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Abstract
In this paper at first, we define the weak P-property with respect to a t-distance such as p. Then we state a
best proximity point theorem in a complete metric space with generalized distance such that it is an
extension of previous research.
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1. Introduction

The best proximity point is a interesting topic in best proximity theory. Let A, B be two non-empty
subsets of a metric space (X,d) and T: A — B. A solution x, for the equation d(x,T x) = d(4, B) is
called a best proximity point of T. If d(x, T x) = 0 then x is called a fixed point of T [15]. The existence
and convergence of best proximity points has generalized by several authors such as Jleli and Samet [3],
Prolla [4], Reich [5], Sadiq Basha [7,8], Sehgal and Singh [10,11], Vertivel, Veermani and
Bhattacharyya[13] in many directions. On the other hand Suzuki [12] introduced the concept of 7-
distance on a metric space. Many fixed point theorems extended for various contractive mappings with
respect to a t-distance. In this paper, by using the concept of t-distance, we prove a best proximity point
theorem. Our results are extension of a best proximity point theorem in metric spaces.

2. Preliminary
Let A, B be two non-empty subsets of a metric space (X,d). The following notations will be used
throughout this paper:
d(y,A) = inf{d(x,y): x € A},
d(A,B) =inf{d(x,y):x € A,y € B},
Ay ={x € A:d(x,y) = d(A,B) for somey € B},
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By '={x € B:d(x,y) = d(A,B) for some x € A}.

We recall that x € A is a best proximity point of the mapping T: A —» B if d(x,Tx) = d(4,B). It
can be observed that a best proximity reduces to a fixed point if the underlying mapping is a self-
mapping.

Definition 2.1.[9] Let (4, B) be a pair of non-empty subsets of a metric space X with A # @. Then the
pair (4, B) is said to have the P-property if and only if
d(x1,y1) = d(4,B)
d(xz'}’z) — d(A, B)} = d(xlﬁxZ) - d(yl’yZ)
where x4, x, € Ay and y;,y, € By.
It is clear that, for any nonempty subset A of X, the pair (4, A) has the P-property.
Rhoades [6] introduced a class of contractive mappings called weakly contractive mapping. Harjani
and Sadarangani [1] generalized the concept of the weakly contractive mappings in partially ordered
metric spaces.

Definition 2.2.[2] A function i: [0, ) — [0, o) is said to be an altering distance function if it satisfies
the following conditions:

(i) s continuous and non-decreasing.

(i) Y@)=o0ifandonlyift =0.

Definition 2.3.[6] Let (X, d) be a metric space. T: X — X is weakly contractive if

d(Tx,Ty) <d(x,y) — ¢(d(x,y)), Vx,yeX
Where ¢ is a altering distance function.

Suzuki [12] introduced the concept of t-distance on a metric space.

Definition 2.4.[12] Let X be a metric space with metric d. A functionp : X X X — [0, ) is called z-

distance on X if there exist a function n: X x [0, ) — [0, o) such that the following are satisfied:

(D) p(x,2) <p(x,y) +p(y,z) Vx,y,z€X;

(t2) n(x,0) =0and n(x,t) >t for all x € X and t € [0,0), and n is concave and continuous in it’s
second variable.

(r3) lim, x, = x and lim,, sup{r)(zn,p(zn, Xm))im = n} = 0 imply p(w, x) < liminf,p(w, x,,) for all
w E X;

(t4) lim,, sup{p(x,, ym):m = n} = 0 and lim,, n(x,, t,,) = 0 imply lim, n(y,, t,) = 0;

(¢5) lim, 7(zp, p(2n, %)) = 0 and lim,, 7(z, P(Zy, ¥)) = 0 imply lim,, d(x,, ¥,) = 0.

Remark 2.5.[12] It can be replaced (72) by the following (z2)".
(72)"  inf{n(x,t):t > 0} = 0 for all x € X and 7 is non-decreasing in it’s second variable.

Remark 2.6. If (X, d) is a metric space, then the metric d is a T-distance on X.

In the following examples, we define n: X x [0,00) — [0, ) by n(x,t) =t, for all x € X and
t € [0,00). It is easy to see that p is a T-distance on metric space X.
Example 2.7. Let (X, d) be a metric space and c be a positive real number. Then p: X X X — [0, o) by
p(x,y) = c for x,y € X is a t-distance on X.
Example 2.8. Let (X, |.||) be a normed space. p: X x X — [0,) by p(x,y) = ||x|| + [|ly|| forx,y € X
is a t-distance on X.

Example 2.9. Let (X, ||.]]) be a normed space. p: X X X — [0,0) by p(x,y) = ||y|| forx,y € X is a z-
distance on X.
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Definition 2.10.[12] Let (X, d) be a metric space and p be a z-distance on X. A sequence {x,} in X is a p-
Cauchy if there exists a function 7: X x [0, ) — [0, ) satisfying (72)-(z5) and a sequence {z,,} in X
such that lim,, sup{n(zn,p(zn, xm)): m > n} = 0.

The following lemmas are essential for the next sections.
Lemma 2.11.[12] Let (X,d) be a metric space and p be a z-distance on X. If {x,} is a p-Cauchy
sequence, then it is a Cauchy sequence. Moreover if {y,} is a sequence satisfying
lim,, sup{p(x,,, ym): m = n} = 0, then {y,,} is also p-Cauchy sequence and lim,, d(x,, y,,) = 0.

Lemma 2.12.[12] Let (X,d) be a metric space and p be a z-distance on X. If {x,} in X satisfies
lim,, p(z, x,,) = 0 for some z € X, then {x,,} is a p-Cauchy sequence. Moreover if {y,,} in X also satisfies
lim, p(z,y,) = 0, then lim, d(x,,y,) = 0. In particular, for x,y,z € X, p(z,x) =0 and p(z,y) =0
imply x = y.

Lemma 2.13.[12] Let (X,d) be a metric space and p be a t-distance on X. If {x,} in X satisfies
lim,, sup{p(x,, x,,):m = n} = 0, then {x,} is a p-Cauchy sequence. Moreover if {y,} in X satisfies
lim,, p(x,, ) = 0, then {y,,} is also p-Cauchy sequence and lim,, d(x,, y,) = 0.

The next result is an immediate consequence of the Lemma 2.11 and Lemma 2.13.
Corollary 2.14. Let (X, d) be a metric space and p be a t-distance on X. If a sequence {x,} in X satisfies
lim,, sup{p(x,,, x,,): m = n} = 0, then {x, } is a Cauchy sequence.

3. Main results
Inspire of Sankar Raj[9] and Zhang and others[14], we define the weak P-property with respect to a
t-distance as follows:
Definition 3.1. Let (4, B) be a pair of non-empty subsets of a metric space (X, d) with Ay # @. Also let p
be a r-distance on X. Then the pair (4, B) is said to have the weak P-property with respect to p if and
only if
d(x1,y1) = d(4,B)
d(xz,}’z) — d(A, B)} = p(xlixZ) < p(ylf yZ)
where x4, x, € Ay and y;, y» € By.
It is clear that, for any nonempty subset A of X, the pair (4, A) has the weak P-property with respect to p.

Remark 3.2. If p = d then (4, B) is said to have the weak P-property where A # @. (See [14])
It is easy to see that if (4, B) has the P-property then (4, B) has the weak P-property.

Example 3.3. Let X = R? with the usual metric and p;, p, be two 7-distances that defined in Example 2.8
and Example 2.9, respectively. Consider,
A={(a,b) ER?la=0,2<b < 3},
B={(a,b) ER?*la=1,b<1}uU{(a,b) € R?la=1,b =>4}
Then (4, B) has the weak P-property with respect to p; and has not the weak P-property with respect to
p2:
By the definition of 4, B we obtain,
d((0,2), (1,1)) = d((0,3),(1,4)) = d(4,B) =2
where (0,2),(0,3) € Ay and (1,1), (1,4) € B,. We have,
p:((0,2),(0,3)) =5 and py((1,1),(1,4)) =V2 + 17,
p:1((0,3),(0,2)) =5 and py((1,4),(1,1)) =V17 + V2.
Therefore (A, B) has the weak P-property with respect to p;. On the other hand, we have
p2((0,3),(0,2)) =2 and p,((1,4),(1,1)) = V2.
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This implies that (4, B) has not the weak P-property with respect to p,.

Sankar Raj[9] stated a best proximity point theorem for weakly contractive non-self mappings in
metric spaces. The following Theorem is an extension of his results in a metric spaces with generalized
distance.

Theorem 3.4. Let A and B be non-empty closed subsets of the metric space(X, d) such that A, # @. Let
p be a z-distance on X and T: A — B satisfies the following conditions:

(@ T(4p) < By and (4, B) has the has the weak P-property with respect to p.

(b) T isa continuous function on A such that

P(p(Tx,Ty)) < P(p(x,y)) — d(p(x,¥)), Vx,y € A

where 1 is an altering distance function and ¢: [0, ) — [0, ) is non-decreasing function

also ¢(t) = 0ifandonly if t = 0.
Then T has a best proximity point in A. Moreover, if d(x,Tx) = d(x*,Tx*) = d(A, B) for some x,x* €
A, then p(x,x*) = 0.
Proof. Choose x, € A,. Since Tx, € T(A4,) S By, there exists x; € A, such that d(x;, Txy) = d(4, B).
Again, Tx; € T(Ay) S By, there exists x, € A, such that d(x,, Tx;) = d(4, B). Continuing this process,
we can find a sequence {x, } in 4, such that

d(xn41, Txy) = d(4,B), vn € NU{0}. 1)
(4, B) satisfies the weak P-property with respect to p, therefore from (1) we obtain,
p(xn: xn+1) = p(Txn—l'Txn): vn € N. (2)

We will prove that the sequence {x,,} is convergent in A,. Since 1 is non-decreasing function we receive
that

l/)(p(xn, xn+1)) < PY(p(Txp-1,Txy)), Vn €N, 3)
Also by the definition of T, we have

lp(p(Txn—l:Txn) < lp(p(xn—l:xn)) - (p(p(xn—l'xn))' vn € N. (4)
From (3) and (4), we receive that

¢(p(xn' xn+1)) = l/)(p(Txn—lfon)) - ¢(p(xn—1'xn))
= l/)(p(xn—l'xn)) - ¢(p(xn—1'xn))
< ll)(p(xn—l'xn)).
for all n € N. Since i is non-decreasing function, we have

p(xn: xn+1) = p(xn—l'xn)' vn € N.
Therefore, the sequence {p(x,,x,+1)} IS monotone non-increasing and bounded. Hence there exists
r = 0 such that
Tlll_r){)lo p(Xn, Xn41) =7 2 0.

We claim that r = 0. Suppose to the contrary, that » > 0. From the inequality
'P(P(xm xn+1)) < lp(p(xn—l'xn)) - ¢(p(xn—1'xn)) < lp(p(xn—l'xn))r
we obtain
lim ¢(p(p-1,%1)) = 0.
Since 0 < r < p(xy,, x,41) and ¢ is non-decreasing function,
0 < @) < P(p(n *ns1)),
So,
0<¢(r) < TEI_IBO ¢(p(xn: xn+1)),
which is a contradiction. Hence lim,_ . p(X,, Xps1) = 0. Similarly we receive that

lim; 0 P(Xp41, %) = 0.
Now we show that lim,_,. p(X,, x,,) = 0 for m >n. In contrary case, there exists € > 0 and two

subsequence {x,, }, {x», } such that m, is smallest index for which my > ny > k, p(xn,, X, ) = €. This
means that
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p(xnk'xmk—l) <E€. (5)
So, by the triangle inequality and (5), we have
€ < Dt X,
< p(xnermk—l) + p(xmk—l’xmk)
<e+ p(xmk_l,xmk).
Letting k — oo, we receive that
limy_, 0 p(xnk,xmk) =€ (6)
By triangle inequality, we have
p(Xnk'ka) =< p(XnkvXnk—l) + p(Xnk—l'ka—l) + p(ka—l'ka)'
p(Xnk_l'ka—l) < p(Xnk—lr Xnk) + p(Xnk’ka) + p(ka' ka—l)'
Letting k — oo in above two inequality and using (6), we get
111—{23 p(Xnk—lr ka—l) =€
So,
0 < P(e) < U (P(XnXm,) )
<4 (P(Txne-1, Txmy1))
< LIJ (p(Xnk—l'ka—l)) - (I) (p(Xnk—l'ka—l))

< LI] (p(Xnk—l'ka—l))'
From continuity of { in the above inequality, we obtain that

limy_,e ¢ (p(Xnk—1'ka—1)) = 0. (7)

From limy,e0 P(Xp, —1, Xm,—1) = € We can find k, € N such that for any k > k,,
€
> < P(Xnp—1, Xmy—1)-

This implies that,

€
0<o (E) <¢ (p(xnk_l,xmk_l)), Vk = kg
and this contradicts to (7). Thus lim,,_,., p(x,, x,,) = 0 for m > n and this implies that,

lirrln sup{p(xp, xyp):im =n} = 0.

Therefore by Corollary 2.14, {x,} is a Cauchy sequence in A. Since X is a complete metric space and A is
a closed subset of X, there exists x € A such that lim,,_,, x,, = x. T is continuous, therefore with letting
n — oo in (1), we obtain

d(x,Tx) = d(A, B).
Now let x* € A such that

d(x*, Tx*) = d(A, B).
We claim that p(x,x*) = 0. Suppose to the contrary, that p(x,x*) > 0. Hence ¢(p(x, x*)) > 0 and
therefore by the definition of T, s, we obtain that,

(PG x)) < B(p(Tx Tx)) < W(p(xx)) — d(pG,x) < (PG x),

which is a contradiction. Hence p(x, x*) = 0 and this completes the proof of the theorem.m

The next result is an immediate consequence of the Theorem 3.4 by taking ¥(t) = 0 forall t > 0.
Corollary 3.5. Let A and B be non-empty closed subsets of the metric space(X, d) such that A, + @. Let
p be a z-distance on X and T: A — B satisfies the following conditions:

(@ T(A4p) < By and (4, B) has the has the weak P-property with respect to p.
(b) T isa continuous function on A such that

p(Tx,Ty) < p(x,y) — p(p(x,¥)), Vx,y €A
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where ¢: [0, ) — [0, o) is non-decreasing function also ¢ (t) = 0 if and only if t = 0.
Then T has a best proximity point in A. Moreover, if d(x,Tx) = d(x*,Tx*) = d(4, B) for some x,x* €
A, then p(x,x*) = 0.

The following result is the special case of the Corollary 3.5, obtained by setting p = d.
Corollary 3.6.[9] Let (4, B) be a pair of two nonempty, closed subsets of a complete metric space X such
that A, is non-empty. Let T: A — B be a weakly contractive mapping such that T(4,) € B, . Assume that
the pair (4, B) has the P-property. Then there exists a unique x* in A such that d(x*, Tx*) = d(4, B).
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