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M. Tamer Şenela,∗, Nadide Utkub

aDepartment of Mathematics, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey.
bInstitute of Sciences, Erciyes University, 38039, Kayseri, Turkey.

Abstract

The aim of this paper is to give oscillation criteria for the third-order quasilinear neutral delay dynamic equation[
r(t)

(
[x(t) + p(t)x(τ0(t))]

∆∆
)γ]∆

+

∫d
c
q1(t)x

α(τ1(t, ξ))∆ξ+
∫d
c
q2(t)x

β(τ2(t, ξ))∆ξ = 0,

on a time scale T, where 0 < α < γ < β. By using a generalized Riccati transformation and integral averaging technique, we
establish some new sufficient conditions which ensure that every solution of this equation oscillates or converges to zero. c©2017
all rights reserved.
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1. Introduction

In this paper, we deal with the oscillatory behavior of all solutions of the third-order quasilinear
neutral dynamic equation with distributed deviating arguments[

r(t)
(
[x(t) + p(t)x(τ0(t))]

∆∆
)γ]∆

+

∫d
c

q1(t)x
α(τ1(t, ξ))∆ξ+

∫d
c

q2(t)x
β(τ2(t, ξ))∆ξ = 0, (1.1)

on a time scale T. In the sequel we will assume that the following conditions are satisfied:

(h1) γ,α,β are the ratio of positive odd integers such that 0 < α < γ < β;

(h2) r : T→ (0,∞) is a real-valued rd-continuous function on T and∫∞
t0

(
1
r(t)

) 1
γ

∆t = ∞, t0 ∈ T; (1.2)
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(h3) q1,q2 are rd-continuous positive functions on T and p(t) is real-valued rd-continuous positive func-
tion on T, 0 6 p(t) 6 P < 1;

(h4) 0 < c < d, τ0 : T→ T, is rd-continuous function such that τ0(t) 6 t and limt→∞ τ0(t) = ∞;

(h5) τi(t, ξ) : T× [c,d]→ T are rd-continuous functions such that decreasing with respect to ξ, τi(t, ξ) 6
t, ξ ∈ [c,d]T = {t ∈ T : c 6 t 6 d}, and limt→∞ minξ∈[c,d] τi(t, ξ) = ∞ for i=1, 2 and there exists a
function τ : T→ T which satisfies that τ(t) 6 τ1(t, ξ), τ(t) 6 τ2(t, ξ).

Define the function by

z(t) = x(t) + p(t)x(τ0(t)). (1.3)

Furthermore, the equation (1.1) can be written as[
r(t)

(
[z(t)]∆∆

)γ]∆
+

∫d
c

q1(t)x
α(τ1(t, ξ))∆ξ+

∫d
c

q2(t)x
β(τ2(t, ξ))∆ξ = 0.

Since we are interested in the oscillatory and asymptotic behavior of solutions near infinity, we assume
that sup T = ∞ and define the time scale interval [t0,∞)T by [t0,∞)T := [t0,∞)

⋂
T.

By a solution of equation (1.1), we mean a function x ∈ Crd([Tx,∞)T, R), Tx ∈ [t0,∞)T, which has the
properties z ∈ C2

rd([Tx,∞)T, R), r(z∆∆)γ ∈ C1
rd([Tx,∞)T, R), and satisfies (1.1) on [Tx,∞)T. We consider

only those solutions x of (1.1) which satisfy sup{|x(t)| : t ∈ [T ,∞)T} > 0 for all T ∈ [Tx,∞)T and assume
that (1.1) possesses such solutions. It is easy to see that all solutions of Eq. (1.1) can be extended to∞ all t ∈ T or T is a discrete time scale. However, Eq. (1.1) may have both extendable solutions and
nonextendable solutions in general. For the asymptotic and oscillation purposes, we are only interested
in the solutions that are extendable to ∞.

A solution x(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative, otherwise it is non-oscillatory. The theory of time scales, which has recently received a lot
of attention, was introduced by Hilger [9], in order to unify continuous and discrete analysis. Since
then, several authors have expounded on various aspects of this new theory; see the survey paper by
Agarwal et al. [1]. A book on the subject of time scales by Bohner and Peterson [3] also summarizes
and organizes much of the time scale calculus. In the recent years, there has been increasing interest in
obtaining sufficient conditions for the oscillation and non-oscillation of solutions of various equations on
time-scales; we refer the reader to the papers [2–5].

To the best of our knowledge, it seems to have few oscillation results for the oscillation of third-
order dynamic equations. Candan [5] studied asymptotic properties of solutions of third-order nonlinear
neutral dynamic equations(

r2(t)
[(
r1(t)

[
y(t) + p(t)y(τ(t))

]∆)∆]γ)∆
+ f(t,y(δ(t)) = 0. (1.4)

Li et al. [11] considered third-order nonlinear delay dynamic equation

x∆
3
+ p(t)xγ(τ(t)) = 0,

on a time scale T, where γ > 0 is quotient of odd positive integers.
Li et al. [10] considered third-order nonlinear delay dynamic equation

(a(t)([r(t)x∆(t)]∆)γ)∆ + f(t, x(τ(t))) = 0,

on a time scale T, where γ > 0 is quotient of odd positive integers.
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Saker and Graef [12] and Zhang [15] considered a third order half-linear neutral dynamic equation(
r1(t)((r2(t)(x(t) + a(t)x(τ(t)))

∆)∆)γ)

)∆
+ p(t)xγ(δ(t)) = 0.

Han et al. [7] and Grace et al. [6] considered third-order neutral delay dynamic equation

(r(t)(x(t) − a(t)x(τ(t)))∆∆)∆ + p(t)xγ(δ(t)) = 0.

Şenel and Utku [13]- [14] considered a third order dynamic equations[
r(t)

(
[x(t) + p(t)x(τ(t))]∆∆

)γ]∆
+

∫d
c

f(t, x[φ(t, ξ)])∆ξ = 0,[
r(t)

(
[x(t) + p(t)x(τ0(t))]

∆∆
)γ]∆

+ q1(t)x
α(τ1(t)) + q2(t)x

β(τ2(t)) = 0.

on a time scale T.
In this paper, we consider third-order quasilinear neutral delay dynamic equation on time scales

which is not in literature. We obtain some conclusions which contribute to oscillation theory of third
order quasilinear neutral dynamic equations with distributed deviating arguments.

2. Several lemmas

Before stating our main results, we begin with the following lemmas which play an important role in
the proof of the main results. Throughout this paper, we let

η+(t) := max{0,η(t)}, η−(t) := max{0,−η(t)},

ϕ := min{
β−α

β− γ
,
β−α

γ−α
},

κ := min{kα,kβ},

Φ(t) = ϕ(q1(t)(1 − P)α)(β−γ)/(β−α)(q2(t)(1 − P)β)(γ−α)/(β−α)(
τ(t)

σ(t)
)γ,

β(t) :=
t

σ(t)
, 0 < γ 6 1, β(t) := (

t

σ(t)
)γ, γ > 1,

R(t, t∗) :=
∫t
t∗

( 1
r(s)

) 1
γ∆s,

for sufficiently large t∗ ∈ [t0,∞)T.

Lemma 2.1. Let x(t) be a positive solution of (1.1), and z(t) is defined as in (1.3). Then z(t) has only one of the
following two properties:

(1) z(t) > 0, z∆(t) > 0, z∆∆(t) > 0;
(2) z(t) > 0, z∆(t) < 0, z∆∆(t) > 0,

where t > t1, t1 sufficiently large.

Proof. Let x(t) be a positive solution of (1.1) on [t0,∞), so that z(t) > x(t) > 0, and

[
r(t)(z∆∆(t))γ

]∆
= −

∫d
c

q1(t)x
α(τ1(t, ξ))∆ξ−

∫d
c

q2(t)x
β(τ2(t, ξ))∆ξ < 0.
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Then r(t)([z(t)]∆∆)γ is a decreasing function and therefore eventually of one sign, so z∆∆(t) is either
eventually positive or eventually negative on t > t1 > t0. We assert that z∆∆(t) > 0 on t > t1 > t0.
Otherwise, assume that z∆∆(t) < 0, then there exists a constant M > 0, such that

r(t)(z∆∆(t))γ 6 −M < 0.

By integrating the last inequality from t1 to t, we obtain

z∆(t) 6 z∆(t1) −M
1
γ

∫t
t1

(
1
r(s)

)
1
γ∆s.

Let t→∞. Then from (1.4) , we have (z(t))∆ → −∞, and therefore eventually z∆(t) < 0.
Since z∆∆(t) < 0 and z∆(t) < 0, we have z(t) < 0, which contradicts our assumption z(t) > 0.

Therefore, z(t) has only one of the two properties (1) and (2). This completes the proof.

Lemma 2.2. Let x(t) be a positive solution of (1.1), correspondingly z(t) has the property (2). If∫∞
t0

∫∞
v

[
1
r(u)

∫∞
u

(q1(s) + q2(s))∆s

] 1
γ

∆u∆v = ∞, (2.1)

then limt→∞ x(t) = limt→∞ z(t) = 0.

Proof. Let x(t) be a positive solution of (1.1). Since z(t) has the property (2), then there exists finite
limt→∞ z(t) = `. We shall prove that ` = 0. Assume that ` > 0, then for any ε > 0, we have `+ε > z(t) > `,
eventually. Choosing 0 < ε < `(1−p)

p , we obtain from (1.3)

x(t) = z(t) − p(t)x(τ0(t)) > `− p(t)z(τ0(t)) > `− p(t)(`+ ε) = k(`+ ε) > kz(t),

where k =
`−P(1+ε)
`+ε > 0. Using (1.4), (h1), and (h5), we obtain

[r(t)(z∆∆(t))γ]∆ = −

∫d
c

q1(t)x
α(τ1(t, ξ))∆ξ−

∫d
c

q2(t)x
β(τ2(t, ξ))∆ξ

< −q1(t)k
α

∫d
c

zα(τ1(t, ξ))∆ξ− q2(t)k
β

∫d
c

zβ(τ2(t, ξ))∆ξ.

Since z∆(t) < 0, we have

[r(t)(z∆∆(t))γ]∆ 6 −q1(t)k
αzα(τ1(t,d)) − q2(t)k

βzβ(τ2(t,d)) 6 −q1(t)κz
α(t) − q2(t)κz

β(t).

Then

[r(t)(z∆∆(t))γ]∆ 6 −κzα(t)(q1(t) + q2(t)). (2.2)

Integrating inequality (2.2) from t to ∞, we obtain

r(t)(z∆∆(t))γ > κ
∫∞
t

zα(s)(q1(s) + q2(s))∆s.

Using zα(s) > `α, we obtain

z∆∆(t) >
κ1/γ`α/γ

r
1
γ (t)

[ ∫∞
t

(q1(s) + q2(s))∆s

] 1
γ

. (2.3)
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Integrating inequality (2.3) from t to ∞, we have

−z∆(t) > κ1/γ`α/γ
∫∞
t

[
1
r(u)

∫∞
u

(q1(s) + q2(s))∆s]
1
γ∆u.

Integrating the last inequality from t1 to ∞, we obtain

z(t1) > κ
1/γ`α/γ

∫∞
t1

∫∞
v

[
1
r(u)

∫∞
u

(q1(s) + q2(s))∆s]
1
γ∆u∆v.

The last inequality contradict (2.1), we have ` = 0. And since 0 6 x(t) 6 z(t), then limt→∞ x(t) = 0. This
completes the proof.

Lemma 2.3. Assume that x(t) is a positive solution of equation (1.1), and z(t) is defined as in (1.3) such that
z∆∆(t) > 0, z∆(t) > 0, on [t∗,∞)T, t∗ > 0. Then

z∆(t) > R(t, t∗)r
1
γ (t)z∆∆(t). (2.4)

Proof. Since r(t)(z∆∆(t))γ is strictly decreasing on [t∗,∞)T, we get for t ∈ [t∗,∞)T

z∆(t) > z∆(t) − z∆(t∗) =

∫t
t∗

(r(s)(z∆∆(t))γ)
1
γ

r
1
γ (s)

∆s > (r(t)(z∆∆(t))γ)
1
γ

∫t
t∗

(
1
r(s)

) 1
γ

∆s

and, hence
z∆(t) > R(t, t∗)r

1
γ (t)z∆∆(t) on [t∗,∞)T.

Lemma 2.4. Assume that x(t) is a positive solution of equation (1.1), correspondingly z(t) has the property (1),
such that z∆(t) > 0, z∆∆(t) > 0, on [t∗,∞)T, t∗ > t0. Furthermore,∫∞

t0

(q1(s) + q2(s))τ
α(s)∆s = ∞. (2.5)

Then there exists a T ∈ [t∗,∞)T, sufficiently large, so that

z(t) > tz∆(t),

z(t)/t is strictly decreasing, t ∈ [T ,∞)T.

Proof. Let U(t) = z(t) − tz∆(t). Hence U∆(t) = −σ(t)z∆∆(t) < 0. We claim there exists a t1 ∈ [t∗,∞)T

such that U(t) > 0, z(τ(t)) > 0 on [t∗,∞)T. Assume not. Then U(t) < 0 on [t∗,∞)T. Therefore,(
z(t)

t

)∆
=
tz∆(t) − z(t)

tσ(t)
= −

U(t)

tσ(t)
> 0,

which implies that z(t)/t is strictly increasing. Pick t2 ∈ [t1,∞)T so that τ(t) > τ(t∗), for t > t2. Then

z(τ(t))

τ(t)
>
z(τ(t∗))

τ(t∗)
= d > 0,

so that z(τ(t)) > dτ(t) for t > t2. By (1.3) and (h3), we obtain

x(t) = z(t) − p(t)x(τ0(t)) > z(t) − p(t)z(τ0(t)) > (1 − p(t))z(t) > (1 − P)z(t). (2.6)
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Using (1.4) and (2.6), we have

[r(t)([z(t)]∆∆)γ]∆ = −

∫d
c

q1(t)x
α(τ1(t, ξ))∆ξ−

∫d
c

q2(t)x
β(τ2(t, ξ))∆ξ

6 −q1(t)(1 − P)α
∫d
c

zα(τ1(t, ξ))∆ξ− q2(t)(1 − P)β
∫d
c

zβ(τ2(t, ξ))∆ξ.

Using (h1) and (h5), we have

[r(t)([z(t)]∆∆)γ]∆ 6 −q1(t)(1 − P)αzα(τ1(t, c)) − q2(t)(1 − P)βzβ(τ2(t, c))

6 −q1(t)(1 − P)βzα(τ(t)) − q2(t)(1 − P)βzα(τ(t))

6 −(1 − P)βzα(τ(t))(q1(t) + q2(t)).

Now by integrating both sides of last equation from t2 to t, we have

r(t)(z∆∆(t))γ − r(t2)(z
∆∆(t2))

γ +

∫t
t2

(1 − P)β(q1(t) + q2(t))z
α(τ(t))∆s 6 0.

This implies that

r(t2)(z
∆∆(t2))

γ >
∫t
t2

(1 − P)β(q1(s) + q2(s))z
α(τ(s))∆s > dα(1 − P)β

∫t
t2

(q1(s) + q2(s))τ
α(s)∆s,

which contradicts to (2.5). So U(t) > 0 on t ∈ [t1,∞)T and consequently,(
z(t)

t

)∆
=
tz∆(t) − z(t)

tσ(t)
= −

U(t)

tσ(t)
< 0, t ∈ [t1,∞)T,

and we have that z(t)/t is strictly decreasing on t ∈ [t1,∞)T. The proof is now complete.

3. Main results

In this section we give some new oscillation criteria for (1.1).

Theorem 3.1. Assume that (1.2), (2.1), and (2.5) hold and that, for all sufficiently large T1 ∈ [t0,∞)T, there is a
T > T1 such that

lim sup
t→∞

∫t
T

[
ρσ(s)Φ(s) −

((ρ∆(s))+)
γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(s, t∗))γ

]
∆s = ∞, (3.1)

where the function ρ ∈ C1
rd([t0,∞)T, R) is a nonnegative function. Then every solution of equation (1.1) is either

oscillatory or tends to zero.

Proof. Assume (1.1) has a nonoscillatory solution x(t) on [t0,∞)T. Then, without loss of generality we
assume that x(t) > 0, x(τ0(t)) > 0 for t > t1 and x(τ1(t, ξ)) > 0, x(τ2(t, ξ)) > 0 for (t, ξ) ∈ [t1,∞)× [c,d]
for all t1 ∈ [t0,∞)T. z(t) is defined as in (1.3). We shall consider only z(t) > 0, since the proof when z(t)
is eventually negative is similar. Therefore by Lemmas 2.1 and 2.2, we have

[r(t)([z(t)]∆∆)γ
]∆
< 0, z∆∆(t) > 0, t ∈ [t1,∞)T,

and either z∆(t) > 0 for t > t2 > t1 or limt→∞ z(t) = limt→∞ x(t) = 0. Let z∆(t) > 0 on [t2,∞)T. Define
the function w(t) by Riccati substitution

w(t) = ρ(t)
r(t)([z(t)]∆∆)γ

zγ(t)
.
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Then

w∆(t) = ρ∆(t)
r(t)([z(t)]∆∆)γ

zγ(t)
+ ρσ(t)

[
r(t)([z(t)]∆∆)γ

zγ(t)

]∆
= ρ∆(t)

r(t)([z(t)]∆∆)γ

zγ(t)
+ ρσ(t)

[r(t)([z(t)]∆∆)γ]∆

zγσ(t)
− ρσ(t)

r(t)([z(t)]∆∆)γ(zγ(t))∆

zγ(t)zγσ(t)
.

By (1.4) and (2.6), we have

[r(t)([z(t)]∆∆)γ]∆ 6 −q1(t)(1 − P)α
∫d
c

zα(τ1(t, ξ))∆ξ− q2(t)(1 − P)β
∫d
c

zβ(τ2(t, ξ))∆ξ

6 −q1(t)(1 − P)αzα(τ1(t, c)) − q2(t)(1 − P)βzβ(τ2(t, c))

6 −q1(t)(1 − P)βzα(τ(t)) − q2(t)(1 − P)βzβ(τ(t)).

From the definition of w(t) and the last inequality, we have,

w∆(t) 6
ρ∆(t)

ρ(t)
w(t) − ρσ(t)q1(t)(1 − P)α

zα(τ(t))

zγ(σ(t))
− ρσ(t)q2(t)(1 − P)β

zβ(τ(t))

zγ(σ(t))

− ρσ(t)
r(t)([z(t)]∆∆)γ(zγ(t))∆

zγ(t)zγσ(t)
.

(3.2)

By Young’s inequality

|ab| 6
1
p
|a|p +

1
q
|b|q, a,b ∈ R, p > 1, q > 1,

1
p
+

1
q
= 1,

we have
β− γ

β−α
q1(t)(1 − P)α

zα(τ(t))

zγ(σ(t))
+
γ−α

β−α
q2(t)(1 − P)β

zβ(τ(t))

zγ(σ(t))

>

[
q1(t)(1 − P)α

zα(τ(t))

zγ(σ(t))

](β−γ)/(β−α)[
q2(t)(1 − P)β

zβ(τ(t))

zγ(σ(t))

](γ−α)/(β−α)
= (q1(t)(1 − P)α)(β−γ)/(β−α)(q2(t)(1 − P)β)(γ−α)/(β−α)(

zα(τ(t))

zγ(σ(t))
)(β−γ)/(β−α)(

zβ(τ(t))

zγ(σ(t))
)(γ−α)/(β−α)

> (q1(t)(1 − P)α)(β−γ)/(β−α)(q2(t)(1 − P)β)(γ−α)/(β−α)(
z(τ(t)

z(σ(t))
)γ.

(3.3)

Hence, by (3.2) and (3.3) and using the fact that z(t)/t is decreasing, we obtain

w∆(t) 6
ρ∆(t)

ρ(t)
w(t) −ϕρσ(t)(q1(t)(1 − P)α)(β−γ)/(β−α)(q2(t)(1 − P)β)(γ−α)/(β−α)(

(τ(t)

(σ(t))
)γ

− ρσ(t)
r(t)([z(t)]∆∆)γ(zγ(t))∆

zγ(t)zγσ(t)
.

In the first case 0 < γ 6 1. Using the Keller’s chain rule (see [3]), we have

(zγ(t))∆ = γ

∫ 1

0
[hzσ + (1 − h)z]γ−1z∆(t)dh > γ(zσ(t))γ−1z∆(t). (3.4)

In view of (3.4), Lemmas 2.2 and 2.3, (2.4), and using the fact that z(t)/t is decreasing, we have

w∆(t) 6 −ρσ(t)Φ(t) +
(ρ∆(t))+
ρ(t)

w(t) − γρσ(t)
r(t)(z∆∆(t))γz∆(t)z(t)

zγ+1(t)zσ(t)

6 −ρσ(t)Φ(t) +
(ρ∆(t))+
ρ(t)

w(t) − γρσ(t)R(t, t∗)
r
γ+1
γ (t)(z∆∆(t))γ+1z(t)

zγ+1(t)z(σ(t))

6 −ρσ(t)Φ(t) +
(ρ∆(t))+
ρ(t)

w(t) − γρσ(t)R(t, t∗)
t

σ(t)

w
γ+1
γ (t)

ρ
γ+1
γ (t)

.

(3.5)
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Let γ > 1. Applying the Keller’s chain rule, we have

(zγ(t))∆ = γ

∫ 1

0
[hzσ + (1 − h)z]γ−1z∆(t)dh > γ(z(t))γ−1z∆(t), (3.6)

in the view of (3.6), Lemmas 2.2 and 2.3, and (2.4), we have

w∆(t) 6 −ρσ(t)Φ(t) +
(ρ∆(t))+
ρ(t)

w(t) − γρσ(t)
r(t)[z(t)]∆∆)γz∆(t)zγ(t)

zγ+1(t)zγσ(t)
,

w∆(t) 6 −ρσ(t)Φ(t) +
(ρ∆(t))+
ρ(t)

w(t) − γρσ(t)(
t

σ(t)
)γR(t, t∗)

w
γ+1
γ (t)

ρ
γ+1
γ (t)

.
(3.7)

By (3.5), (3.7), and the definition of β(t), we have, for γ > 0,

w∆(t) 6 −ρσ(t)Φ(t) +
(ρ∆(t))+
ρ(t)

w(t) − γρσ(t)β(t)R(t, t∗)
wλ(t)

ρλ(t)
, (3.8)

where λ := γ+1
γ .

Define A > 0 and B > 0 by

Aλ := γρσ(t)β(t)R(t, t∗)
wλ(t)

ρλ(t)
,

Bλ−1 :=
ρ∆(t)

λ(γρσ(t)β(t)R(t, t∗))
1
λ

.

Then using the inequality [8]

λABλ−1 −Aλ 6 (λ− 1)Bλ,

which yields

(ρ∆(t))+
ρ(t)

w(t) − γρσ(t)β(t)R(t, t∗)
wλ(t)

ρλ(t)
6

((ρ∆(t))+)
γ+1

(γ+ 1)γ+1(β(t)ρσ(t)R(t, t∗))γ
.

From this last inequality and (3.8), we find

w∆(t) 6 −ρσ(t)Φ(t) +
((ρ∆(t))+)

γ+1

(γ+ 1)γ+1(β(t)ρσ(t)R(t, t∗))γ
.

Integrating both sides from T to t, we get∫t
T

[ρσ(s)Φ(s) −
((ρ∆(s))+)

γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(s, t∗))γ
]∆s 6 w(T) −w(t) 6 w(T),

for all large t, which contradicts to assumption (3.1). If (2) holds, from Lemma 2.2, then limt→∞ x(t) = 0.
The proof is complete.

Theorem 3.2. Assume that (1.2), (2.1), and (2.5) hold. Furthermore, suppose that there exist functions H,h ∈
Crd(D, R), where D ≡ (t, s) : t > s > t0 such that

H(t, t) = 0, t > 0,
H(t, s) > 0, t > s > t0,
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and H has a nonpositive continuous ∆-partial derivative H∆s(t, s) with respect to the second variable and satisfies

H∆s(σ(t), s) +H(σ(t),σ(s))
ρ∆(s)

ρ(s)
= −

h(t, s)
ρ(s)

H(σ(t),σ(s))
γ
γ+1 , (3.9)

and for all sufficiently large T1 ∈ [t0,∞)T, there is a T > T1 such that

lim sup
t→∞

1
H(σ(t), T)

∫σ(t)
T

χ(t, s)∆s = ∞, (3.10)

where ρ is a positive ∆-differentiable function and

χ(t, s) = H(σ(t),σ(s))ρσ(s)Φ(s) −
(h−(t, s))γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(s, T1))γ
.

Then every solution of equation (1.1) is either oscillatory or tends to zero.

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1) and z(t) is defined as in (1.2). Without loss
of generality, we may assume that there is a t1 ∈ [t0,∞)T sufficiently large so that the conclusions of
Lemma 2.1 hold and (3.9) holds for t2 > t1. If case (1) of Lemma 2.1 holds, then proceeding as in the
proof of Theorem 3.1, we see that (3.8) holds for t > t2. Multiplying both sides of (3.8) by H(σ(t),σ(s))
and integrating from T to σ(t), we get∫σ(t)
T

H(σ(t),σ(s))ρσ(s)Φ(s)∆s 6 −

∫σ(t)
T

H(σ(t),σ(s))w∆(s)∆s+
∫σ(t)
T

H(σ(t),σ(s))
ρ∆(s)

ρ(s)
w(s)∆s

−

∫σ(t)
T

H(σ(t),σ(s))γρσ(s)β(s)R(s, T1)
wλ(s)

ρλ(s)
∆s, (λ =

γ+ 1
γ

).

(3.11)

Integrating by parts and using H(t, t) = 0, we obtain∫σ(t)
T

H(σ(t),σ(s))w∆(s)∆s = −H(σ(t), T)w(T) −
∫σ(t)
T

H∆s(σ(t), s)w(s)∆s.

It then follows from (3.11) that∫σ(t)
T

H(σ(t),σ(s))ρσ(s)Φ(s)∆s 6 H(σ(t), T)w(T) +
∫σ(t)
T

H∆s(σ(t), s)w(s)∆s

+

∫σ(t)
T

H(σ(t),σ(s))
ρ∆(s)

ρ(s)
w(s)∆s

−

∫σ(t)
T

H(σ(t),σ(s))γρσ(s)β(s)R(s, T1)
wλ(s)

ρλ(s)
∆s.

Then, we have∫σ(t)
T

H(σ(t),σ(s))ρσ(s)Φ(s)∆s 6 H(σ(t), T)w(T) +
[ ∫σ(t)
T

H∆s(σ(t), s) +H(σ(t),σ(s))
ρ∆(s)

ρ(s)

]
w(s)∆s

−

∫σ(t)
T

H(σ(t),σ(s))γρσ(s)β(s)R(s, T1)
wλ(s)

ρλ(s)
∆s.

It then follows from (3.9) that∫σ(t)
T

H(σ(t),σ(s))ρσ(s)Φ(s)∆s 6 H(σ(t), T)w(T) +
∫σ(t)
T

[
−
h(t, s)
ρ(s)

H(σ(t),σ(s))
γ
γ+1

]
w(s)∆s

−

∫σ(t)
T

H(σ(t),σ(s))γρσ(s)β(s)R(s, T1)
wλ(s)

ρλ(s)
∆s.
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Then∫σ(t)
T

H(σ(t),σ(s))ρσ(s)Φ(s)∆s 6 H(σ(t), T)w(T) +
∫σ(t)
T

[
h−(t, s)
ρ(s)

H(σ(t),σ(s))
γ
γ+1

]
w(s)∆s

−

∫σ(t)
T

H(σ(t),σ(s))γρσ(s)β(s)R(s, T1)
wλ(s)

ρλ(s)
∆s.

(3.12)

Therefore, as in Theorem 3.1, by letting

Aλ := H(σ(t),σ(s))γρσ(t)β(t)R(t, T1)
wλ(t)

ρλ(t)
,

Bλ−1 :=
h−(t, s)

λ(γρσ(t)β(t)R(t, T1))
1
λ

,

then using the inequality [8]

λABλ−1 −Aλ 6 (λ− 1)Bλ,

we have ∫σ(t)
T

[
h−(t, s)
ρ(s)

H(σ(t),σ(s))
γ
γ+1

]
w(s)∆s−

∫σ(t)
T

H(σ(t),σ(s))γρσ(s)β(s)R(s, T1)
wλ(s)

ρλ(s)
∆s

6
∫σ(t)
T

(h−(t, s))γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(t, T1))γ
∆s.

From this last inequality and (3.12), we find∫σ(t)
T

H(σ(t),σ(s))ρσ(s)Φ(s)∆s 6 H(σ(t), T)w(T) +
∫σ(t)
T

(h−(t, s))γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(t, T1))γ
∆s.

Then for T > T1 we have∫σ(t)
T

[
H(σ(t),σ(s))ρσ(s)Φ(s) −

(h−(t, s))γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(s, T1))γ

]
∆s 6 H(σ(t), T)w(T),

and this implies that

1
H(σ(t), T)

∫σ(t)
T

[
H(σ(t),σ(s))ρσ(s)Φ(s) −

(h−(t, s))γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(s, T1))γ

]
∆s < w(T),

for all large t, which contradicts (3.10). This completes the proof of Theorem 3.2.

Remark 3.3. From Theorem 3.1, we can obtain different conditions for oscillation of equation (1.1) with
different choices of ρ(t).

Remark 3.4. The conclusion of Theorem 3.1 remains intact if assumption (3.1) is replaced by the two
conditions

lim sup
t→∞

∫t
T

ρσ(s)Φ(s)∆s = ∞,

lim sup
t→∞

∫t
T

((ρ∆(s))+)
γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(s, t∗))γ
∆s <∞.
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Remark 3.5. The conclusion of Theorem 3.2 remains intact if assumption (3.10) is replaced by the two
conditions

lim sup
t→∞

1
H(σ(t), T)

∫σ(t)
T

H(σ(t),σ(s))ρσ(s)Φ(s)∆s = ∞,

lim inf
t→∞ 1

H(σ(t), T)

∫σ(t)
T

(h−(t, s))γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(s, T1))γ
∆s <∞.

Example 3.6. Consider the third order quasilinear neutral dynamic equations on time scales with dis-
tributed deviating arguments(

x(t) +
1
3
x(τ0(t))

)∆∆∆
+

∫d
c

1
t
x

1
3 (
t

2
)∆t+

∫d
c

1
t
x

5
3 (
t

2
)∆t = 0, (3.13)

where r(t) = 1, α = 1
3 , γ = 1, β = 5

3 , q1(t) = q2(t) =
1
t , and µ is a positive constant.

The conditions (1.2), (2.1), and (2.5) hold. By Theorem 3.1, pick ρ(t) = t, we have

lim sup
t→∞

∫t
T

[
ρσ(s)Φ(s) −

((ρ∆(s))+)
γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(s, t∗))γ

]
∆s = lim sup

t→∞
∫t
T

[
µ−

1
s(s− t∗)

]
∆s = ∞.

Hence, every solution of Eq. (3.13) is oscillatory or tends to zero if µ > 0.

Example 3.7. Consider the third order quasilinear neutral dynamic equations on time scales with dis-
tributed deviating arguments(

1
t2 (x(t) +

1
3
x(τ0(t)))

)∆∆∆
+

∫d
c

σ(t)

τ(t)
x

1
3 (τ1(t))∆t+

∫d
c

σ(t)

τ(t)
x

5
3 (τ2(t))∆t = 0, (3.14)

where r(t) = 1
t2 , α = 1

3 , γ = 1, β = 5
3 , q1(t) = q2(t) =

σ(t)
τ(t) , and µ is a positive constant.

The conditions (1.2), (2.1), and (2.5) hold. By Theorem 3.1, pick ρ(t) = 1, we have

lim sup
t→∞

∫t
T

[
ρσ(s)Φ(s) −

((ρ∆(s))+)
γ+1

(γ+ 1)γ+1(β(s)ρσ(s)R(s, t∗))γ

]
∆s = lim sup

t→∞
∫t
T

µ∆s = ∞.

Hence, every solution of Eq. (3.14) is oscillatory or tends to zero if µ > 0.
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