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Abstract
Recently, Arslan et al. [K. Arslan, R. Ezentas, I. Mihai, C. Murathan, J. Korean Math. Soc., 42 (2005), 1101–1110] studied

contact CR-warped product submanifolds of the form MT ×fM⊥ of a Kenmotsu manifold M̃, where MT and M⊥ are invariant
and anti-invariant submanifolds of M̃, respectively. In this paper, we study the warped product submanifolds by reversing these
two factors, i.e., the warped products of the form M⊥×fMT which have not been considered in earlier studies. On the existence
of such warped products, a characterization is given. A sharp estimation for the squared norm of the second fundamental form
is obtained, and in the statement of inequality, the equality case is considered. Finally, we provide two examples of non-trivial
warped product submanifolds. c©2017 All rights reserved.
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1. Introduction

To construct the examples of manifolds with negative curvature, the warped product manifolds were
studied by Bishop and O’Neill in [4]. They defined these manifolds as follows: Let M1 and M2 be two
Riemannian manifolds with Riemannian metrics g1 and g2, respectively, and a positive differentiable
function f on M1. Consider a product manifold M1 ×M2 with its projections π1 : M1 ×M2 → M1 and
π2 : M1 ×M2 → M2. Then their warped product manifold M = M1 ×fM2 is the Riemannian manifold
M1 ×M2 = (M1 ×M2,g) equipped with the Riemannian structure such that

g(X, Y) = g1(π1?X,π1?Y) + (f ◦ π1)
2g2(π2?X,π2?Y),

for any vector field X, Y tangent to M, where ? is the symbol for the tangent maps. A warped product
manifold M = M1 ×fM2 is said to be trivial or simply a Riemannian product manifold, if the warping
function f is constant. Let X be a vector field tangent to M1 and Z be an another vector field on M2, then
from [4, Lemma 7.3], we have

∇XZ = ∇ZX = (X ln f)Z, (1.1)
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where ∇ is the Levi-Civita connection on M. If M =M1×fM2 be a warped product manifold then M1 is
a totally geodesic submanifold of M and M2 is a totally umbilical submanifold of M [4, 5].

In the beginning of this century, Chen introduced the notion of warped product CR-submanifolds of
Kaehler manifolds [5]. After that, many researchers extended this idea for other structures on a Rieman-
nian manifold (some of them are cited here [8, 14]). For the survey on warped product submanifolds, we
refer to [6, 7].

On the other hand, several results on the warped product submanifolds of Kenmotsu manifolds ap-
peared in [1–3, 11–13, 17, 18]. In this paper, we study some geometric properties of warped product
submanifolds of the form M⊥ ×fMT , where MT and M⊥ are invariant and anti-invariant submanifolds
of a Kenmotsu manifold M̃, respectively. A characterization is given on the existence of such type of
warped products. Also, we establish a relationship between the squared norm of second fundamental
form ‖σ‖2 and the warping function f. The equality case in the statements of the inequality is considered.
Furthermore, we construct non-trivial examples of warped product contact CR-submanifolds.

2. Preliminaries

Tanno [15] has classified the connected almost contact metric manifolds into 3 classes whose automor-
phism groups have maximum dimensions:

(a) Homogeneous normal contact Riemannian manifolds with constant ϕ holomorphic sectional curva-
ture;

(b) global Riemannian product of a line or a circle and a Kaehlerian space form;
(c) warped product spaces L×f F, where L is a line and F a Kaehlerian manifold.

Kenmotsu [10] studied the class (c) and characterized it by tensor equations. Later such manifolds
were called Kenmotsu manifolds.

A (2n+ 1)-dimensional Riemannian manifold (M̃,g) is said to be a Kenmotsu manifold, if it admits
an endomorphism ϕ of its tangent bundle TM̃, a vector field ξ and a 1-form η satisfying the following
conditions:

ϕ2 = −I+ η⊗ ξ, ϕξ = 0, η ◦ϕ = 0, η(ξ) = 1,

g(ϕX,ϕY) = g(X, Y) − η(X)η(Y), η(X) = g(X, ξ), (2.1)

(∇̃Xϕ)Y = g(ϕX, Y)ξ− η(Y)ϕX, ∇̃Xξ = X− η(X)ξ, (2.2)

for any vector fields X, Y on M̃, where ∇̃ is the Riemannian connection with respect to g.
Let M be a submanifold of an almost contact metric manifold M̃ with induced metric g and if ∇

and ∇⊥ are the induced connections on the tangent bundle TM and the normal bundle T⊥M of M,
respectively, then the Gauss-Weingarten formulas are respectively given by

∇̃XY = ∇XY + σ(X, Y), ∇̃XV = −AVX+∇⊥XV , (2.3)

for any vector field X, Y tangent to M and V normal to M, where σ and AV are the second fundamental
form and the shape operator (corresponding to the normal vector field V) respectively for the immersion
of M into M̃. They are related as g(σ(X, Y),V) = g(AVX, Y) where g denotes the Riemannian metric on
M̃ as well as the one induced on M.

Let M̃ be a Kenmotsu manifold andM anm-dimensional submanifold tangent to ξ. For any X tangent
to M, we put

ϕX = PX+ FX,
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where PX (resp. FX) denotes the tangential (resp. normal) component of ϕX. Then P is an endomorphism
of tangent bundle TM and F is a normal bundle valued 1-form on TM.

We denote by H, the mean curvature vector, i.e.,

H(p) =

m∑
i=1

σ(ei, ei),

where {e1, · · · , em} is an orthonormal basis of the tangent space TpM, for any p ∈M.
Also, we set

σrij = g(σ(ei, ej), er), i, j = 1, · · · ,m, r = m+ 1, · · · , 2n+ 1,

and

‖σ‖2 =

m∑
i,j=1

g(σ(ei, ej),σ(ei, ej)).

For a differentiable function f on an n-dimensional manifold M, the gradient ~∇f of f is defined as
g(~∇f,X) = Xf, for any X tangent to M. As a consequence, we have

‖~∇f‖2 =

n∑
i=1

(ei(f))
2,

for an orthonormal frame {e1 · · · , en} on M.
By the analogy with submanifolds in a Kaehler manifold, different classes of submanifolds in a Ken-

motsu manifold were considered.
A submanifold M tangent to ξ is said to be invariant (resp. anti-invariant), if ϕ(TpM) ⊂ TpM, for all

p ∈M (resp. ϕ(TpM) ⊂ T⊥pM, for all p ∈M).
A submanifold M tangent to ξ is said to be a contact CR-submanifold, if there exists a pair of orthog-

onal distributions D : p→ Dp and D⊥ : p→ D⊥p , for all p ∈M such that

(i) TM = D⊕D⊥ ⊕ 〈∼〉, where 〈ξ〉 is a 1-dimensional distribution spanned by ξ;
(ii) D is invariant by ϕ, i.e., ϕD = D;

(iii) D⊥ is anti-invariant by ϕ, i.e., ϕD⊥ ⊆ T⊥M.

Invariant and anti-invariant submanifolds are the special cases of contact CR-submanifolds. If we denote
the dimensions of the distributions D and D⊥ by d1 and d2 respectively, then M is invariant (resp. anti-
invariant), if d2 = 0 (resp. d1 = 0).

For the integrability of the distributions D and D⊥, we have the following results for later use.

Lemma 2.1 ([12]). The ϕ anti-invariant distribution D⊥ ⊕ 〈ξ〉 on a contact CR-submanifold of a Kenmotsu
manifold M̃ is always integrable.

Also, we can prove the following result for the integrability of the distribution D.

Lemma 2.2. Let M be a contact CR-submanifold of a Kenmotsu manifold M̃. Then the ϕ invariant distribution D

is integrable, if and only if

g(∇YX,Z) = g(σ(X,ϕY),ϕZ) − η(Z)g(X, Y),

for any X, Y ∈ D and Z ∈ D⊥ ⊕ 〈ξ〉.
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Proof. For any X, Y ∈ D and Z ∈ D⊥ ⊕ 〈ξ〉, we have

g([X, Y],Z) = g(ϕ∇̃XY,ϕZ) + η(Z)g(∇̃XY, ξ) − g(∇̃YX,Z)

= g(∇̃XϕY,ϕZ) − g((∇̃Xϕ)Y,ϕZ) − η(Z)g(Y, ∇̃Xξ)) − g(∇̃YX,Z).

Using (2.2) and (2.3), we get

g([X, Y],Z) = g(σ(X,ϕY),ϕZ) − η(Z)g(X, Y) − g(∇̃YX,Z).

Thus the result follows from the above equation.

Lemma 2.3. On a contact CR-submanifold M of a Kenmotsu manifold M̃. The following statement holds

g([X, Y],Z) = g(σ(X,ϕY),ϕZ) − g(σ(ϕX, Y),ϕZ),

for any X, Y ∈ D and Z ∈ D⊥ ⊕ 〈ξ〉.

Proof. For any X, Y ∈ D and Z ∈ D⊥ ⊕ 〈ξ〉, we have

g(∇XY,Z) = g(∇̃XY,Z) = g(ϕ∇̃XY,ϕZ) + η(Z)g(∇̃XY, ξ).

Using the covariant derivative property of ϕ and the Kenmotsu structure equation (2.2), we derive

g(∇XY,Z) = g(∇̃XϕY,ϕZ) − η(Z)g(Y, ∇̃Xξ).

Then from (2.3) we get

g(∇XY,Z) = g(σ(X,ϕY),ϕZ) − η(Z)g(X, Y). (2.4)

Interchanging X and Y in (2.4), we obtain

g(∇YX,Z) = g(σ(Y,ϕX),ϕZ) − η(Z)g(X, Y). (2.5)

Then from (2.4) and (2.5), we get the desired result.

Now, we have the following consequence of the above lemma.

Corollary 2.4. On a contact CR-submanifold M of a Kenmotsu manifold M̃. The invariant distribution D is
integrable, if and only if

either σ(X,ϕY) = σ(ϕX, Y) or σ(ϕX, Y) ∈ ν,

for any X, Y ∈ D.

3. Contact CR-warped products

In [1], Arslan et al. studied warped product contact CR-submanifolds of the form MT ×fM⊥, called
contact CR-warped products of a Kenmotsu manifold M̃, where MT and M⊥ are invariant and anti-
invariant submanifolds of M̃, respectively. They establish an inequality for such type of warped products.
In this paper, we study another type of warped products by reversing two factors which have not been
considered in [1]. First, we prove the following results for later use.

Lemma 3.1. Let M = M⊥ × fMT be a warped product submanifold of a Kenmotsu manifold M̃ such that ξ ∈
TM⊥, then we have
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(i) g(σ(X, Y),ϕZ) = {(Z ln f) − η(Z)}g(X,ϕY);
(ii) g(σ(X,Z),ϕW) = g(σ(X,W),ϕZ);

(iii) g(σ(Z,W),ϕW′) = g(σ(Z,W′),ϕW);

for any X, Y ∈ TMT and Z,W,W′ ∈ TM⊥.

Proof. From (2.3) and (2.2), we have

g(σ(X, Y),ϕZ) = g(∇̃XY,ϕZ) = g((∇̃Xϕ)Y,Z) − g(∇̃XϕY,Z) = η(Z)g(ϕX, Y) + g(ϕY, ∇̃XZ),

for any X, Y ∈ TMT and Z ∈ TM⊥. Then the first part follows from the above relation by using (1.1).
Also the second and third parts of the lemma can be derived by using (2.2), (2.3) and the orthogonality of
vector fields.

If we interchange X by ϕX and Y by ϕY in the first part of Lemma 3.1, then we get the following
relations

g(σ(ϕX, Y),ϕZ) = {(Z ln f) − η(Z)}g(X, Y), (3.1)

g(σ(X,ϕY),ϕZ) = {η(Z) − (Z ln f)}g(X, Y), (3.2)

and

g(σ(ϕX,ϕY),ϕZ) = {(Z ln f) − η(Z)}g(X,ϕY). (3.3)

Corollary 3.2. On a contact CR-warped product submanifold M = M⊥ × fMT of a Kenmotsu manifold M̃, we
have

g(σ(ϕX, Y),ϕZ) = −g(σ(X,ϕY),ϕZ),

and

g(σ(ϕX,ϕY),ϕZ) = g(σ(X, Y),ϕZ),

for any X, Y ∈ TMT and Z ∈ TM⊥.

Proof. The first part follows from (3.1) and (3.2) and the second part follows from Lemma 3.1 (i) and
(3.3).

Theorem 3.3. Let M be a contact CR-submanifold of a Kenmotsu manifold M̃ such that ξ is orthogonal to the
invariant distribution D. Then M is a locally warped product submanifold, if and only if

AϕZX = −{(Zµ) − η(Z)}ϕX, (3.4)

for any X ∈ D and Z ∈ D⊥ ⊕ 〈ξ〉 for some smooth function µ on M such that Y(µ) = 0, for any Y ∈ D.

Proof. If M is a contact CR-warped product submanifold, then for any X ∈ TMT and Z,W ∈ TM⊥, we
have

g(AϕZX,W) = g(σ(X,W),ϕZ) = g(∇̃WX,ϕZ) = −g(ϕ∇̃WX,Z).

Using a covariant derivative property of ϕ and (2.2), we find

g(AϕZX,W) = −g(∇̃WϕX,Z).
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Then from (2.3) and (1.1), we get g(AϕZX,W) = 0, i.e., AϕZX has no components in TM⊥. Therefore,
from Lemma 3.1, the relation (3.4) holds.

Conversely, if M is a contact CR-submanifold with the invariant and anti-invariant distributions D

and D⊥⊕ 〈ξ〉 such that the given condition (3.4) holds, then, by Lemma 2.1, D⊥⊕ 〈ξ〉 is always integrable
and for any X ∈ D and Z,W ∈ D⊥ ⊕ 〈ξ〉, we have

g(∇ZW,ϕX) = g((∇̃Zϕ)W,X) − g(∇̃ZϕW,X).

Using (2.2) and (2.3), we get

g(∇ZW,ϕX) = g(ϕW, ∇̃ZX) = g(σ(X,Z),ϕW) = g(AϕWX,Z).

Then from (3.4), we get g(∇ZW,ϕX) = 0, which means that the leaves of the distribution D⊥ ⊕ 〈ξ〉 are
totally geodesic in M. On the other hand, on a contact CR-submanifold from Lemma 2.3, we have

g([X, Y],Z) = g(AϕZX,ϕY) − g(AϕZY,ϕX),

for any X, Y ∈ D and Z ∈ D⊥ ⊕ 〈ξ〉. Using (3.4), (2.1) and the fact that the structure vector field ξ is
orthogonal to D, we get g([X, Y],Z) = 0, which means that D is integrable. Let us consider a leaf MT of D
in M and let σ# be the second fundamental from of MT in M, then we have

g(σ#(X, Y),Z) = g(∇YX,Z) = g(ϕ∇̃YX,ϕZ) + η(Z)g(∇̃YX, ξ),

which on using the covariant derivative property of ϕ and the orthogonality of vector fields, we have

g(σ#(X, Y),Z) = g(∇̃YϕX,ϕZ) − g((∇̃Yϕ)X,ϕZ) − η(Z)g(∇̃Yξ,X).

Using (2.2), we get

g(σ#(X, Y),Z) = −g(ϕX, ∇̃YϕZ) − η(Z)g(X, Y).

Then from (2.3), we obtain

g(σ#(X, Y),Z) = g(ϕX,AϕZY) − η(Z)g(X, Y).

From (3.4), we find

g(σ#(X, Y),Z) = −(Zµ)g(X, Y),

or equivalently

σ#(X, Y) = −~∇µg(X, Y),

where ~∇µ is gradient of the function µ, which means that MT is totally umbilical in M with the mean
curvature H# = −~∇µ. Also, it is easy to prove that H# is parallel corresponding to the normal connection
D# of MT in M (see [16]). Thus, MT is an extrinsic sphere in M. Hence, by a result of Hiepko [9] we
conclude that M is a warped product submanifold, which proves the theorem completely.

Now, we set the following orthonormal frame for the warped product submanifold M = M⊥ ×fMT

of a (2n+ 1)-dimensional Kenmotsu manifold M̃ with the fiber MT of dimension 2p and the base M⊥
of dimension q + 1 such that ξ is tangent to M⊥. Let us consider the tangent spaces of MT and M⊥
by D and D⊥ ⊕ 〈ξ〉, respectively. We set the orthonormal frame fields of D and D⊥ ⊕ 〈ξ〉, respectively
as {e1, · · · , ep, ep+1 = ϕe1, · · · , e2p = ϕep} and {e2p+1 = e∗1 , · · · , e2p+q = e∗q, e2p+q+1 = e∗q+1 = ξ}.
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Then the orthonormal frame fields of the normal subbundles of ϕD⊥ and ν, respectively are {em+1 =
ϕe∗1 , · · · , em+q = ϕe∗q} and {em+q+1, · · · , e2n+1}.

A warped product submanifold M = M1 ×fM2 of a Riemannian manifold M̃ is said to be mixed
totally geodesic, if σ(X,Z) = 0, for any X ∈ TM1 and Z ∈ TM2, where M1 and M2 are any Riemannian
submanifolds of M̃.

Now, we establish the following inequality for the squared norm of the second fundamental form of
M =M⊥ ×fMT of a Kenmotsu manifold M̃.

Theorem 3.4. Let M = M⊥ ×f MT be a warped product submanifold of a Kenmotsu manifold M̃ such that
ξ ∈ TM⊥, where M⊥ is an anti-invariant submanifold and MT is an invariant submanifold of M̃. Then:

(i) The squared norm of the second fundamental form σ of M satisfies

‖σ‖2 > 2p[‖~∇ ln f‖2 − 1],

where 2p = dimMT and ~∇ ln f is gradient of the function ln f along M⊥.
(ii) If equality sign in (i) holds identically, then M⊥ and MT are totally geodesic and totally umbilical submani-

folds of M̃, respectively. Moreover, M is a mixed totally geodesic submanifold of M̃.

Proof. By definition of σ, we have

‖σ‖2 =

m∑
i,j=1

g(σ(ei, ej),σ(ei, ej)) =
2n+1∑

r=m+1

m∑
i,j=1

g(σ(ei, ej), er)2.

Then by using the above mentioned frame, we derive

‖σ‖2 =

2n+1∑
r=m+1

2p∑
i,j=1

g(σ(ei, ej), er)2 + 2
2n+1∑

r=m+1

2p∑
i,j=1

q+1∑
j=1

g(σ(ei, e∗j ), er)
2

+

2n+1∑
r=m+1

q+1∑
i,j=1

g(σ(e∗i , e∗j ), er)
2.

(3.5)

By leaving second and third positive terms in the right hand side of (3.5), the above expression will be

‖σ‖2 >
q∑

r=1

2p∑
i,j=1

g(σ(ei, ej),ϕe∗r)
2 +

2n+1∑
r=m+q+1

2p∑
i,j=1

g(σ(ei, ej), er)2. (3.6)

The second term in the right hand side of the above relation has the ν-components only, therefore we will
also leave this term and thus for the frame of D, the inequality (3.6) reduces to

‖σ‖2 >
q∑

r=1

p∑
i,j=1

g(σ(ei,ϕej),ϕe∗r)
2 +

q∑
r=1

p∑
i,j=1

g(σ(ϕei, ej),ϕe∗r)
2

+

q∑
r=1

p∑
i,j=1

g(σ(ϕei,ϕej),ϕe∗r)
2 +

q∑
r=1

p∑
i,j=1

g(σ(ei, ej),ϕe∗r)
2.

Using Lemma 3.1 (i) and the relations (3.1), (3.2), (3.3), the third and the last terms of right hand side are
identically zero. Thus, we derive

‖σ‖2 > p
q∑

r=1

[η(e∗r) − e
∗
r ln f]2 + p

q∑
r=1

[e∗r ln f− η(e∗r)]
2
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= 2p
q+1∑
r=1

[η(e∗r) − e
∗
r ln f]2 − 2p[η(e∗q+1) − (e∗q+1 ln f)]2.

Since e∗q+1 = ξ and for a warped product Riemannian submanifold M of a Kenmotsu manifold M̃,
(ξ ln f) = 1 [1, 17]. Then the above inequality will be

‖σ‖2 > 2p[η(e∗q+1)
2 +

q+1∑
r=1

(e∗r ln f)2 − 2
q+1∑
r=1

(e∗r ln f)η(e∗r)]

= 2p[‖~∇ ln f‖2 − 1],

which is inequality (i). If the equality holds in (i), then from the remaining terms in (3.5), we get

σ(D⊥,D) = 0, σ(D⊥,D⊥) = 0. (3.7)

Also, from the remaining second term in the right hand side of (3.6), we find

σ(D,D) ⊥ ν ⇒ σ(D,D) ∈ ϕD⊥. (3.8)

The second condition of (3.7) implies that M⊥ is a totally geodesic submanifold of M̃ due to M⊥ being
totally geodesic in M [4, 5]. On the other hand, (3.8) implies that MT is totally umbilical in M̃ with the
fact that MT is totally umbilical in M [4, 5]. Moreover, all conditions of (3.7) and (3.8) imply that M is a
mixed totally geodesic submanifold of M̃. Hence the proof is complete.

In [14], Olteanu established the following estimation for the squared norm of the second fundamental
form for contact CR-doubly warped products in Kenmotsu manifolds.

Theorem 3.5 ([14]). Let M̃ be a (2m + 1)-dimensional Kenmotsu manifold and M = f2M1 ×f1 M2 an n-
dimensional contact CR-doubly warped product submanifold, such that M1 is a (2α + 1)-dimensional invariant
submanifold tangent to ξ and M2 is a β-dimensional anti-invariant submanifold of M̃. Then:

(i) The squared norm of the second fundamental form of M satisfies

‖σ‖2 > 2β
(
‖~∇(ln f1)‖2 − 1

)
, (3.9)

where ~∇(ln f1) is the gradient of ln f1.
(ii) If the equality sign of (3.9) holds identically, then M1 is a totally geodesic submanifold and M2 is a totally

umbilical submanifold of M . Moreover, M is a minimal submanifold of M̃.

Now, we give the following examples of non-trivial warped product contact CR-submanifolds of the
forms M⊥ ×fMT and M⊥ ×fMT and in both the cases the structure vector field ξ is tangent to the base
manifold.

Example 3.6. Consider the Kenmotsu manifold M̃ = R×f C4 with the structure (ϕ, ξ,η,g) is given by

ϕ

{
4∑

i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+Z

∂

∂t

}
=

4∑
i=1

(
−Yi

∂

∂xi
+Xi

∂

∂yi

)
,

ξ = 2e−t

(
∂

∂t

)
, η =

1
2
etdt, and g = η⊗ η+ e

2t

4

4∑
i=1

(
dxi ⊗ dxi + dyi ⊗ dyi

)
.
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Consider the submanifold M of M̃ defined by

x(u, v,w, s, t) = 2(e−tu, 0, w, 0, 0, e−tv, s, 0, t).

Then M is a contact CR-warped product submanifold with the integrable invariant and anti-invariant
distributions D = {e3, e4, } and D⊥ = {e1, e2, e5} such that

e1 =
2
et

(
∂

∂x1

)
, e2 =

2
et

(
∂

∂y2

)
, e3 = 2

(
∂

∂x3

)
,

e4 = 2
(
∂

∂y3

)
, e5 = 2

(
∂

∂t

)
= etξ.

Consider, the integral manifolds corresponding to the distributions D and D⊥ by MT and M⊥, respec-
tively. Then their corresponding Riemannian metrics are respectively given by gMT

= e2t
(
(dw)2 + (ds)2

)
and gM⊥ = dt2 + du2 + dv2. Thus M = M⊥ ×fMT is a warped product submanifold isometrically im-
mersed in M̃ with metric g = gM⊥ + e

2tgMT
and warping function f = et.

Example 3.7. Consider a submanifold of R7 with the Cartesian coordinates (x1,y1, x2,y2, x3,y3, t) and the
almost contact structure

ϕ

(
∂

∂xi

)
=

∂

∂yi
, ϕ

(
∂

∂yj

)
= −

∂

∂xj
, ϕ

(
∂

∂t

)
= 0, 1 6 i, j 6 3.

Then for some smooth functions λi, νj and µ on R7, for any i, j = 1, 2, 3, consider a vector field X =
λi

∂
∂xi

+ νj
∂

∂yj
+ µ ∂

∂t ∈ R7, we have

g(X,X) = λ2
i + ν

2
j + µ

2, g(ϕX,ϕX) = λ2
i + ν

2
j ,

and
ϕ2(X) = −λi

∂

∂xi
− νj

∂

∂yj
= −X+ η(X)ξ,

for any i, j = 1, 2, 3. It is clear that g(ϕX,ϕX) = g(X,X) − η2(X). Thus, (ϕ, ξ,η,g) is an almost contact
metric structure on R7. Let us consider a submanifold M of R7 defined by the immersion χ as follows

χ(u, v,w, t) = (u cosw, v cosw,u sinw, v sinw, 0, 0, t).

Then the tangent bundle TM is spanned by the following orthogonal vector fields

e1 = cosw
∂

∂x1
+ sinw

∂

∂x2
, e2 = cosw

∂

∂y1
+ sinw

∂

∂y2
,

e3 = −u sinw
∂

∂x1
− v sinw

∂

∂y1
+ u cosw

∂

∂x2
+ v cosw

∂

∂y2
, e4 =

∂

∂t
.

Then, we find

ϕe1 = cosw
∂

∂y1
+ sinw

∂

∂y2
, ϕe2 = − cosw

∂

∂x1
− sinw

∂

∂x2
,

ϕe3 = −u sinw
∂

∂y1
+ v sinw

∂

∂x1
+ u cosw

∂

∂y2
− v cosw

∂

∂x2
, ϕe4 = 0.
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Thus M is a contact CR-submanifold with invariant distribution D = span{e1, e2} and anti-invariant
distribution D⊥ = span{e3} such that ξ = e4 tangent to D. Also, it is easy to see that both the distributions
D⊕ < ξ > and D are integrable. If we denote the integral manifolds of D and D⊥⊕ < ξ > by MT and
M⊥ respectively, then the metric tensor gM of M is given by

gM = du2 + dv2 + dt2 + (u2 + v2)dw2,

where gMT
= du2 + dv2 + dt2 is the metric tensor of MT and gM⊥ = (u2 + v2)dw2 is the metric tensor of

M⊥. Thus M is a warped product contact CR-submanifold M = MT ×fM⊥ with the warping function
f =
√
u2 + v2.
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