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Abstract
A method to determine the numerical solution of system of linear Volterra integro-differential equations

(IDEs) is proposed. The method obtains Taylor expansion for the exact solution of system of linear Volterra
IDEs at initial point x = 0. In addition, we introduce a procedure to obtain an approximation for Taylor
expansion of the exact solution at x ̸= 0. Moreover, error estimation of the proposed methods is presented.
The efficiency and applicability of the presented methods is illustrated by some numerical examples.
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1 Introduction
Integro-differential equations have been found to describe various kinds of phenomena, such as glass-

forming process, nano-hydrodynamics, drop wise condensation, and wind ripple in the desert [1–4]. There
are several numerical and analytical methods for solving IDEs. Some different methods to solve integral
and integro-differential equations are presented in [5]. [6] has used rationalized Haar functions method to
solve the linear IDEs system. Linear IDEs system has been solved in [7] by using Galerkin methods with
the hybrid Legendre and Block-Pluse functions on interval [0, 1). In [8] an application of He’s homotopy
perturbation (HPM) method applied to solve of IDEs system. He’s variational iteration method used for
solving two systems of Volterra integro-differential equations [9]. Arikoglu et al. differential transform
method (DTM) applied to both integro-differential and integral equation systems [10]. Biazar [11] proposed
He’s homotopy perturbation (HPM) method for system of integro-differential equations. A numerical method
based on interpolation of unknown functions at distinct interpolation points has been introduced in [12] for
solving linear IDEs system with initial values. Recently Biazar introduced a new modification of homotopy
perturbation method (NHPM) to obtain the solution of linear IDEs system in [13]. Taylor expansion method
has been used for solving IDE’s in [14, 15]. In this work, we developed and modified Taylor series method
(TSM) introduced in [16], to solve system of linear Volterra IDEs in the following form

Em(x) + Vm(x) = fm(x), m = 1(1)n, x, t ∈ Γ = [0, b], (1)

where

Em(x) =
n∑

i=1

αmi∑
j=0

pmij(x)y
(j)
i (x),

Vm(x) =
n∑

i=1

∫ x

0

(
kmi(x, t)

βmi∑
j=0

y
(j)
i (t)

)
dt,
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we consider the supplementary conditions

n∑
m=1

αj−1∑
j=0

Bmjry
(j)
m (0) = cr, (2)

for r = 1, 2, ..., β, where

αj = max
1≤m≤n

{αmj}, β =

n∑
j=1

αj .

Suppose that, the functions fm(x), kmi(x, t) and pmij(x) are analytic functions with respect to all arguments
on the interval [0, b]. The purpose of this study is to find the solution of the system (1) in the following form

yi(x) =
N∑

k=0

1

k!
y
(k)
i (c)(x− c)k, i = 1(1)n, 0 ≤ c ≤ x,

where y(k)i (c), k = 0(1)N , are Taylor coefficients to be determined.

2 Taylor-series method
For solving (1) with the initial conditions (2) by TSM, suppose that the solution of problem be in the

following form
yk(x) = ek0 + ek1x+ ...+ ekαk

xαk , k = 1(1)n, (3)

where, for k = 1(1)n, eki =
y
(i)
k (0)

i! , i = 0, 1, ..., αk − 1 are known and ekαk
, is unknown to be determined.

By substituting (3) into (1), we obtain the following system of algebraic equations

(L
(1)
i (e)− b

(1)
i )xpi +Qi(x

pi+1) = 0, i = 1(1)n, (4)

where L(1)
i (e), is linear combination of ekαk

, k = 1(1)n, and Qi(x
pi+1) is a polynomial of degree greater

than non-negative integer pi, for i = 1(1)n. By neglecting Qi(x
pi+1) in (4), we have the following linear

algebraic system
A(1)E1 = b(1), (5)

A
(1)
n×n and b(1)n×1 are known and E1 =

[
e1α1 , e2α2 , · · · , enαn

]t is an unknown vector. By neglecting linear
dependent rows and columns in the linear algebraic system (5) and solving, we obtain the unknown parame-
ters ei1αi1

, ei2αi2
, · · · , eikαik

, where S =
{
i1, i2, ..., ik

}
is a subset of T =

{
1, 2, · · · , n

}
.

In the next step, we suppose that the solution of (1)-(2) has the following form

yk(x) = ek0 + ek1x+ ...+ ekjx
j , k = 1(1)n, (6)

where

j =

 αk + 1, if k ∈ S,

αk, if k ∈ T − S,
(7)

and ekj , k = 1(1)n, are unknown parameters. Substituting (6) into (1), we have the following linear algebraic
system

(L
(2)
i (e)− b

(2)
i )xri +Qi(x

ri+1) = 0, for i = 1(1)n, (8)

where

ri =

 pi + 1, if i ∈ S,

pi, if i ∈ T − S,
(9)
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and L(2)
i (e), i = 1(1)n, are linear combination of ekj , k = 1(1)n. Again, by neglecting Qi(x

ri+1), we have
the following linear algebraic system

A(2)E2 = b(2), (10)

A
(2)
n×n and b(2)n×1 are known and E2 is a unknown vector of ekj , k = 1(1)n. Neglecting the linear dependent

rows and columns and solving, the unknown parameters ei′1αi′1
, ei′2αi′2

, · · · , ei′kαi′
k

, in (6) can be obtained.
By repeating the above procedure the following power series is derived

yk(x) = ek0 + ek1x+ ek2x
2 + ..., k = 1(1)n. (11)

In order to approximate the exact solution yk(x), for k = 1(1)n, we use the first ρ terms of (11). Now, in
the following theorem, we will prove that the above procedure which is given in (11), is Taylor expansion of
exact solution of (1)-(2) at x = 0.

Theorem 1: We assume that the functions fm(x), kmi(x, t) and pmij(x) in (1) are analytic functions with
respect to all theirs arguments at x = 0, and also we suppose that there exist i, j such that pmij(0) ̸= 0 for
m = 1(1)n. Then TSM gives Taylor expansion of the exact solution (1)-(2) at x = 0.

Proof : We have to Prove that, in the σth step of the TSM , we obtain

eij =
y(j)(0)

(j)!
, i ∈ {1, 2, ..., k}, k ≤ n. (12)

For proving, we use induction. For σ = 1, soppose sm, m = 1(1)n, are the smallest nonnegative integer
such that, the following equations are’t vanish at x = 0

n∑
i=1

αmi∑
j=0

sm∑
k=0

ηkp
(sm−k)
mij (x)y

(j+k)
i (x) + χ(sm)

m (x) = f (sm)
m (x), for m = 1(1)n, (13)

where

χ(sm)
m (x) =


∑n

i=1

∫ x

0

(
kmi(x, t)

∑βmi

j=0 y
(j)
i (t)

)
dt, if sm = 0,

∑n
i=1

∑βmi

j=0

∑sm−1
k=0 µkψ

(sm−k−1)
mij (x)y

(j+k)
i (x), if sm = 1, 2, ...,

µk , ηk are known constants and ψmij(x) = kmi(x, x)qmij(x).
By substituting x = 0, in (13), we have

n∑
i=1

αmi∑
j=0

sm∑
k=0

ηkp
(sm−k)
mij (0)y

(j+k)
i (0) + χ(sm)

m (0) = f (sm)
m (0), for m = 1(1)n, (14)

For m = 1(1)n, p(sm−k)
mij (0) = 0, while j + k > αi, in y(j+k)

i (0), therefore the maximum derivative of order
yi, in (14) is αi.
In the first step of TSM, we suppose that the solution of (1) with the initial conditions (2) is giving by

ym(x) = ym(0) + y′m(0)x+ ...+
y
(αm−1)
m (0)

(αm − 1)!
xαm−1 + emαmx

αm , for m = 1(1)n. (15)

By substituting (15) in (13) and setting x = 0, we get

n∑
i=1

αmi∑
j=0

sm∑
k=0

λmijk + ψ(sm)
m (0) = f (sm)

m (0), for m = 1(1)n, (16)
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where

λmijk =


(αi)!eiαiηkp

(sm−k)
mij (0)), if αmi = αi = j + k,

ηkp
(sm−k)
mij (0)y

(j+k)
i (0), otherwise,

ψ(sm)
m (0) =


0, if sm = 0,

∑n
i=1

∑βmi

j=0

∑sm−1
k=0 γmijk, if sm = 1, 2, ...,

and

γmijk =


(αi)!eiαiµkψ

(sm−k−1)
mij (0), if βmi = αi = j + k,

µkψ
(sm−k−1)
mij (0)y

(j+k)
i (0), otherwise.

Subtracting (14) from (16) and simplifying, we have the following system in matrix form

AE = AY, (17)

where E =
(
(α1)!e1α1 , (α2)!e2α2 , ..., (αn)!enαn ,

)t
, Y =

(
y
(α1)
1 (0), y

(α2)
2 (0), ..., y

(αn)
n (0)

)t
and An×n is

known matrix. Omitting linear dependent rows and columns An×n in (17), we have the following homogeny
algebraic system

BX = 0, (18)

where

X =


y
(αi1 )
i1

(0)− (αi1)!ei1αi1

...
y
(αik

)

ik
(0)− (αik)!eikαik

 ,

and
{
ii, i2, ..., ik

}
⊆

{
1, 2, ..., n

}
.

Therefore

eijαij
=
y
(αij

)

ij
(0)

(αij )!
, j = 1(1)k.

Now, we have to show that if (12) holds for σ = ρ, then it also holds for σ = ρ + 1. Let the solution at σth
step by TSM, be as follows

ym(x) = ym(0) + y′m(0)x+ ...+
y
(τm)
m (0)

(τm)!
xτm , for m = 1(1)n. (19)

Differentiating (13), (τm − αm) times, for m = 1(1)n, then we have

n∑
i=1

αmi∑
j=0

δm∑
k=0

ηkp
(δm−k)
mij (x)y

(j+k)
i (x) + χ(δm)

m (x) = f (δm)
m (x), for m = 1(1)n, (20)

where δm = sm + τm − αm and

χ(δm)
m (x) =

n∑
i=1

βmi∑
j=0

δm−1∑
k=0

µkψ
(δm−k−1)
mij (x)y

(j+k)
i (x),
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ψmij(x) = kmi(x, x)qmij(x) and µk, ηk are known constants.
In the same procedure that has been explained in (14)-(18), we can conclude that the equations (12) is also
holds for σ = ρ+ 1.

3 Modified Taylor-series method
Let △ = {0 = x0, x1, ..., xn = b}, be an equidistance partition of [0, b] where s = xi+1 − xi, i =

0, 1, ..., n − 1 is the discretization parameter of the partition. In modified Taylor series method, we need to
prove the following theorem..

Theorem 2: Let, the conditions of theorem (1) hold, and kml(x, t) is a separable function, then there exist
linear independent functions φ0(X), ...,φγ(X) and constants c0, ..., cγ such that, Y1(X), Y2(X), ..., Yn(X)

is the exact solution of following linear Volterra IDEs system

Em(X + h) + Vm(X + h) +

γ∑
k=0

δmkckφk(X) = fm(X + h), (21)

m = 1(1)n,

with the initial conditions
Yk(0) = yk(h), Y

′
k(0) = y′k(h), ..., Y

(αk−1)
k (0) = y

(αk−1)
k (h), (22)

k = 1(1)n, h ∈ Γ = [0, b],

where

Em(X + h) =
n∑

l=1

αml∑
j=0

pmlj(X + h)Y
(j)
l (X), (23)

Vm(X + h) =
n∑

l=1

∫ X

0

(
kml(X + h, u+ h)

βml∑
j=0

Y
(j)
l (u)

)
du, (24)

Yl(X) = yl(X + h), l = 1(1)n, X = x− h and δmk, is equal 0, 1, or -1.

Proof : kml(x, t) is a separable function, therefore

kml(x, t) =

τl∑
k=0

vmlk(x)wmlk(t). (25)

Substituting (25) into (1) and by change of variables x = X + h and t = u+ h, we have

n∑
l=1

αml∑
j=0

pmlj(X + h)y
(j)
l (X + h) +

n∑
l=1

∫ X

0

(
kml(X + h, u+ h)

βml∑
j=0

y
(j)
l (u+ h)

)
du (26)

+

n∑
l=1

τl∑
k=0

vmlk(X + h)amlk = fm(X + h), m = 1(1)n,

where

amlk =

∫ 0

−h

(
wmlk(u+ h)

βml∑
j=0

y
(j)
l (u+ h)

)
du, for m, l = 1(1)n, k = 0(1)τl.
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Simplifying and classifying the last term on the left hand side of (26), we can write

n∑
l=1

τ∑
k=0

vmlk(X + h)amlk =

γ∑
k=0

δmkckφk(X), for m = 1(1)n, (27)

where, the known constant δmk, is equal 0, 1, or −1, φ0(X), ..., φγ(X), are known linear independent
functions, and also c0, ..., cγ , are unknown constants.
Therefore, by substituting yl(X + h) = Yl(X), we can rewrite (26) in the form of (21).
We denote νm be the number of the unknown constants in (21), which are not appear in another equations for
m = 1(1)n. Now, for determining the unknown constants c0, ..., cγ , we need to take ξth derivative of relation
(21) for ξ = 0, ..., νm, and then by setting X=0, we will obtain the following algebraic system

E1(h) + V1(h) +
∑γ

k=0 δmkckφk(0) = f1(h),
...

E
(ν1−1)
1 (h) + V

(ν1−1)
1 (h) +

∑γ
k=0 δmkckφ

(ν1−1)
k (0) = f

(ν1−1)
1 (h),

...

En(h) + Vn(h) +
∑γ

k=0 δmkckφk(0) = fn(h),
...

E
(νn−1)
n (h) + V

(νn−1)
n (h) + V

(ν1−1)
1 (h) +

∑γ
k=0 δmkckφ

(νn−1)
k (0) = f

(νn−1)
n (h).

(28)

In the case when the number of equations in (28) is less than γ, we need associate some more equations. these
equation can be derived from those equations which are contain the more number of unknown constants, we
consider by taking derivatives minimum times, solving the arising system of algebraic equations the constants
c0, ..., cγ can be determined. The existence of the solution of such system depend on the choosing of step
length ”h”.

For solving system of linear Volterra IDEs (1)-(2) by modified Taylor-series expansion method, let h =

0, ci = 0, i = 0, 1, ..., γ, by solving (21) and (22) by TSM, for N iterations, we obtain

yk(x) = yk(0) +
y
(1)
k (0)

1!
X + ...+

y
(αk)
k (0)

αk!
, k = 1(1)n, (29)

where is Taylor expansion of the solution (1)-(2) at h = 0.
At the next step, let h = x1, from (28) and (29), we obtain ci, i = 0, 1, ..., γ, and

Y
(j)
k (0) = y

(j)
k (x1), j = 0, 1, ..., αk +−1, k = 1, 2, ..., n. (30)

By substituting the obtained values ci, i = 0, 1, ..., γ into (21), we obtain a linear system of Volterra IDEs,
by solving derived system, with TSM for N iterations we have

yk(x) = yk(x1) +
y
(1)
k (x1)

1!
X + ...+

y
(αk+1)
k (x1)

(αk + 1)!
, k = 1(1)n, (31)

where is Taylor expansion of the solution (1)-(2) at h = x1.
By repeating the above step for i = 2, 3, ..., n − 1, we can obtain Taylor expansion approximate (1)-(2) at
h = xi.
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4 Estimation of error function
We can easily check the accuracy of the solution obtained by present methods as follows. Let for k =

1(1)n, ek(x) = yk(x) − yk(x), where yk(x), k = 1(1)n, is exact solution, and yk(x), k = 1(1)n, is
approximate solution (3).
Now, by substituting yk(x) = ek(x) + yk(x), in (1)-(2), and rewriting we have

Êm(x) + V̂m(x) = Ĥm(x), m = 1(1)n; x, t ∈ Γ = [0, b], (32)

under the initial conditions
ek(0) = 0, e′k(0) = 0, ..., e

(αk−1)
k (0) = 0, k = 1(1)n, (33)

where

Êm(x) =

n∑
k=1

αmi∑
j=0

pmij(x)e
(j)
k (x),

V̂m(x) =
n∑

k=1

∫ x

0

(
kmi(x, t)

βmi∑
j=0

e
(j)
k (t)

)
dt,

and

Ĥm(x) = fm(x)−
n∑

k=1

αmk∑
j=0

pmkj(x)y
(j)
k (x)−

n∑
k=1

∫ x

0

(
kmk(x, t)

βmk∑
j=0

y(j)k (t).

Now, by solving (32)-(33) with the manner which is given in the previous section, Taylor expansion approxi-
mate of the error function at h = xi, i = 0, p, p+ 1, ... is obtained.
If ϵ = 10−k (k is positive) is prescribed, then the truncation limit N is increased until ek(x), k = 1(1)n, at
each of the points h = xi, i = 0, p, p+ 1, ... becomes smaller than the prescribed ϵ = 10−k.

5 Convergence of the method
From theorem 1. TSM and its modification expand the unknown functions yi(x) in (1)-(2) by its Taylor

expansion as a polynomial degree N

ym(x) =

N∑
k=0

1

k!
y(k)m (c)(x− c)k +Rm(x, c), m = 1(1)n, 0 ≤ c ≤ x, (34)

where the Lagrange remainder

Rm(x, c) =
y
(N+1)
m (ξm)

(N + 1)!
(x− c)N+1, (35)

for some ξm between x,c. Moreover, suppose that there exist the maximum value Mm of y(N+1)
m (x) on the

interval [0, b], then it can be proved that the Lagrange remainder has a bound independence of x and c, i.e.

| Rm(x, c) |= Mm

(N + 1)!
, (36)

for two arbitrary points x and c on the interval [0, b]. Clearly, when N is sufficiently large enough then,
Rm(x, c) → 0.
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6 Applications and numerical results
In this section, we show the efficiency of the modified TSM (MTSM) leads to higher accuracy by us-

ing some numerical results. We first use the MTSM in example 1 with detailed explanations and then in
other example, we compare the purpose method with the other methods discussed in [9, 10]. In Table 3,
eMTSM , EeMTSM , eDTM and eHV IM stand for absolute error of MTSM, error estimation of MTSM, ab-
solute error of differential transform method [10] and absolute error of He’s variational iteration method [9]
respectively.

Example 1. Consider a system of third-order linear Volterra IDEs on the interval [0, 6] y′′1 (x) + x2y1(x)− y′′2 (x) +
∫ x

0
((x− t)y1(t) + y2(t))dt = g1(x),

4x3y′1(x) + 6x2y1(x) + y′′′2 (x) +
∫ x

0
(y1(t) + (x+ t)y2(t))dt = g2(x),

(37)

under the initial conditions, y1(0) = y′1(0) = 1, y2(0) = y′′2 (0) = 0, y′2(0) = 1,
where

g1(x) = (2 + x2)ex − x− cos(x) + sin(x),

g2(x) = sin(x)− (1 + 2x) cos(x) + ex(1 + 6x2 + 4x3) + x− 1. (38)

The exact solution of this system is y1(x) = ex, y2(x) = sin(x).

First of all, replace the functions ex, sin(x), cos(x), with theirs Taylor expansion in (37) at x = 0. Corre-
sponding TSM, we suppose that the solution of linear Volterra IDEs with the initial conditions be as follows

y1(x) = 1 + x+ e12x
2,

y2(x) = x+ e23x
3, (39)

where e12 and e23 are unknown parameters.
Substitute (39) into (37), we have

−1 + 2e12 + q1(x) = 0,

1 + 6e23 + q2(x) = 0, (40)

where q1(x) and q2(x), are polynomials with degree greater equal than one.
By neglecting q1(x) and q2(x), in (40), we obtain e12 = 1

2 and e23 = − 1
6 , therefore, the solution of (37) can

be considered as

y1(x) = 1 + x+
x2

2
+ e13x

3,

y2(x) = x− x3

6
+ e24x

4, (41)

where e13 and e24 are unknown parameters.
By substituting (41) in (37), we get

(−1 + 6e13)x+ q1(x
2) = 0,

(24e24)x+ q2(x
2) = 0, (42)

where q1(x2) and q2(x2), are polynomials with degree greater equal than two.
By ignoring q1(x2) and q2(x2) in (42), we obtain e13 = 1

6 and e24 = 0, therefore

y1(x) = 1 + x+
x2

2
+
x3

6
,

y2(x) = x− x3

6
. (43)
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By repeating the above procedure for N = 15 iterations, we have

y1(x) = 1 + x+
x2

2
+ ...+

x16

20922789888000
,

y2(x) = x− x3

6
+

x5

120
− ...+

x17

355687428096000
. (44)

That is 16 and 17, terms of Taylor expansion of exact solution y1(x) = ex, y2(x) = sin(x), respectively at
x0 = 0.
Eq. (44), consider as approximate solution of (37) in the interval [0, 0.6].
By using theorem 2, we can covert linear Volterra IDEs system (37) to the following form

Y ′′
1 (X) + (X + h)2Y1(X)− Y ′′

2 (X) +
∫X

0

(
(X − u)Y1(u) + Y2(u)

)
du

+c0(X + h) + c1 = G1(X),

4(X + h)3Y ′
1(X) + 6(X + h)2Y1(X) + Y ′′′

2 (X) +
∫X

0

(
Y1(u) + (X + u+ 2h)Y2(u)

)
du

+c2 + c3(X + h) = G2(X),

(45)

where,

G1(X) = (2 + (X + h)2)eX+h −X − h− cos(X + h) + sin(X + h),
G2(X) = sin(X + h)− (1 + 2X + 2h) cos(X + h) + eX+h(1 + 6(X + h)2

+4(X + h)3) +X + h− 1,

with the initial conditions

Y1(0) = y1(h), Y
′
1(0) = y′1(h), Y2(0) = y2(h), Y

′
2(0) = y′2(h), Y

′′
2 (0) = y′′2 (h), (46)

and 

c0 = −1 + eh(2 + 2h+ h2) + cos(h) + sin(h)− h
(
2y1(h) + hy′

1(h)
)
−

y′′′
1 (h)− y2(h) + y′′′

2 (h),

c1 = eh(2− 2h− h2 − h3)− (1 + h) cos(h) + (1− h) sin(h) + h2y1(h)+
hy2(h) + h3y′

1(h)− y′′
1 (h) + y′′

2 (h) + hy′′′
1 (h)− hy′′′

2 (h),

c2 = −1 + eh(1− h− 6h2 − 14h3 − 4h4)− (1 + h) cos(h)+
(1− h− 2h2) sin(h) + h(1 + 6h)y1(h) + 2h2y2(h) + 14h3y′

1(h)+

4h4y′′
1 (h)− y′′′

2 (h) + hy(4)
2 (h),

c3 = 1 + eh(1 + 12h+ 18h2 + 4h3)− cos(h) + (1 + 2h) sin(h)− (1 + 12h)y1(h)−
2hy2(h)− 18h2y′

1(h)− 4h3y′′
1 (h)− y(4)

2 (h).

(47)

Set h = 0.6 into (45)-(47), and substitute the obtained values c0, c1 , c2 , c3 , into (45). Then the arises linear system of
Volterra linear Volterra IDEs with the initial conditions (46) can be solved by using our proposed methods for N = 15,
therefore we get the following approximate solution

y1(x) =

17∑
i=0

e31i(x− 0.6)i, y2(x) =

17∑
i=0

e32i(x− 0.6)i, (48)

where e31i, e32i, i = 0, 1, 2, .., 17, are given in Table 1. Eq.(48) is an approximation for the Taylor expansion of (37) in
neighborhood x3 = 0.6, and consider as approximation solution of (37) in interval (0.6, 0.8].

Table 1.
The values of e31i, e32i, i = 0, 1, ..., 17.
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i e31i e32i i e31i e32i
0 0.564642473395035E-0 0.56464247339503E-0 9 2.27440370068981E-06 2.27440370068981E-06
1 0.825335614909678E-0 0.82533561490967E-0 10 -1.5560032889266E-07 -1.5560032889266E-07
2 -0.28232123669751E-0 -0.2823212366975E-0 11 -2.0676397301677E-08 -2.0676397301677E-08
3 -0.13755593581827E-0 -0.1375559358182E-0 12 1.17879036079657E-09 1.17879036079657E-09
4 2.352676972479313E-2 2.35267697247931E-2 13 1.32541007939097E-10 1.32541007939097E-10
5 6.877796790913993E-3 6.87779679091399E-3 14 -6.4768681440936E-12 -6.4768681440936E-12
6 -7.84225657492964E-4 -7.8422565749296E-4 15 -6.3114612780652E-13 -6.3114612780652E-13
7 -1.63757066450137E-4 -1.6375706645013E-4 16 2.69876049397373E-14 2.69876049397373E-14
8 1.400402959817176E-5 1.40040295981717E-5 17 2.32048040828339E-15 2.32048040828349E-15

By repeating the above procedure for xi = 0.2i, i = 4, 5, ..., we can compute the approximation solution of (37) in the
interval (0.2i, 0.2(i + 1)]. The numerical results in the Table 2. show the high accuracy of MTSM in the broad interval
[0, 6], also Table 2. contains a numerical comparison between exact error of MTSM and estimation of error function that
is introduced in section 4.

Table 2.
Results for Example 1

Exact Error of MTSM Error Estimation of MTSM

xi e1(xi) e2(xi) Ee1(xi) Ee2(xi)

0.0 0 0 0 0
0.5 4.44× 10−16 0 2.21× 10−20 2.06× 10−23

1.0 8.88× 10−16 1.11× 10−16 1.42× 10−17 5.14× 10−18

1.5 2.67× 10−15 1.11× 10−16 9.84× 10−17 3.66× 10−17

2.0 5.33× 10−15 7.77× 10−16 3.57× 10−16 9.11× 10−17

2.5 1.78× 10−15 1.77× 10−14 7.74× 10−16 1.16× 10−16

3.0 3.55× 10−15 3.91× 10−14 1.23× 10−15 7.63× 10−17

3.5 4.26× 10−14 2.47× 10−14 1.64× 10−15 2.29× 10−16

4.0 6.40× 10−14 1.11× 10−13 2.01× 10−16 1.79× 10−15

4.5 1.14× 10−13 7.84× 10−13 2.41× 10−14 2.73× 10−14

5.0 2.56× 10−13 2.71× 10−12 8.52× 10−14 9.05× 10−14

5.5 5.12× 10−13 6.78× 10−12 1.75× 10−13 1.89× 10−13

6.0 1.71× 10−13 1.13× 10−11 3.36× 10−13 3.70× 10−13

Example 2. Consider the following system of linear Volterra IDEs equations

sin(x)y′′
1 (x) + exy′

1(x) + y′′
2 (x) +

∫ x

0
(y′

1(t) + cos(x− t)y2(t))dt =
−2 + e−x + (−2 + x+ e−x) sin(x),

y′′
1 (x) + y′

1(x)− xexy1(x)− cos(x)y′′
2 (x) +

∫ x

0
(ex+ty′

1(t) + xy2(t))dt =
x(1− ex) + 2 cos(x)(sin(x)− x),

(49)

with the exact solution y1(x) = e−x, y2(x) = 2 sin(x) and y1(0) = 1, y′
1(0) = −1, y2(0) = 0 , y′

2(0) = 2, as the
initial conditions.
By using TSM for N = 8 iterations, the following approximate solution is obtained

y1(x) = 1− x+
x2

2
+ ...− x9

362880
,

y2(x) = 2x− x3

3
+

x5

60
− ...+

x9

181440
. (50)

That is 9 terms of Taylor expansion of the exact solution y1(x) = e−x, y2(x) = 2 sin(x), respectively at x0 = 0. we
consider (50) as the approximate solution (49) in the interval [0, 0.1].
By using theorem 2, we can convert (49) to the following linear IDEs system

sin(X + h)Y ′′
1 (X) + eX+hY ′

1 (X) + Y ′′
2 (X) +

∫X

0
(Y ′

1 (u) + cos(X − u)Y2(u))du =

−c0 − cos(x+ h)c1 − sin(x+ h)c2 − 2 + e−X−h + (−2 +X + h+ e−X−h) sin(X + h),

Y ′′
1 (X) + Y ′

1 (X)− (X + h)eX+hY1(X)− cos(X + h)Y ′′
2 (X) +

∫X

0
(eX+uY ′

1 (u) + (X + h)Y2(u))du =

−eX+hc3 − (X + h)c4 + (X + h)e−x−h + (X + h)(1− eX+h) + 2 cos(X + h)(sin(X + h)−X − h),

(51)
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with Y1(0) = y1(h), Y ′
1 (0) = y′

1(h), Y2(0) = y2(h) , Y ′
2 (0) = y′

2(h), as initial conditions, and

c0 = −2(1− e−h)(1− cos(h)) + e−h sin(h)− 2ehy′
1(h)− y′

2(h)− y′′
1 (h)(1 + 2eh)−

y′′
2 (h)− y′′′

2 (h)(eh + 2 cos(h)),

c1 = 1
2
(−3 + e−h(3− 2 cos(h))− cos(2h)(1− e−h) + e−h(2 sin(h)− sin(2h)) + 2 sin(h)y2(h)+

2y′
1(h)(e

h cos(h) + sin(h)(1 + eh)) + 2 cos(h)(y′
2(h) + y′′

1 (h)) + 2ehy′′
1 (h)(2 cos(h) + sin(h))+

y
(3)
1 (h)(3 + 2eh cos(h) + cos(2h)) + 2 sin(h)y

(3)
2 (h) + sin(2h)y

(4)
1 (h) + 2 cos(h)y

(4)
2 (h)),

c2 = 1
2
(−4 + 2h+ e−h(1− 2 cos(h) + cos(2h)− 2 sin(h) + sin(2h))− sin(2h)− 2 cos(h)y2(h)−

2y′
1(h)(cos(h)(1 + eh)− eh sin(h)) + 2 sin(h)y′

2(h)− 2y′′
1 (h)(1 + eh cos(h)− sin(h)(1 + 2eh))+

y
(3)
1 (h)(2eh sin(h) + sin(2h))− 2 cos(h)y

(3)
2 (h) + y

(4)
1 (h)(1− cos(2h)) + 2 sin(h)y

(4)
1 (h),

c3 = −e−h

h−1
(h2(eh − 2 sin(h))− 2h cos(2h) + sin(2h) + h2(ehy1(h) + y2(h)) + h(y

(3)
1 (h)− cos(h)y

(3)
2 (h))+

y′
1(h)(−1 + heh(eh − h)) + (h− 1)y′′

1 (h) + y′′
2 (h)(cos(h) + h sin(h))),

c4 = 1
h−1

(−1 + eh + h+ 2 cos(h)(1− h)− 2(cos(2h) + h sin(h)) + sin(2h)− ehy1(h) + hy2(h)+

y′
1(h)(−1 + eh(eh − h)) + (cos(h) + sin(h))y′′

2 (h) + y
(3)
1 (h)− cos(h)y

(3)
2 (h)).

(52)

Now, by using the similar manner which is given in the Example 1. for N = 8 iterations, we obtain an approximation of
the exact solution and error function (49) in the intervals [0.1i, 0.1(i+1)], i=1,2,...,9. The numerical results in the Table
3. show that when the functions data are not polynomial, our approach are also applicable.
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Table 3.
Results for Example 2

Exact Error of MTSM Error Estimation of MTSM

xi e1(xi) e2(xi) Ee1(xi) Ee2(xi)

0.0 0 0 0 0
0.1 1.11× 10−16 2.78× 10−17 2.75× 10−17 6.12× 10−21

0.2 4.88× 10−15 2.22× 10−16 2.30× 10−15 7.47× 10−16

0.3 3.91× 10−14 3.11× 10−15 1.60× 10−14 8.98× 10−15

0.4 1.43× 10−13 9.66× 10−15 5.38× 10−14 3.51× 10−14

0.5 3.58× 10−13 2.23× 10−15 1.25× 10−13 8.65× 10−14

0.6 7.07× 10−13 7.86× 10−14 2.29× 10−13 1.60× 10−13

0.7 1.17× 10−12 3.72× 10−13 3.46× 10−13 2.30× 10−13

0.8 1.69× 10−12 1.14× 10−12 4.33× 10−13 2.42× 10−13

0.9 2.10× 10−12 2.83× 10−12 4.14× 10−13 9.28× 10−13

1.0 2.19× 10−12 6.15× 10−12 1.85× 10−13 3.81× 10−13

Example 3. Consider the system of linear Volterra IDEs
−y′

1 − 1
2
xy1 +

3
2
y2 = 5

2
− x− 27

2
x2 + x4 + 3

2
(−1 + 2x2)− 1

2
x(−3x+ 4x3) +

∫ x

−1
(y1 − 3xy2)dt,

x2y1 + y′
2 − xy2 = 2

5
+ 3x+ 3x3 − 8x5

5
+ x2(−3x+ 4x3) +

∫ x

−1
((2x+ t)y1 + 3t2y2))dt,

(53)

under the conditions y1(0) = 0, y2(0) = −1, with the exact solution y1(x) = 4x3 − 3x, y2(x) = 2x2 − 1.
By using TSM for N ≥ 3 iterations, the exact solution is obtained. In general, if the exact solution of linear Volterra IDEs
system (1)-(2) is polynomial then TSM obtains the exact solution, for all N which is greater than degree of polynomial
solution.
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