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Abstract

A method to determine the numerical solution of system of linear Volterra integro-differential equations
(IDEs) is proposed. The method obtains Taylor expansion for the exact solution of system of linear Volterra
IDEs at initial point z = 0. In addition, we introduce a procedure to obtain an approximation for Taylor
expansion of the exact solution at x # 0. Moreover, error estimation of the proposed methods is presented.
The efficiency and applicability of the presented methods is illustrated by some numerical examples.
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1 Introduction

Integro-differential equations have been found to describe various kinds of phenomena, such as glass-
forming process, nano-hydrodynamics, drop wise condensation, and wind ripple in the desert [1-4]. There
are several numerical and analytical methods for solving IDEs. Some different methods to solve integral
and integro-differential equations are presented in [5]. [6] has used rationalized Haar functions method to
solve the linear IDEs system. Linear IDEs system has been solved in [7] by using Galerkin methods with
the hybrid Legendre and Block-Pluse functions on interval [0,1). In [8] an application of He’s homotopy
perturbation (HPM) method applied to solve of IDEs system. He’s variational iteration method used for
solving two systems of Volterra integro-differential equations [9]. Arikoglu et al. differential transform
method (DTM) applied to both integro-differential and integral equation systems [10]. Biazar [11] proposed
He’s homotopy perturbation (HPM) method for system of integro-differential equations. A numerical method
based on interpolation of unknown functions at distinct interpolation points has been introduced in [12] for
solving linear IDEs system with initial values. Recently Biazar introduced a new modification of homotopy
perturbation method (NHPM) to obtain the solution of linear IDEs system in [13]. Taylor expansion method
has been used for solving IDE’s in [14, 15]. In this work, we developed and modified Taylor series method
(TSM) introduced in [16], to solve system of linear Volterra IDEs in the following form

E(x) 4+ Vi(z) = fr(), m=11)n, z,tel =][0,b], (1)
where e
m Zzpmm (]) )7
=1 j=0

Bmi

Z/ mxtzym
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we consider the supplementary conditions

n 04.7‘—1
S Bupry(0) = ¢, )
m=1 j=0

forr =1,2,..., 3, where
oy = max o}, f=3 0y
<m< =
Suppose that, the functions f, (), kmi(z,t) and p,,;;(z) are analytic functions with respect to all arguments
on the interval [0, b]. The purpose of this study is to find the solution of the system (1) in the following form

vie) =Y o —af  i=1n  0<e<a,

(k)

where y;’ (¢), k = 0(1) N, are Taylor coefficients to be determined.

2 Taylor-series method

For solving (1) with the initial conditions (2) by TSM, suppose that the solution of problem be in the
following form

yk(il') =epo+ e+ ... + ekakm“’“, k= 1(1)’[’L, (3)

()
where, for k = 1(1)n, ex; = y"i!(o) ,4=0,1,...,, — 1 are known and ey, , is unknown to be determined.
By substituting (3) into (1), we obtain the following system of algebraic equations

(L) (e) = b)aPs + Qi(aP+h) = 0, i=1(1)n, “

where Lgl) (e), is linear combination of e, , k = 1(1)n, and Q;(zPi*1) is a polynomial of degree greater
than non-negative integer p;, for i = 1(1)n. By neglecting Q;(xPi*!) in (4), we have the following linear
algebraic system

AVE =D, (5)

1) (€]
Anxn and bnxl
dependent rows and columns in the linear algebraic system (5) and solving, we obtain the unknown parame-
LerS €i1a;) 5 Cisaviys " 5 Cigaryy s where S = {il, 12, ...,ik} is asubset of T' = {17 2, ,n}.

In the next step, we suppose that the solution of (1)-(2) has the following form

t. .
are known and F; = [elal €204, " ,enan] is an unknown vector. By neglecting linear

Vi(x) =ero + ez + ...+ eijj, k=1(1)n, (6)
where
ag + 1, if keSS,
Jj= (N
g, if keT -5,

and ey, k = 1(1)n, are unknown parameters. Substituting (6) into (1), we have the following linear algebraic
system

(L,E2) (e) _ bEQ))x71 + Qi(x'rni"rl) — O7 fofr Z = 1(1)7’]‘7 (8)
where
Di + 17 Zf Z € S’
. ©)
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and LEQ) (€), i = 1(1)n, are linear combination of e, k = 1(1)n. Again, by neglecting Qi(x" 1Y), we have
the following linear algebraic system
AP By = b3, (10)

Agﬁn and bg&l are known and E» is a unknown vector of ey ;, k& = 1(1)n. Neglecting the linear dependent
rows and columns and solving, the unknown parameters €;; o, , €iza, > ; €ifa, » i1 (0) can be obtained.
i i it

By repeating the above procedure the following power series is derived
¥ (2) = ero + ep1w + epox® + ..., kE=1(1)n. (11

In order to approximate the exact solution yx(x), for k& = 1(1)n, we use the first p terms of (11). Now, in
the following theorem, we will prove that the above procedure which is given in (11), is Taylor expansion of
exact solution of (1)-(2) at x = 0.

Theorem 1: We assume that the functions f,,,(x), ks (x,t) and p,,;; () in (1) are analytic functions with
respect to all theirs arguments at x = 0, and also we suppose that there exist ¢, j such that p,,,;;(0) # 0 for
m = 1(1)n. Then TSM gives Taylor expansion of the exact solution (1)-(2) at z = 0.

Proof : We have to Prove that, in the oth step of the TSM , we obtain
. y(j)(o)
T

For proving, we use induction. For ¢ = 1, soppose $,,, m = 1(1)n, are the smallest nonnegative integer
such that, the following equations are’t vanish at z = 0

ie€{1,2,...k}, k<n. (12)

N Omi Sm

SIS Tl P @)y @) + xS (@) = fli (@), for m=1(1)n, (13)

i=1 j=0 k=0

where

z 1 .ﬁ) ( mi 33 t meé yz(J)( ))d ) Zf Sm = 07
X (@) =
mi Sm Sm — j+k .
z ZB z =0 Mk¢mlj (l‘)yz(j+ )(J?), Zf Sm = 1727 X}

L, Mk are known constants and Y, (2) = ki (€, ) Gmi; ().
By substituting x = 0, in (13), we have

n Qmi Sm

SUNTS mnln T 0y 0) + xEm(0) = £5m)(0), for m=11)n, (14

i=1 j7=0 k=0

For m = 1(1)n, p7: = (0) = 0, while j + k > ay, in y/ ™

yi, in (14) is ;.
In the first step of TSM, we suppose that the solution of (1) with the initial conditions (2) is giving by

(am—1)
™ 0 _
oe) = U 0) YO0+t S g, for m= 10, (19

By substituting (15) in (13) and setting x = 0, we get

(0), therefore the maximum derivative of order

n Omi Sm

ST N + 5 (0) = £5)(0), for m=1(1)n, (16)

i=1 j=0 k=0
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where
(00)leia iy (0): if ami=ai=j+k,
Amijk =
meplr M (0)y T (0), otherwise,
0, if sm=0,
0 =
S S i if Sm=1,2, ..,
and
(ai)leiaiuwfﬁ{;ikil)(0), if Bmi=ai=j+k,
Ymijk =
ukwfiz’-;!_k_l)(O)ygj+k)(0), otherwise.

Subtracting (14) from (16) and simplifying, we have the following system in matrix form
AE = AY, a7

where E = ((a1)!e1a,, (02)!€305, - (@) lenans ) Y = (5177(0),5572(0), ..,y (0)) " and A, is
known matrix. Omitting linear dependent rows and columns A, ,, in (17), we have the following homogeny
algebraic system

BX =0, (18)

where

i (0) = (i) esyan,

(@) (g
Yiy, g (O> - (aik)!eikaik

and {ii, 12, ...,ik} - {1, 2, ,n}
Therefore

Now, we have to show that if (12) holds for o = p, then it also holds for ¢ = p + 1. Let the solution at oth
step by TSM, be as follows

(Tm)
m O
You(2) = Y (0) + 9 (O)z + . + y()(,) for m=1(1)n. (19)
m)!
Differentiating (13), (7, — @) times, for m = 1(1)n, then we have

N Qmi Om

SUSS P @)y @) + O @) = 0 (), for m=1(1)n, 20)

i=1 7=0 k=0
where 0,, = Sy + T — @, and

n @ Om —

Bmi .
Om —k— k
3 §j b0 @)y (@),
k=0

=1 j=0
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Umij (2) = kmi(@, £)gmij(z) and pg, 15, are known constants.
In the same procedure that has been explained in (14)-(18), we can conclude that the equations (12) is also
holds for o = p + 1.

3 Modified Taylor-series method

Let A = {0 = zg,z1,...,&, = b}, be an equidistance partition of [0, b] where s = x;41 — z;, i =
0,1,...,n — 1 is the discretization parameter of the partition. In modified Taylor series method, we need to
prove the following theorem..

Theorem 2: Let, the conditions of theorem (1) hold, and k,,;(z,t) is a separable function, then there exist
linear independent functions ¢y (X), ..., (X) and constants co, ..., ¢y such that, Y7 (X), Y2(X), ..., ¥, (X)
is the exact solution of following linear Volterra IDEs system

,
En(X + 1)+ Veo(X +h) + Y Smrcrpn(X) = (X + ), 2D
k=0
m = 1(1)n,

with the initial conditions
Y4 (0) = yr(h), Y1(0) = g (h), ., YLH D (0) = yi™ D (h), (22)

k=1(1)n, hel =]0,b],

where

En(X +1) =3 puts (X + WY (X), 23)
=1 j=0
n X ﬁmrl .
V(X + h) = Z/ (Bt (X + hou+h) > ¥ (w))du, (24)
=170 §=0

Yi(X)=y(X+h),l=11n, X =2 — hand §,,x, is equal 0, 1, or -1.

Proof : k,,;(x,t) is a separable function, therefore

Tl

kml(x7 t) = Z vmlk(x)wmlk (t) (25)

k=0
Substituting (25) into (1) and by change of variables x = X + h and t = u + h, we have

n Qunl n Bmi

_ X _
SN o (X + Ry (X + )+ /0 (emt(X + Byt B) Sy (ut B)du  (26)
j=0

I=1 j=0 =1

n TI
+ Z Z'Umlk(X + h)amlk = fm(X + h)7 m = 1(1)71,
=1 k=0
where
0 Bmi
Uik = / (Winik(u+ h) Zyl(j)(u +h))du, for m,l=1(1)n, k=0(1)7.

—h =0
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Simplifying and classifying the last term on the left hand side of (26), we can write

n

szmlk X+ h)amir = ZCSkaksOk(X), for m=1(1)n, 27)

=1 k=0 k=0

where, the known constant d,,, is equal 0, 1, or —1, ¢o(X), ..., ,(X), are known linear independent
functions, and also ¢y, ..., ¢y, are unknown constants.

Therefore, by substituting y;(X + h) = Y;(X), we can rewrite (26) in the form of (21).

We denote v, be the number of the unknown constants in (21), which are not appear in another equations for
m = 1(1)n. Now, for determining the unknown constants ¢y, ..., ¢,,, we need to take £k derivative of relation
(21) for £ = 0, ..., v, and then by setting X=0, we will obtain the following algebraic system

El(h) +W (h) + ZZ:O 6mkck§0k‘(0) = fl(h),

BTV (0) + VT (R) + 0 Smrere P (0) = A7V (),
: (28)

En(h) + Vn(h) + ZZ:O 5mkck¢k(0) = fn(h)7

B D (R) + VD () + VY () + S bmacnpl ™V (0) = £ ().

In the case when the number of equations in (28) is less than -, we need associate some more equations. these
equation can be derived from those equations which are contain the more number of unknown constants, we
consider by taking derivatives minimum times, solving the arising system of algebraic equations the constants
Co, ..., Cy can be determined. The existence of the solution of such system depend on the choosing of step
length ”h”.

For solving system of linear Volterra IDEs (1)-(2) by modified Taylor-series expansion method, let h =
0, ¢; =0, 1:=0,1,...,7, by solving (21) and (22) by TSM, for N iterations, we obtain

(1) (ar)

0 0

yk()X_~_..._|_i‘/k (0)
1! ay!

) k=1(1)n, (29)

where is Taylor expansion of the solution (1)-(2) at h = 0.
At the next step, let h = x1, from (28) and (29), we obtain¢;, i =0,1,...,, and

Yk(j) (0) = y](cj) (x1)7 ] = 07 ]-a ey O 7]" k= ]" 2’ SRALT (30)

By substituting the obtained values ¢;, ¢ = 0,1,...,y into (21), we obtain a linear system of Volterra IDEs,
by solving derived system, with TSM for N iterations we have

(1 (ak+1)
Y ( ) Y (901)
yr(x) = yp(zy) + 22 0 X+"'+7]Eak+1)! , k=1(1)n, 31)

where is Taylor expansion of the solution (1)-(2) at h = z7.
By repeating the above step for ¢ = 2,3,...,n — 1, we can obtain Taylor expansion approximate (1)-(2) at
h= ZTi.
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4 Estimation of error function

We can easily check the accuracy of the solution obtained by present methods as follows. Let for k =
1(1)n, ex(x) = yp(z) — yi(z), where yi(z), & = 1(1)n, is exact solution, and y,(x), k = 1(1)n, is
approximate solution (3).

Now, by substituting yx(z) = ex(x) + y, (), in (1)-(2), and rewriting we have

Em(x) + ‘/}m(x) = ﬁm(x), m=1(1)n; z,teIl =][0,b], (32)
under the initial conditions
ex(0) =0,¢,(0) =0,...e™ D0y =0, k=1(1)n, (33)
where o
=33 b (e ),
k=1 j=0
Bmi
S5 (CHEN) L)
7=0
and
R n Qmk ( ) n x Bmk ( )
Hm(x) = fm(z) - Z mekj(x)ykj (l‘) - Z/O (kmk(xat) Zykj (t)
k=1 j=0 k=1 j=0

Now, by solving (32)-(33) with the manner which is given in the previous section, Taylor expansion approxi-
mate of the error function at h = x;, ¢ = 0,p, p + 1, ... is obtained.

If € = 10~* (k is positive) is prescribed, then the truncation limit NV is increased until ey (z), k = 1(1)n, at
each of the points h = z;, i = 0,p,p + 1, ... becomes smaller than the prescribed ¢ = 107%.

S Convergence of the method

From theorem 1. TSM and its modification expand the unknown functions y;(z) in (1)-(2) by its Taylor
expansion as a polynomial degree N

Z k'y(k) (x — )+ Ry (x,¢), m=11)n, 0<c<u, (34)

where the Lagrange remainder

v T (En)

Ry (z,c) = W

(z — )N T, (35)
for some &, between x,c. Moreover, suppose that there exist the maximum value M, of yﬁ,ﬁvﬂ) (x) on the
interval [0, b], then it can be proved that the Lagrange remainder has a bound independence of x and c, i.e.

M,

| Rin(z,c) |[= ma

(36)

for two arbitrary points x and ¢ on the interval [0,b]. Clearly, when N is sufficiently large enough then,
R, (x,c) = 0.
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6 Applications and numerical results

In this section, we show the efficiency of the modified TSM (MTSM) leads to higher accuracy by us-
ing some numerical results. We first use the MTSM in example 1 with detailed explanations and then in
other example, we compare the purpose method with the other methods discussed in [9, 10]. In Table 3,
emrsm, Eenrsa, epry and egy s stand for absolute error of MTSM, error estimation of MTSM, ab-
solute error of differential transform method [10] and absolute error of He’s variational iteration method [9]
respectively.

Example 1. Consider a system of third-order linear Volterra IDEs on the interval [0, 6]

Y (@) + 2?1 (2) — (@) + [§ (@ = Oy (t) +2(t))dt = g1 (@),

(37
4%y} () + 627y (2) + 3 () + [§ (Wi (1) + (2 + t)ya(t))dt = ga(2),
under the initial conditions, y1 (0) = 37 (0) = 1, y2(0) = y4(0) = 0, y4(0) = 1,
where
g1(x) = (24 2?)e” — x — cos(z) + sin(z),
go(x) = sin(z) — (1 + 2x) cos(z) + (1 + 622 + 42%) + = — 1. (38)

The exact solution of this system is y1 (x) = €%, ya(x) = sin(z).
First of all, replace the functions e”, sin(x), cos(z), with theirs Taylor expansion in (37) at x = 0. Corre-
sponding TSM, we suppose that the solution of linear Volterra IDEs with the initial conditions be as follows

yi(@) =1+ 2+ epa?,
yo(z) =2+ ea3x’, 39)

where e;5 and eg3 are unknown parameters.
Substitute (39) into (37), we have

—1+2e12+qi(z) =0,
1+ 6e3 + g2(x) = 0, (40)

where ¢; (z) and g2 (), are polynomials with degree greater equal than one.
By neglecting ¢ (z) and g2(x), in (40), we obtain e1o = % and eg3 = —é, therefore, the solution of (37) can
be considered as

2

x
yi(@) =1+z+ > + e132?,

z3 4
Yo(z) =7 — €+€2493 ) (41)

where e;3 and eg4 are unknown parameters.
By substituting (41) in (37), we get
(—1 + 6ey3)x + ql(x2) =0,
(24e94) + q2(x?) = 0, (42)

where ¢; (2?) and g2 (2?), are polynomials with degree greater equal than two.
By ignoring g1 (z?) and g2(x?) in (42), we obtain 13 = § and ep4 = 0, therefore

l‘2 IS
:1 —_ —_
yi(x) +z+ 5 + 5
3
xr
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By repeating the above procedure for N = 15 iterations, we have

1‘2 1,16
=1 —t et
V@) =14zt o 0888000
IS :175 fl;17
— _ — T T ... ° 44
V(o) =2- 5+ o5 * 355687428096000 )

That is 16 and 17, terms of Taylor expansion of exact solution y;(z) = e, y2(x) = sin(z), respectively at
o — 0.

Eq. (44), consider as approximate solution of (37) in the interval [0, 0.6].

By using theorem 2, we can covert linear Volterra IDEs system (37) to the following form

Y/(X) 4 (X + h)2Y1(X) = V3/(X) + ;X (X = u)Ya(u) + Ya(u))du
+Co(X + h) + Cc1 = Gl(X),

(45)
A(X + R)PYY(X) + 6(X + W)Y (X) + V3" (X) + [35 (Yi(u) + (X + u + 2h)Ya(u))du
+C2+03(X+h) (X),
where,
G1(X) =2+ (X +h)2)eXth — X —h — cos(X + h) + sin(X + h),
G2(X) =sin(X + h) — (1 +2X + 2h) cos(X + h) + eXTh(1 + 6(X + h)?
+4(X +h)?*)+ X +h—1,
with the initial conditions
Yi(0) = y1(h), Y{(0) =yi(h), Ya(0) =y2(h), Y3(0) =u5(h), Y5'(0) =y3(h), (46)
and
co = —1+¢€"(2+ 2h + h?) + cos(h) + sin(h) — h(2y, (h) + hy} (h))—
yi'(h) = yo(h) +y5' (h),
c1=e"(2—-2hn—h%—h3) — (14 h)cos(h) + (1 — h)sin(h) + h2y1(h)+
hyy(h) + h*yi(h) = y{(h) +y5 (k) + hy{'(h) — hyy'(h),
c2=—1+€"(1—h—6h% — 14h® — 4h*) — (1 + h) cos(h)+ @7

(1 — h —2h?%)sin(h) + h(1 + 6h)y, (h) + 2h%y,(h) + 14R3y] (h)+
4k (h) = vy (h) + hy$" (),

c3 =14 e"(14 12h + 18h2 + 4h3) — cos(h) + (1 + 2h) sin(h) — (1 + 12h)y, (h)—
2hy,(h) — 18h7y; (h) — 4h%y{ (h) — ¥ (h).

Set h = 0.6 into (45)-(47), and substitute the obtained values co, c1 ,c2 , cs , into (45). Then the arises linear system of
Volterra linear Volterra IDEs with the initial conditions (46) can be solved by using our proposed methods for N = 15,
therefore we get the following approximate solution

17 17
= eqi(x—0.6)", yy(x) =) esai(z—06), (48)

where es14, e32i, ¢ = 0,1,2,..,17, are given in Table 1. Eq.(48) is an approximation for the Taylor expansion of (37) in
neighborhood x3 = 0.6, and consider as approximation solution of (37) in interval (0.6, 0.8].

Table 1.
The values of es14, €32, 7 = 0,1, ...,17.
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€314

€324

7

€314

€324

IS I NV R OO SRS N

0.564642473395035E-0
0.825335614909678E-0
-0.28232123669751E-0
-0.13755593581827E-0
2.352676972479313E-2
6.877796790913993E-3
-7.84225657492964E-4
-1.63757066450137E-4
1.400402959817176E-5

0.56464247339503E-0
0.82533561490967E-0
-0.2823212366975E-0
-0.1375559358182E-0
2.35267697247931E-2
6.87779679091399E-3
-7.8422565749296E-4
-1.6375706645013E-4
1.40040295981717E-5

9

10
11
12
13
14
15
16
17

2.27440370068981E-06
-1.5560032889266E-07
-2.0676397301677E-08
1.17879036079657E-09
1.32541007939097E-10
-6.4768681440936E-12
-6.3114612780652E-13
2.69876049397373E-14
2.32048040828339E-15

2.27440370068981E-06
-1.5560032889266E-07
-2.0676397301677E-08
1.17879036079657E-09
1.32541007939097E-10
-6.4768681440936E-12
-6.3114612780652E-13
2.69876049397373E-14
2.32048040828349E-15

By repeating the above procedure for x; = 0.2¢, ¢ = 4,5, ..., we can compute the approximation solution of (37) in the
interval (0.2¢,0.2(¢ + 1)]. The numerical results in the Table 2. show the high accuracy of MTSM in the broad interval
[0, 6], also Table 2. contains a numerical comparison between exact error of MTSM and estimation of error function that
is introduced in section 4.

Table 2.
Results for Example 1

Exact Error of MTSM Error Estimation of MTSM
T e1(z;) e2(x;) Eei(z;) FEes(z;)
0.0 0 0 0 0
0.5 4.44 x 10716 0 2.21 x 1072° 2.06 x 10723
1.0 8.88 x 10716 1.11 x 10716 1.42 x 10717 5.14 x 10718
1.5 2.67 x 1071° 1.11 x 10716 9.84 x 10717 3.66 x 10717
2.0 5.33 x 10713 777 x 10716 3.57 x 10716 9.11 x 1077
2.5 1.78 x 1071° 1.77 x 10714 7.74 x 10716 1.16 x 10716
3.0 3.55 x 1071° 3.91 x 10714 1.23 x 107%° 7.63 x 10717
3.5 4.26 x 107 2.47 x 10714 1.64 x 107%° 2.29 x 10716
4.0 6.40 x 10714 1.11 x 10713 2.01 x 10716 1.79 x 10715
45 1.14 x 1071 7.84 x 10713 2.41 x 10714 2.73 x 10714
5.0 2.56 x 10713 2.71 x 10712 8.52 x 10714 9.05 x 10714
5.5 5.12 x 10713 6.78 x 10712 1.75 x 10713 1.89 x 10713
6.0 1.71 x 10713 1.13 x 107! 3.36 x 10713 3.70 x 10713

Example 2. Consider the following system of linear Volterra IDEs equations

sin()yi () + e"yi () + 2 (2) + f5 (Wi (t) + cos(z — t)y2(t))dt =

—2+e %+ (24 z+ e %)sin(z),

(49)

1 (@) + 43 (@) — ey (2) — cos(a et

x)+ [ (e

)+ 2a(t))dt =
m(l —e") + 2 cos(z)(sin(z) — ),

with the exact solution y1(z) = e~ %, y2(z) = 2sin(x) and y1(0) = 1, ¥1(0) =
initial conditions.

By using TSM for N = 8 iterations, the following approximate solution is obtained

—1, y2(0) = 0, y5(0) = 2, as the

m2 mg
S I
vy (@) TS T T 362880°
ms x5 xg
O T S 50
Yo(®) =22 = 5 + 5 — ¥ {51110 (50)

That is 9 terms of Taylor expansion of the exact solution y1(x) = e~*, y2(z) = 2sin(z), respectively at zo = 0. we
consider (50) as the approximate solution (49) in the interval [0, 0.1].
By using theorem 2, we can convert (49) to the following linear IDEs system

sin(X 4+ h)Y{'(X) + Y (X) + Y8 (0 + [ (Y
—co —cos(z + h)er —sin(z +h)ea —2+e X" (=24 X+ h+e ¥

)+ Jo

e*Th) £ 2cos(X + h)(sin(X + h) —

(u) + cos(X — u)Ya(u))du =

M) sin(X + h),
Y{(X) + Y{(X) = (X + h)eX* "Y1 (X) — cos(X + h) Y3 (X (eXTyy(
—eX ey — (X +h)es+ (X +h)e ™"+ (X +h)(1—

(u) + (X + h)Ya(u))du =
X - h):
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with Y1(0) = y1(h), Y{(0) = y1(h), Y2(0) = y2(h) , Y5(0) = y5(h), as initial conditions, and

co=—2(1—e ") (1 =cos(h)) + e "sin(h) — 2e"yL (k) — yh(h) — y! (h)(1 + 2e")—
y3 (h) — y5" (h)(e" + 2 cos(h)),

c1 = 2(=3+e "(3—2cos(h)) — cos(2h)(1 —e ") +
211 (R)(e" cos(h) + sin(h)(1 + ")) + 2 cos(h)(y
¥ (h)(3 + 2¢" cos(h) + cos(2h)) + 2sin(h)yS®

e " (2sin(h) — sin(2h)) 4 2sin(h)y2(h)+
é(h) + 41 (h)) -I- thyi'(h) (2cos(h) + sin(h))+
(h) + sin(2h)y " (k) + 2 cos(h)yS” (h)),
c2=2(—4+2h+e "(1—2cos(h) + cos(2h) — 2sin(h) + sin(2h)) — sin(2h) — 2 cos(h)y2(h)—
2, (h)(cos(h)(1 + ") — e sin(h)) + 2sin(h)ys(h) — 2y} (h)(1 + € cos(h) — sin(h) (1 + 2e"))+ 52
¥ (h)(2¢" sin(h) + sin(2h)) — 2 cos(h)yS? (k) + v (h) (1 — cos(2h)) + 2sin(h)y' (h),

s = 551 (h*(eh — 2sin(h)) — 2h cos(2h) + sin(2h) + h2(e"y1(h) + y2(h)) + h(yt® (h) — cos(R)ys¥ (h))+
Y1 (h) (=1 + he"(e" — h)) + (h — 1)y (h) + y5 (h)(cos(h) + hsin(h))),

ca= 25 (—1+4€" + h+2cos(h)(1 — h) — 2(cos(2h) + hsin(h)) + sin(2h) — e"y1 (k) + hy2(h)+
yi () (=1 + (" — ) + (cos(h) + sin(h))ys (h) + 91 (h) — cos(h)ys” (R)).

Now, by using the similar manner which is given in the Example 1. for N = 8 iterations, we obtain an approximation of
the exact solution and error function (49) in the intervals [0.1¢,0.1(¢ 4+ 1)], i=1,2,...,9. The numerical results in the Table
3. show that when the functions data are not polynomial, our approach are also applicable.
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Results for Example 2

Exact Error of MTSM Error Estimation of MTSM
Z; el (:L‘l) €2 (iL‘z) E61 (.I,’z) EEQ(I’Z')
0.0 0 0 0 0
0.1 1.11 x 10716 2.78 x 10717 2.75 x 10717 6.12 x 1072
0.2 4.88 x 10718 2.22 x 10716 2.30 x 10715 7.47 x 10716
0.3 3.91 x 10714 3.11 x 10715 1.60 x 10714 8.98 x 107 1%
0.4 1.43 x 10713 9.66 x 10713 5.38 x 10714 3.51 x 107
0.5 3.58 x 10713 2.23 x 10715 1.25 x 10713 8.65 x 10714
0.6 7.07 x 10713 7.86 x 10714 2.29 x 10713 1.60 x 10713
0.7 1.17 x 10712 3.72 x 10713 3.46 x 10713 2.30 x 10713
0.8 1.69 x 10712 1.14 x 10712 433 x 10713 2.42 x 10713
0.9 2.10 x 10712 2.83 x 10712 4.14 x 1073 9.28 x 10713
1.0 2.19 x 10712 6.15 x 10712 1.85 x 10713 3.81 x 10713

Example 3. Consider the system of linear Volterra IDEs

—yi —top+ 3y =2 —a— Za® ot + E(—1+422%) — Ja(-3z +42°) + [T, (31 — 3zya)dt,
(53)
Y1 +yh —ay2 = 2 4+ 3w 4 32° — % + 2% (3w + 42°) + [*,((2z + t)y1 + 3t%y2))dt,

under the conditions 1 (0) = 0, y2(0) = —1, with the exact solution y; () = 4> — 3z, yo(z) = 22 — 1.

By using TSM for N > 3 iterations, the exact solution is obtained. In general, if the exact solution of linear Volterra IDEs
system (1)-(2) is polynomial then TSM obtains the exact solution, for all N which is greater than degree of polynomial
solution.
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