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1. Introduction 

The notion of local symmetry of a Riemannian manifold has been studied by many authors in several 

ways to a different extent. As a weaker version of local symmetry, in 1977, Takahashi [9] introduced 

the notion of locally 𝜙 − symmetric Sasakian manifold and obtained their several interesting results. 

The properties of pseudo projective curvature tensor is studied by many geometers [17], [18], [19], 

[22] and obtained their some interesting results. 

    In this paper we shown that pseudo projective 𝜙 − recurrent Sasakian manifold is an Einstein 

manifold and in a pseudo projective 𝜙 −  recurrent Sasakian manifold, the characteristic vector field 𝜉 

and the vector field 𝜌 associated to the 1 − form 𝐴 are co-directional. Finally, we proved that a three 

dimensional locally pseudo – projective 𝜙 − recurrent Sasakian manifold is of constant curvature. 

  2. Preliminaries  

Let 𝑀2𝑛+1(𝜙, ξ, η, g) be an almost contact Riemannian manifold, where 𝜙 is a (1,1)  tensor field, 𝜉 is 

the structure vector field, 𝜂 is a 1 − form and  g is the Riemannian metric.It is well known that the 

structure (𝜙, ξ, η, g)  satisfy  

 

     𝜙²𝑋 = −𝑋 + 𝜂(𝑋)𝜉,              (1)  

 (𝑎) 𝜂(𝜉) = 1, (𝑏) 𝑔(𝑋, 𝜉) = 𝜂(𝑋), (𝑐) 𝜂(𝜙𝑋) = 0, (𝑑) 𝜙𝜉 = 0,              (2)  
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    𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌),             (3) 

            (∇𝑋𝜙)(𝑌) = 𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋,                              (4)        

            ∇𝑋𝜉 = −𝜑𝑋,              (5) 

     (∇𝑋𝜂)(𝑌) = 𝑔(𝑋, 𝜙𝑌),            (6) 

for all vector fields X, Y, Z, where ∇ denotes the operator of covariant differentiation with respect to 

g, then 𝑀2𝑛+1(𝜙, ξ, η, g) is called a Sasakian manifold [1]. 

   Sasakian manifolds have been studied by many authors such as De, Shaikh and Biswas [3], 

Takahashi [9], Tanno [15] and many others. 

   In a Sasakian manifold the following relations hold: [1]  

 𝜂(𝑅(𝑋, 𝑌)𝑍) = 𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)                       (7)

  𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌,             (8) 

   𝑆(𝑋, 𝜉) = 2𝑛𝜂(𝑋),            (9)

 𝑆(𝜙𝑋, 𝜙𝑌) = 𝑆(𝑋, 𝑌) − 2𝑛𝜂(𝑋)𝜂(𝑌),          (10) 

    for all vector fields X, Y, Z,  where 𝑆  is the Ricci tensor of type (0,2)  and 𝑅  is the Riemannian 

curvature tensor of the manifold. 

    A Sasakian manifold is said to be an Einstein manifold if the Ricci tensor 𝑆 is of the form 

      𝑆(𝑋, 𝑌) = 𝜆𝑔(𝑋, 𝑌), 

 where λ is a constant. 

Definition 2.1. A Sasakian manifold is said to be a locally 𝜙 − symmetric manifold if [9] 

                 𝜙2((∇𝑊𝑅)(𝑋, 𝑌)𝑍) = 0,           (11) 

for all vector fields X, Y, Z, W orthogonal to ξ. 

Definition 2.2. A Sasakian manifold is said to be a locally pseudo projective 𝜙 − symmetric manifold 

if               𝜙2 ((∇𝑊�̃�)(𝑋, 𝑌)𝑍) = 0,          (12) 

for all vector fields X, Y, Z, W orthogonal to ξ. 

Definition 2.3. A Sasakian manifold is said to be pseudo projective 𝜙 − recurrent Sasakian manifold 

if there exists a non-zero 1 − form 𝐴 such that 

     𝜙²((∇𝑊�̃�)(𝑋, 𝑌)𝑍) = 𝐴(𝑊)�̃�(𝑋, 𝑌)𝑍,         (13) 

for arbitrary vector fields X, Y, Z, W, where �̃� is a pseudo projective curvature tensor given by [17] 

    �̃�(𝑋, 𝑌)𝑍 = 𝑎𝑅(𝑋, 𝑌)𝑍 + 𝑏[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌] 

               −
𝑟

2𝑛+1
[

𝑎

2𝑛
+ 𝑏] [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌].        (14) 

     where 𝑎 and 𝑏 are constants such that  𝑎,b≠ 0. If 𝑎 = 1 and 𝑏 = − 1

2𝑛
 Then (14) takes of the form 

   �̃�(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

2𝑛
[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌] = 𝑃(𝑋, 𝑌)𝑍. 

     where  𝑃 is the projective curvature tensor [21]. Hence the Projective curvature 𝑃 is a particular 

case of the tensor �̃�. For the reason �̃� is called Pseudo projective curvature tensor, where 𝑅 is the 

Riemann curvature tensor 𝑆 is Ricci tensor and 𝑟 is the scalar curvature. 

    If the 1-form 𝐴 vanishes, then the manifold reduces to a locally pseudo projective 𝜙 − symmetric 

manifold. 
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3. Pseudo projective 𝝓 − recurrent Sasakian manifold 

In this section we consider a Sasakian manifold which is pseudo projective 𝜙 −   recurrent Sasakian 

manifold. Then by virtue of (1) and (3), we get 

   −(∇𝑊�̃�)(𝑋, 𝑌)𝑍 + 𝜂 ((∇𝑊�̃�)(𝑋, 𝑌)𝑍) 𝜉 = 𝐴(𝑊)�̃�(𝑋, 𝑌)𝑍,          (15) 

from which it follows that 

−𝑔 ((∇𝑊�̃�)(𝑋, 𝑌)𝑍, 𝑈) + 𝜂 ((∇𝑊�̃�)(𝑋, 𝑌)𝑍) 𝜂(𝑈) = 𝐴(𝑊)𝑔(�̃�(𝑋, 𝑌)𝑍, 𝑈).   (16) 

Let {𝑒𝑖}, 𝑖 = 1,2, . . . . . . . .2𝑛 + 1  be an orthonormal basis of the tangent space at any point of the 

manifold. Then putting 𝑋 = 𝑈 = 𝑒𝑖 in (16) and taking summation over  i , 1 ≤ i ≤ 2n + 1, we get 

    (∇𝑊𝑆)(𝑌, 𝑍) = 𝐴(𝑊) [𝑆(𝑌, 𝑍) − (
𝑟

2𝑛+1
) 𝑔(𝑌, 𝑍)].            (17) 

Replacing Z by ξ in (17) and using (2) and (9), we get 

              (∇𝑊𝑆)(𝑌, 𝜉) = 𝐴(𝑊) [2𝑛 − (
𝑟

2𝑛+1
)] 𝜂(𝑌).              (18) 

Now we have 

    (∇𝑊𝑆)(𝑌, 𝜉) = ∇𝑊𝑆(𝑌, 𝜉) − 𝑆(∇𝑊𝑌, 𝜉) − 𝑆(𝑌, ∇𝑊𝜉)   
using (5), (6) and (9) in the above relation, it follows that 

                (∇𝑊𝑆)(𝑌, 𝜉) = 2𝑛𝑔(𝜑𝑌, 𝑊) + 𝑆(𝑌, 𝜙𝑊).               (19) 

In view of (18) and (19), we get 

    𝑆(𝑌, 𝜙𝑊) = −2𝑛𝑔(𝜙𝑌, 𝑊) + 𝐴(𝑊) [2𝑛 − (
𝑟

2𝑛+1
)] 𝜂(𝑌).           (20) 

Replacing 𝑌 by 𝜙𝑌 and using (3), (4) and (10) in (20), we get 

                         𝑆(𝑌, 𝑊) = 2𝑛𝑔(𝑌, 𝑊).                 (21)  

for all Y, W. 
    Hence, we can state the following theorem: 

Theorem 3.1 A Pseudo projective 𝜙 − recurrent Sasakian manifold (𝑀2𝑛+1, 𝑔) is an Einstein manifold. 

    Now from (15), we have   

 (∇𝑊�̃�)(𝑋, 𝑌)𝑍 = 𝜂 ((∇𝑊�̃�)(𝑋, 𝑌)𝑍) 𝜉 − 𝐴(𝑊)�̃�(𝑋, 𝑌)𝑍.    (22) 

    Using (14) in (22), we get   

            𝑎(∇ 𝑊𝑅)(𝑋, 𝑌)𝑍 =  𝑎𝜂((∇𝑊𝑅)(𝑋, 𝑌)𝑍)𝜉 − 𝑎𝐴(𝑊)𝑅(𝑋, 𝑌)𝑍    

             +𝑏[(∇𝑊𝑆)(𝑌, 𝑍)𝜂(𝑋) − (∇𝑊𝑆)(𝑋, 𝑍)𝜂(𝑌)]𝜉     

       −𝑏[(∇𝑊𝑆)(𝑌, 𝑍)𝑋 − (∇𝑊𝑆)(𝑋, 𝑍)𝑌]                     

                     −𝑏𝐴(𝑊)[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌]                        

                     + (
𝑟

2𝑛+1
) [

𝑎

2𝑛
+ 𝑏] 𝐴(𝑊)[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌].                 (23) 

From (23) and the Bianchi identity, we get 

 𝑎𝐴(𝑊)𝜂(𝑅(𝑋, 𝑌)𝑍) + 𝑎𝐴(𝑋)𝜂(𝑅(𝑌, 𝑊)𝑍) + 𝑎𝐴(𝑌)𝜂(𝑅(𝑊, 𝑋)𝑍)      

  = 𝑏𝐴(𝑊)[𝑆(𝑋, 𝑍)𝜂(𝑌) − 𝑆(𝑌, 𝑍)𝜂(𝑋)]        

      − (
𝑟

2𝑛+1
) [

𝑎

2𝑛
+ 𝑏] 𝐴(𝑊)[𝑔(𝑋, 𝑍)𝜂(𝑌) − 𝑔(𝑌, 𝑍)𝜂(𝑋)]    

      +𝑏𝐴(𝑋)[𝑆(𝑌, 𝑍)𝜂(𝑊) − 𝑆(𝑊, 𝑍)𝜂(𝑌)]      

      − (
𝑟

2𝑛+1
) [

𝑎

2𝑛
+ 𝑏] 𝐴(𝑋)[𝑔(𝑌, 𝑍)𝜂(𝑊) − 𝑔(𝑊, 𝑍)𝜂(𝑌)]    

      +𝑏𝐴(𝑌)[𝑆(𝑊, 𝑍)𝜂(𝑋) − 𝑆(𝑋, 𝑍)𝜂(𝑊)]        

      − (
𝑟

2𝑛+1
) [

𝑎

2𝑛
+ 𝑏] 𝐴(𝑌)[𝑔(𝑊, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑊)]           (24) 

By virtue of (8), we obtain from (24) that   
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  𝑎𝐴(𝑊)[𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)]       

 +𝑎𝐴(𝑋)[𝑔(𝑊, 𝑍)𝜂(𝑌) − 𝑔(𝑌, 𝑍)𝜂(𝑊)]      

 +𝑎𝐴(𝑌)[𝑔(𝑋, 𝑍)𝜂(𝑊) − 𝑔(𝑊, 𝑍)𝜂(𝑋)]        

   = 𝑏𝐴(𝑊)[𝑆(𝑋, 𝑍)𝜂(𝑌) − 𝑆(𝑌, 𝑍)𝜂(𝑋)]       

       − (
𝑟

2𝑛+1
) [

𝑎

2𝑛
+ 𝑏] 𝐴(𝑊)[𝑔(𝑋, 𝑍)𝜂(𝑌) − 𝑔(𝑌, 𝑍)𝜂(𝑋)]    

       +𝑏𝐴(𝑋)[𝑆(𝑌, 𝑍)𝜂(𝑊) − 𝑆(𝑊, 𝑍)𝜂(𝑌)]      

               − (
𝑟

2𝑛+1
) [

𝑎

2𝑛
+ 𝑏] 𝐴(𝑋)[𝑔(𝑌, 𝑍)𝜂(𝑊) − 𝑔(𝑊, 𝑍)𝜂(𝑌)]    

            +𝑏𝐴(𝑌)[𝑆(𝑊, 𝑍)𝜂(𝑋) − 𝑆(𝑋, 𝑍)𝜂(𝑊)]      

       − (
𝑟

2𝑛+1
) [

𝑎

2𝑛
+ 𝑏] 𝐴(𝑌)[𝑔(𝑊, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑊)]                         (25) 

Putting Y = Z = 𝑒𝑖 in (25) and taking summation over i, 1 ≤ i ≤ 2n + 1 we get 

                      𝐴(𝑊)𝜂(𝑋) = 𝐴(𝑋)𝜂(𝑊),         (26) 

for all vector fields X, W. Replacing 𝑋 by ξ in (26), we get 

                    𝐴(𝑊) = 𝜂(𝑊)𝜂(𝜌),           (27) 

for any vector field W, where A(ξ) = g(ξ, ρ) = η(ρ), ρ being the vector field associated to the 1 − form 𝑋 

i.e., A(X) = g(X, ρ). From (27),  

we can state the following theorem: 

Theorem 3.2 In a Pseudo projective 𝜙 − Sasakian manifold (𝑀2ⁿ+1, 𝑔)(𝑛 ≥ 1),  the characteristic 

vector field  𝜉 and the vector field 𝜌 associated to the 1 − form 𝐴 are co-directional and the 1 − form 𝐴 is 

given by (27). 

4. On a 𝟑 − dimensional Locally Pseudo Projective  - Recurrent Sasakian      
Manifold  

On a 3 − dimensional Sasakian Manifold Ricci tensor and curvature tensor has the following form 

    𝑆(𝑋, 𝑌) = (
𝑟

2
− 1) 𝑔(𝑋, 𝑌) − (

𝑟

2
− 3) 𝜂(𝑋)𝜂(𝑌)                        (28) 

     𝑅(𝑋, 𝑌)𝑍 = (
𝑟−4

2
) [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]        

               − (
𝑟−6

2
) [𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 + 𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌] (29)            

Taking covariant differentiation of (29), we get 

         (∇𝑊𝑅)(𝑋, 𝑌)𝑍  =  
𝑑𝑟(𝑊)

2
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉          

             +𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝜂(𝑌)𝜂(𝑍)𝑋 + 𝜂(𝑋)𝜂(𝑍)𝑌                            

             − (
𝑟−6

2
) [𝑔(𝑌, 𝑍)(∇𝑊𝜂)(𝑋)𝜉 + 𝑔(𝑌, 𝑍)𝜂(𝑋)(∇𝑊𝜉)         

             −𝑔(𝑋, 𝑍)(∇𝑊𝜂)(𝑌)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)(∇𝑊𝜉)    

                       +(∇𝑊𝜂)(𝑌)𝜂(𝑍)𝑋 + (∇𝑊𝜂)(𝑍)𝜂(𝑌)𝑋      

              −(∇𝑊𝜂)(𝑋)𝜂(𝑍)𝑌−(∇𝑊𝜂)(𝑍)𝜂(𝑋)𝑌].       (30) 

Taking 𝑋, 𝑌, 𝑍, 𝑊 orthogonal to 𝜉 and using (5) and (6), we get 

      (∇𝑊𝑅)(𝑋, 𝑌)𝑍  =  
𝑑𝑟(𝑊)

2
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]                 

              − (
𝑟−6

2
) [𝑔(𝑌, 𝑍)𝑔(𝑋, 𝜙𝑊) − 𝑔(𝑋, 𝑍)𝑔(𝑌, 𝜙𝑊)]𝜉       (31) 

from (31) it follows that 
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    𝜙2(∇𝑊𝑅)(𝑋, 𝑌)𝑍 =
𝑑𝑟(𝑊)

2
[𝑔(𝑌, 𝑍)𝜙2𝑋 − 𝑔(𝑋, 𝑍)𝜙2𝑌]          (32) 

Now, taking 𝑋, 𝑌, 𝑍, 𝑊 orthogonal to 𝜉 and using (1) and (2) in (32), we get 

 

        𝜑2(∇𝑊𝑅)(𝑋, 𝑌)𝑍 = −
𝑑𝑟(𝑊)

2
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]          (33) 

Differentiating covariantly (14) with respect to W (𝑓𝑜𝑟 𝑛 = 1), we get 

  (∇𝑊�̃�)(𝑋, 𝑌)𝑍 = 𝑎(∇𝑊𝑅)(𝑋, 𝑌)𝑍  + 𝑏[(∇𝑊𝑆)(𝑌, 𝑍)𝑋 − (∇𝑊𝑆)(𝑋, 𝑍)𝑌]  

           −
𝑑𝑟(𝑊)

3
[

𝑎

2
+ 𝑏] [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌].                           (34) 

Using (28)in (34) and then taking 𝑋, 𝑌, 𝑍, 𝑊 orthogonal to 𝜉, we get 

  (∇𝑊�̃�)(𝑋, 𝑌)𝑍 = 𝑎(∇𝑊𝑅)(𝑋, 𝑌)𝑍 −
𝑑𝑟(𝑊)

6
[𝑎 − 𝑏][𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌].        (35) 

Now, applying 𝜑2 to the both side of (35), we get 

 𝜙2(∇𝑊�̃�)(𝑋, 𝑌)𝑍 = 𝑎𝜙2(∇𝑊𝑅)(𝑋, 𝑌)𝑍 − [𝑎 − 𝑏]
𝑑𝑟(𝑊)

6
[𝑔(𝑌, 𝑍)𝜙2𝑋 − 𝑔(𝑋, 𝑍)𝜙2𝑌].    (36) 

Using (13), (33), (1) in (36), we obtain 

 

        𝐴(𝑊)�̃�(𝑋, 𝑌)𝑍 = −𝑎
𝑑𝑟(𝑊)

2
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]       

                   +[𝑎 − 𝑏]
𝑑𝑟(𝑊)

6
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 +𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉].    (37) 

taking 𝑋, 𝑌, 𝑍 orthogonal to 𝑊, we get  

 �̃�(𝑋, 𝑌)𝑍 = −
(2𝑎+𝑏)

6

𝑑𝑟(𝑊)

𝐴(𝑊)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]    (38) 

Putting 𝑊 = {𝑒𝑖} in (38), where {𝑒𝑖}, 𝑖 = 1,2,3 is an orthonormal basis of the tangent space at any point 

of the manifold and taking summation over 𝑖, 1 ≤ i ≤ 3, we obtain  

    �̃�(𝑋, 𝑌)𝑍 = 𝜆[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌].  

where 𝜆 = [−
(2𝑎+𝑏)

6

𝑑𝑟(𝑒𝑖)

𝐴(𝑒𝑖)
] is a scalar, since 𝐴 is a non-zero 1 − form. Then, by Schur’s theorem 𝜆 will 

be a constant on the manifold Hence, we can state the following theorem: 

Theorem 4.1 On a 3 − dimensional locally Pseudo-projective 𝜙 − recurrent Sasakian manifold, pseudo-

projective curvature tensor is of the form of constant curvature. 
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