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Abstract

In this paper, with the aid of symbolic computation, an algebraic algorithm is
proposed to construct soliton-like solutions to (2+1)-dimensional differential-
difference equations. The famous (2+1)-dimensional Toda equation is explicitly
solved and some new classes of soliton-like solutions are obtained.
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1. Introduction

Differential-difference equations (DDESs) play a crucial role in modeling of many
physical phenomena such as particle vibrations in lattices, currents in electrical
networks, pulses in biological chains, etc. Unlike difference equations which are
fully discretized, DDEs are semi-discretized with some (or all) of their special
variables discretized while time is usually kept continuous. Some aspects of DDEs,
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such as integrability criteria, the computation of densities and symmetries,
conservation laws and transformation theory, etc., have been studied extensively
[1-6].

Not long ago, Baldwin et al [7]. presented an algorithm to find exact
solutions of DDE in terms of tanh function and found kink-type solutions in many
spatially discrete nonlinear models such as Hybrid lattice [7],Volterra lattice [8],
discrete mKdV lattice [7, 9], Ablowitz-Ladik lattice [9], Toda lattice [10]. Then some
extended algebraic methods [11 - 14] dedicate to seeking exact traveling solutions
of DDE(S).

Recently, Zhu [15] extend the Exp-function method [16] and derived exact
general solutions to the (2+1) dimensional Toda lattice. The Exp method is proved
to be nice and simple in seeking travelling solutions of DDES. But up to now, there
are no algebraic methods to find non- traveling solutions.

In this paper, we propose an algorithm to solve (2+1)-dimensional DDEs and
find exact non-traveling wave solutions. Our method is powerful when seeking for
soliton-like solutions of NDDEs.

2. Preliminaries
Suppose the DDE we discuss here is given in the following nonlinear
polynomial form

ou.. . (t, X ou, . . (t, X ou,. . (t,x
HU,,, (tX),...u,, X)), o ) A ) . ( )
' ° ot OX OX 1)
(m+r) (m+r) (m+r)
aun+p1(t,>() 6un+p2(t,x) aun+ ps (t,x)) _ 0
arxt oat™" T at™x”

where u_(t)=u(n,t) is a dependent variable; t is a continuous variable; n,m,

PeZ.
To compute the non-travelling wave solutions to Eq. (1), we assume
U, (t, X) =u(¢,)
where
& =dn+r(t, x). 2

Step 1. Suppose that solutions to Eq. (1) satisfy the following form:

N N
Upp = Z’; a,(t, x)cosh' (e, , ) + 2,1: b, (t, x)cosh'* (., )sinh(a,. , )

9 (3
+.2 ¢, (t, x)cosh' (@

i=—N

n+p; )Sinh(a)n+pi )
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and

do, .
E =sinh(m,), (4)

where a,(t,x), a,(t,x), a,(t,x), b(tx), by(t,x), c,(t,x) and c  (t,x) are

unknown functions to be determined later. N can be determined by balancing the

highest degree linear term and the nonlinear term of u_(t).

Meanwhile, ifj—? = sinh(w), by using separation of variables method, we can

derive
sinh(w) = —csch(&) and cosh(w) = —coth(&). (5)
When p, =0, we can obtain
N

2. a(tx)(=coth(5,))' - ibi (t, X)(-coth(&,)) "esch(&, )

i=—N

-3 6 (LX) (-coth(&,)) esch(E,)

un

Step 2.: Simple computation leads to the following identity:
§n+pi = (n + pl)d + I‘(t, X) = én + dpl

For sinh(e,)=-csch(,) and cosh(w,)=—coth(&,), we can have

sinh(w,)

sinh(es,..,,) = —cseh(&,., ) = cosh(dp;) —cosh(a, )sinh(dp;) ©
and
o _ cosh(w,)cosh(dp,) - sinh(dp,)
cosh(@,,, ) = —coth(g,,) = cosh(dp;) —cosh(a, )sinh(dp;) @

Substituting (3) into Eq. (1), clearing the denominator, we obtain a finite

series of sinh*(w,)cosh'(w,)(i=0,1,...,m k =0,1). Setting the coefficients of
sinh* (o, )cosh'(w,) to zero, we get a set of difference differential equations with

respect to the unknown a,b. and c

Step 3. Solve the nonlinear over-determined differential-difference equations.
Explicit soliton-like solutions to Eg. (1) can be derived.
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3. Non-traveling solutions of (2+1)-Dimensional Toda Lattice
The (2+1)-dimensional Toda equation is

O°uy (1) _ Qu, (1) _
6’[8X - ( 8’[ +l)(un—1 + un+1 2un)' (8)
We assume soliton-like solutions to Eq. (8) in the form
_ _a,y(tx) :
u, =a,(t, x)+ cosh(@() +a,(t, x)cosh(w(&,)) + b, (t, x)sinh(w(&,))
sinh(w(&,) ©)
+C_, (t, X) ————="—
cosh(w(&,))
Eqg. (9) can be rewritten as the following expression by means of Eq. (5),
U, = a,(t,x) —a_,(t, x)tanh(&,) —a (t, x)coth(&, ) - b, (t, x)eseh(&, ) (10)

+C_, (t, x)sech(&,)
Substituting Eqg. (9) and Eqg. (4) into Eg. (8), clearing the denominator and

setting the coefficients of all powers like  sinh*(o,)cosh'(w,)

(1=0,1,..,mk=0,1.) tozero,yields some over-determined difference differential
equations with unknown functions with respect to
a,(t,x), a,(t, x), a,(t, x), b, (t,x),c,(t,x) and &, (t,X).

We omit the equations for simplicity and solve the over-determined
differential equations by the symbolic tool Maple. We can have the following
fourteen classes of explicit non-traveling as
Familiy 1

u, =-t+F,(x) - F,(x)tanh(&,) — F,(x)coth(&, ) + F (x)sech(¢,),
£ (t,X) z—zj F,(x)dx+C;;

Family 2. u, =-t+F,(x)-F(x)tanh(&,), &, (t, x) = F,(X);

Family 3. u, =-t+F,(x) - F,(x)tanh(&,) + F(x)sech(¢,), &, (t, X) = F,(X);

Family 4.
u, = -t+F(x) - F,(tanh(g,) - F, (x)coth(&,) — F, (x)eseh(&, ) + R (x)sech(&, ),
&, (t,%) = —2[ F,(x)dx+C;

Family 5.
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u, =-t+F(x) - F(X)tanh(&,) — F, (x)coth(&,) — F,(x)csch(&, ) + F (x)sech(&,),
&, (t,%) = 2] (F,(x) — F, (x))dx+C;

Family 6.

u, =-t+F,(x) - F,(x)tanh(&,) — F,(x)coth(&, ) + F (x)sech(¢,),

& (t, ) = K5 (X);

Family 7.

u, =-t+F(x) - F(X)tanh(&,) — F, (x)coth(&,) — F,(x)csch(&, ) + F (x)sech(&,),
& (%) = F5(X);

Family 8.

U = F,(t)+ F,(x) - C,coth(£ ), €. = dn—C,x— (COSh(Zd);l)(t RO, ¢,

Family 9.

U, = F,(t)+ F, ()~ Canh(& ), & = dn—C,x—cosh(2d) ;1)“ +RM), ¢,

Family 10.

U, = F, () + F.(x)~Canh(£,) ~ C,ooth(, ), &, = dn— C,x — (254 )s_cl)(t RO, .

Family 11.

U, = F,(t) + F,(x) +iCtanh(&.) + C,sech(£ ), & = dn + 2iC,x —CoN() ‘é)(t )

Family 12.

U, = F,(t) + F,(x) —iCanh(& ) + C,sech(&,), €, = dn — 2iC,x + (COSh(d)‘é)(t RO, ¢ .

Family 13.

U, = F,(t) + F, (x) ~C,coth(£,) — C,csch(& ), &, = dn—2C,x — {oSn(d) ‘Cl)(t AV

Family 14.

Uy = 0+ F.()+ C.ooth(&, )~ Ciesch(&, ). &, =dn + 2+ LD RON e,

F.(t),F(x)and C, are arbitrary in all the above fourteen families.
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Consider the solution Family 10. SettingC, =C,=1d = arctanh(%), n =100,

F, =sech(t), F,(x) =tanh(x), Family 10 reads

U, = Sech(t) +tanh(x) —tanh(&, ) —coth(&,),

y

(cosh(4arctanh(22)) —1)(t + sech(t))
5 :

where ¢, = 100arctanh(7) —X—

The exact solution Family 10 is illustrated in the Fig 1.

N

Fig 1. The shape of Family 10 with F,(x) = tanh(x), F, (t) = sech(t), d = arctanh(72)

Families of solutions 8-14 aren't linear functions depended ont and they are
more general than constant ones. As we known, Family 2, Family 8, Family 9 and
Family10 can be found in Ref. [17]. Other ten Families presented in this paper
have not been found in previous literature. This paper also provides some exact
solutions of the Toda lattice for various nonlinear approximate techniques
[18-22].

Conclusions

With symbolic computation, when applying our proposed method to Eg. (1), a
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rich variety soliton-like solutions given in forms of sech, tanh, coth, csch. Our
method can also be used to construct non-traveling solutions of other higher
dimensional DDE(S).
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