α, u′(0) = β̂1, (5)

On each subinterval, In, the spline u can be presented as a piecewise polynomials of degree

m+ d of the form

u(t) = un(tn + τh) =
d∑
s=0

a(n)s τ s +
m∑
r=1

b(n)r τ d+r, t ∈ In (6)

where τ ∈ [0, 1].

Substituting (6) into (4) one obtains

a2h
−2
[
d∑
s=2

s(s− 1)a(n)s cs−2i +
m∑
r=1

(d+ r)(d+ r − 1)b(n)r cd+r−2i

]

+a1h
−1
[
d∑
s=1

sa(n)s cs−1i +
m∑
r=1

(d+ r)b(n)r cd+r−1i

]
+ a0

[
d∑
s=0

a(n)s csi +
m∑
r=1

b(n)r cd+ri

]
= f(tn,i),

where i = 1, ...,m. It can be shown that the above equations can be expressed in the

following m×m matrix form

Vb(n) = Ua(n) + F

where

(V)i,r = a2(d+ r)(d+ r − 1)cd+r−2i + a1h(d+ r − 1)cd+ri + a0h
2cd+ri . i, r = 1, ....,m,

(U)i,s = a2s(s− 1)cs−2i + a1hsc
s−1
i + a0h

2csi , i = 1, ...,m; s = 0, ..., d,

(F)i,1 = h2f(tn,i), i = 1, ...,m.

In general, a(n) = [a
(n)
0 , ..., a

(n)
d ]t and b(n) = [b

(n)
1 , ..., b(n)m ]t, where [.]t means the transpose

of the vector. Note that when n = 0, the vector a(0) is known from the initial conditions,

i.e. a(0) = [h
s

s!
dsy
dts

(0)]t; s = 0, ..., d. On the other hand, when n ≥ 1, we have to use the

smoothness conditions at t = tn which leads to a relation between the unknown vector
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a(n+1) and the known vectors a(n) and b(n).

H =



1 1 1 1 1 1 . . . 1
0 1 2 3 4 5 . . . l − 1

0 0 1 3 6 10 . . .
∏2
i=1

(l−i)
2!

0 0 0 1 4 10 . . .
∏3
i=1

(l−i)
3!

0 0 0 0 1 5 . . .
∏4
i=1

(l−i)
4!

0 0 0 0 0 1 . . .
∏5
i=1

(l−i)
5!

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
0 0 0 0 0 0 0 0 0 1


and

G =



1 1 . . . 1
l l + 1 . . . l +m− 1

(l−1)l
2!

l(l+1)
2!

. . . (l+m−2)(l+m−1)
2!

. . . . . .

. . . . . .

. . . . . .

l (l+1)l(l−1)...3
(l−1)! . . . (l+m−1)...(l+m−(l−1))

(l−1)!


In the present work, this relation is given by a(n+1) = Ha(n) + Gb(n) where

H =

(
1 1
0 1

)
, and G =

(
1 1 1
2 3 4

)
In the next subsection, we discuss the implementation of the multiple shooting method

in the numerical solution of problem (1-2).

3.2. Shooting method

In the first, we rewrite problem (1-2) in the form

L[y](t) = f(t), t ∈ [0, T ] (7)

subject to

y(0) = α, y(T ) = β, (8)

where

L = a2D
2 + a1D + a0D

0

Firstly we partition the domain [0, T ] as

0 = T0 < T1 < ... < TL = T.

Hence, theoretically, the solution of problem (7-8) on the time interval [0, T ] can be

determined by solving problem (7-8) on the subintervals [Tl, Tl+1], (l = 0, ..., L − 1). For
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the purpose of implementing shooting method, we added extra conditions at the grid

points Tl, (l = 0, ..., L− 1), so that we have the following set of initial value problems

L[ul] = f(t), t ∈ [Tl, Tl+1] (9)

subject to

ul(Tl) = β̂2l, u′l(Tl) = β̂2l+1 (10)

where β̂j, (j = 1, ..., 2L − 1) are unknown real parameters and β̂0 = α. The solution of

initial value problem (9-10) will be obtained by the method described in the previous

subsection where the parameters β̂l, (l = 0, ..., 2L− 1), will be determined by solving the

following system of algebraic equations

u0(T1, β̂1) = u1(T1, β̂2, β̂3),

u′0(T1, β̂1) = u′1(T1, β̂2, β̂3),

u1(T2, β̂2, β̂3) = u2(T2, β̂4, β̂5),

u′1(T2, β̂2, β̂3) = u′2(T2, β̂4, β̂5),
...

uk−2(Tk−1, β̂2k−4, β̂2k−3) = uk−1(T2, β̂2k−2, β̂2k−1),

u′k−2(Tk−1, β̂2k−4, β̂2k−3) = u′k−1(T2, β̂2k−2, β̂2k−1),

uk−1(T, β̂2k−2, β̂2k−1) = β

which can be solved numerically using several numerical techniques such as Newtons

method. In summary, this technique is called multiple shooting technique of order L.

3 Numerical results

Example1. Consider the following differential equation

y′′(t) +
1

16
y(t) = 0, 0 < t < 2π, (11)

subject to

y(0) = 0, y(2π) = 6.5244. (12)

Applying the multiple shooting method of order four requires dividing the domain [0, 2π]

into four subinterval as follows 0 = T0 < T1 = π < T2 = 2π.
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L[u0] = 0, 0 < t < 1, u(0, :) = 0, u′(0, :) = β̂1 (13)

L[u1] = 0, 1 < t < 2, u(1, :) = β̂2, u′(1, :) = β̂3, (14)

where

L[ul] = D2ul(t) +Dul(t) + ul(t), l = 0, 1.

Herein

u0(t, :) = u0(t, β̂1), u1(t, :) = ul(t, β̂2, β̂3).

Each initial value problem of (13-14) will be solved using the collocation method where

we use m = 3 with the collocation parameters c1
c2
c3

 =


x1+1
2

x2+1
2

x3+1
2

, xi = cos(2i+1
6

), i = 0, 1, 2.

The xi, i = 0, 1, 2, are the roots of the Tchybechev polynomial of degree 3. Note that, it

is difficult to find a specific optimum choice for m.

Finally, the values for the parameters βi, i = 1, 2, 3 are determined by solving the following

algebraic system

u0(π, β̂1) = u1(π, β̂2, β̂3), u′0(π, β̂1) = u′1(π, β̂2, β̂3)

u1(2π, β̂2, β̂3) = 6.5422.

Using matlab package we get

β̂1 = 1, β̂2 = 1.3782,

β̂3 = 1.7628.

4 Conclusions

In his paper, we apply a conjugating collocation and spline analysis combined with shoot-

ing method for solving boundary value problems of order 2 subject to boundary conditions.

It may be concluded that the method is powerful and efficient technique for finding ap-

proximate solutions for wide classes of differential equations. In the example, we have

proposed the numerical result by using matlab package.
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