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Abstract

The main aim of this paper is to define the generalized Riesz-dual sequence from a g-Bessel sequence with respect to a
pair of g-orthonormal bases. We characterize exactly properties of the first sequence in terms of the associated one, which yields
duality relations for the abstract g-frame setting. (©2017 all rights reserved.
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1. Introduction

Duality principles in Gabor theory such as the Ron-Shen duality principle [13] and the Wexler-Raz
biorthogonality relations [17] play a fundamental role for analyzing Gabor systems. Casazza et al. in [4]
introduced a general approach to derive duality principles in abstract frame theory. For each sequence in
a separable Hilbert space they defined a Riesz-dual sequence dependent only on two orthonormal bases.
They characterize exactly properties of the first sequence in terms of the Riesz-dual sequence, which
yields duality relations for the frame setting. Frames were first introduced by Duffin and Schaeffer [9] in
the context of nonharmonic Fourier series and reintroduced in 1986 by Daubechies et al. in [8]. Currently,
frames play important roles in many applications in mathematics, science, and engineering such as signal
processing, image processing, data compression, etc.

Let {ei}ic1 and {hi}ic1 be orthonormal bases for a separable Hilbert space H and let f = {f;};c1 be any
sequence in H for which ) ;. [(fi, e;)[* < oo for all j € L. Then the Riesz-dual sequence (R-dual sequence)
of {fi}ie1 with respect to {ei}icr and {hi}icr as the sequence {ij}jel is given by:

7/]_1‘ = Z<f1, ej>hi, V] el
i€l
This simple construction gives a powerful tool for deriving duality principles in general frame theory.
There exists a symmetric relation between the sequences {V/jf}jel and {f;}ic1 as follows:

fi=) (#  hie, Viel
jel
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In particular, this shows that {f;}ic1 is the R-dual sequence for {ij}jel with respect to {hi}ic1 and {ei}ier.
We refer the reader to the articles [6, 7, 14, 18] for an introduction about the theory and applications of
R-dual sequences.

Recently, Sun in [15, 16] and Casazza and Kutyniok in [3] introduced a generalization of frames which
covers many other recent generalizations of frames, e.g., bounded quasi-projectors, frames of subspaces,
outer frames, oblique frames, pseudo-frames, and a class of time-frequency localization operators. Sun
showed that all of the above applications of frames are special cases of generalized frames.

Let 7 and X be two separable Hilbert spaces and let {Vi}ic1 be a family of closed subspaces of X
and B(H, Vi) denote the collection of all bounded linear operators from H into V; for all i € I. Then,
A ={A; € B(H, Vi) : i€ I}is a generalized frame or simply a g-frame for H with respect to {Vi}ic1 if
there exist constants 0 < C < D < oo such that:

ClIfI* < Y IAfI? < DJfI?,  vf e 3.
iel

(1.1)

The constants C and D are called g-frame bounds. If only the right-hand inequality of (1.1) is required,
we call it a g-Bessel sequence. Since almost all applications require a finite model for their numerical
treatment, we restrict ourselves to a finite-dimensional space in the following examples.

Example 1.1. Let H =C" and V] = Vo = ... = V;, = C""L. Define
(1 0 0] [0 [0 0 17
10 0 0 0 0 1
Al = 0 0 0 LAy = 0 . An 0 0 1
00 ... 0| 0 00 ... 1]

Then, the set A = {A{}I*, is a g-frame for C™ with respect to C""! with g-frame bounds A = 2 and
B =n + 1. To see this explicitly, note that for any f = (z1,22,...,2zn) in C™, we have

n
D AP =20z1 +3lzoP + ... + (n + 1lzn[*.

i=1
From this, we have

n

21> < Y AP < (m+ 1))
i=1

In frames theory an input signal is represented by a collection of scalar coefficients that measure the
projection of that signal onto each frame vector. The representation space employed in this theory equals
(%(I). However, in g-frames theory an input signal is represented by a collection of vector coefficients that
represent the projection (not just the projection energy) onto each subspace. Therefore the representation
space employed in this setting is

(3 @Vi)e ={lolherl gle Vi, Y llgilP < oo}

iel iel

In order to analyze a signal f € 7, i.e., to map it into the representation space, the analysis operator Th :
H— ( D icr EBVi) 2 given by TAf = {A;f}ic1 is applied. The associated synthesis operator, which provides
a mapping from the representation space to }, is defined to be the adjoint operator T} : (X_;c; ®Vi) . —
I, which is given by Tx ({g{}ie1) = 2_ic1 Al gi. By composing Tx and T} we obtain the g-frame operator
SA H = H, SAT = TATAT = ;1 AfAif, which is a positive, self-adjoint and invertible operator and
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C < ||SA|l < D. The canonical dual g-frame for {Ai}ic1 is defined by {/A\i}iel where /A\i = /\iSR1 which
is also a g-frame for H with respect to {Vi}ic1 with % and % as its lower and upper frame bounds,

respectively. Also we have

f=Y AfAf=) AJAf, Vet
iel iel

Moreover, {/\137\% }ie1 is a Parseval g-frame for J{ with respect to {Vi}ic1.

Generalized Riesz-dual sequence or simply g-R-dual sequence is a natural generalization of R-dual
sequence which provides a powerful tool in the analysis of duality relations in general g-frame theory.
The purpose of this paper is to introduce the concept of Riesz-dual sequence for g-frames. We give
characterizations of g-R-dual sequences and prove that g-R-dual sequences share many useful properties
with R-dual sequences. In this article, we show that in fact for each sequence of operators we can construct
a corresponding sequence of operators with a kind of duality relation between them. This construction is
used to prove duality principles in g-frame theory, which can be regarded as general versions of several
well-known duality principles for g-frames. We also give a generalized version of Riesz-dual sequences.

The content of this paper is as follows: In the rest of this section we will briefly recall the necessary
parts from g-bases, g-orthonormal bases, and g-Riesz bases. For more information we refer to [1, 2, 5,
10, 11]. In Section 2, we define the g-R-dual sequence from a g-Bessel sequence with respect to a pair of
g-orthonormal bases as generalization of Riesz-dual sequence. In this section, we characterize to which
extent the g-R-dual sequence of a g-Bessel sequence depends on the chosen g-orthonormal bases. In
Section 3, first we obtain the g-frame conditions for a sequence of operators and its g-R-dual sequence.
We also characterize those pairs of g-frames and their g-R-dual sequences, which are equivalent (unitarily
equivalent). Finally, Section 4 deals with duality principle for g-frames. In this section we study properties
of dual g-frames and canonical dual g-frames.

Definition 1.2. A generalized Schauder basis or simply a g-basis for H with respect to {Wi}i¢1 is a family
of onto operators I' = {3 € B(H, W;)| j € I} such that for all f € J{ there exist unique vectors g; € Wj,i €1
with
f=>) T7g;. (1.2)
jel
In this case, there exist unique operators A; € B(H, Wj) such that

f=Y A=) AT,

jel jel
for all f € H. Moreover, the sequences {Tj}jcr and {A;j}jc1 are g-biorthogonal, i.e., /\il“].* g; = dyj9; for
all i,j € I,g; € W; and {A;}j¢1 itself forms a g-basis for J{ with respect to {W;}ic1 that so-called dual
g-basis of {Ij}jc1. A g-basis is an unconditional g-basis, if the series in (1.2) converges unconditionally.

Consequently, for a g-basis the ordering in (1.2) can be crucial. If {Ai}ic1 is a g-basis only for its closed
linear span, we call it a g-basic sequence with respect to {W; }ic1.
Definition 1.3. Let {=; € B(J, W;)| i € I} be a sequence of operators. Then

(i) {Zi}ie1 is a g-complete set for H{ with respect to {Wi}icy, if H = span{=} (Wi)}ier.

(ii) {Zi}ier is a g-orthonormal system for J{ with respect to {Wi}ier, if ZiZ5 = 8451w, forall i,j € L.

j
(iif) A g-complete and g-orthonormal system {Z;}ic is called a g-orthonormal basis for I with respect

to {Wilier.

Definition 1.4. A sequence I' = {Ij € B(H, W;)|j € I} is called a g-Riesz basis for H with respect to {Wj}jc1,
if {Tj}je1 is a g-complete set for H with respect to {Wj}je1 and there exist constants 0 < A < B < oo such

that
AY lglP <Y g7 <BY lgl? (1.3)

jel jel jel
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for all sequences {gj}je1 € (ZjeI @W]-) 2~ We define the g-Riesz basis bounds for {I}}j¢1 to be the largest
number A and the smallest number B such that this inequality (1.3) holds. If {Tj};c is a g-Riesz basis only
for span{rj* (Wj)}je1, we call it a g-Riesz basic sequence for H with respect to {W;}je1.

The following well-known characterization of g-orthonormal bases is sometimes more useful which is
taken from [2].

Lemma 1.5. Let = = {Zi}ic1 be a g-orthonormal system for I with respect to {Wilic1. Then the following
conditions are equivalent:

(i) = is a g-orthonormal basis for I with respect to {Wi}ic1.
(i) 2 _ic1Zi%i = Isc
(i) [Ifl> = Xicr IZ5Ef]%, VF e It
(iv) [If* = Zier I=if]? VF eI
(v) <f,g>=) i1 <Zif,Zig>, Vf,geX.
(vi) If=if =0 forall i € 1, then f = 0.

For any given g-frame there is a natural procedure to construct a g-Riesz basis with the same g-frame
bounds, see, e.g., [1] for a proof of this standard result.

Lemma 1.6. Let {Z;}jc1 be a g-orthonormal system for H with respect to {Wjljer and U : H — H a bounded
bijective operator. Then the following items hold.
(i) The sequence {=;U*}jc1 is a g-Riesz basis for J with respect to {W;j}je1 with g-frame operator UU* and
optimal bounds ﬁ, a2
(ii) The dual g-Riesz basis of {=5U* }Yj¢1 is {Z;U )1 with g-frame operator (UU*) L and the optimal bounds are

i U

1
(iii) Let T = {T3}je1 be a g-frame for H with respect to {Wjl}je1 with optimal bounds A, B. Then {Z;St}e1 is a
1

§-Riesz basis for H with respect to {Wj}jc1 with optimal bounds A, B. The dual g-Riesz basis of {Z;S%}jer is
_1
{Z;Sr 2Yer, with optimal bounds &, . 1
(iv) Let T' = {Tj}je1 be a g-Riesz basis for H with respect to {W;}jc1, then {TjSy 2 }je1 is a g-orthonormal basis for
H with respect to {Wjl}jer.
(v) Let T'={I3 € B(},W;)|j € I} be arbitrary sequence. If span{l"].* (Wj)ler = Hand

IS o> =Y lgl? Vigiher € (Y eW),,

jel jel jel
then T = {T3}je1 is a g-orthonormal basis for J with respect to {Wi}ic1.

Let = = {Zi}ic1 be a g-orthonormal basis for J{ with respect to {Wi}ic1. If f = ) ;.1 Z{gi, then the
coordinate representation of f € I relative to the g-orthonormal basis = is [flz = {gi}ie1. In this case
{gitier € (Ziel @Wi)ez and [|f|| = HmEHzZ'

Definition 1.7. Let = = {Zi}ic1 and =/ = {Z{}ic1 be g-orthonormal bases for 3 with respect to {Wil}ier
and {Vi}ic1, respectively. The transition matrix from = to =’ is the matrix B = [By;] whose (i,j)-entry is
By = E{E}k for all i,j € 1. We also have B[f]z = [f]=/ where, [f]z and [f]=/ are the coordinate representation
of an arbitrary vector f € H in the basis = and Z’, respectively. We show that the transition matrix from
=/ toZis B~! = B*. Let B* = [Bi*j], then BY; = (Bji)* = EiEj’* for all i,j € I. By Lemma 1.5 we have
[BB*]yj = ) BuBjy =) ENEFERE] =E{(D EfE)E] =E'ilyE/] = EE =5y1w,.
kel kel kel
Similarly, [B*Blij = 8ij1w;. This implies that BB* = B*B = I, where 1 is the identity matrix.

Since almost all applications require a finite model for their numerical treatment, we restrict ourselves
to a finite-dimensional space in the following example.
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Example 1.8. Let H = C™™and Wy =W, =... = W, = C2. Define
-~ |10 ...00 -~ |00 ... 10
1= lo1...00|""™ |00 ...0 1]
A direct calculation shows that ||Zx|| = 1 and ZxZ] = dx¢ for any 1 < k, £ < n. We also have
n n
D EAP = ) (zac 1P +lzal®) = [IfI?, Vf ={z:f € C™
k=1 k=1

Therefore = = {Zy}1_, is a g-orthonormal basis for C>™ with respect to C2. Similarly, the sequence
Y = (Wi}, defined by

01 ... 00 00 ... 01
Wl_[l 0 ... 0 0]"""1]“_[0 0 ... 10}
is also a g-orthonormal basis for C>™ with respect to C> and the matrix
A 0
B:[\yizﬂnxn: B 4
0 A
where A = [? (1)]15 the transition matrix from = to ¥. Hence, for any f & C2" we have B[f]z = [f]y.
Example 1.9. Let 3 = C>™ and W; = W, = ... = Wh,, = C2. Define
r_10...00 r_OO.‘.Zn—lo
“lo2..0o0”""™ |00 .. 0 2n]|

Since, for every gi = (z2i—1,22i) € C?, we have H > F{"giHZ = Zle i2|z;%. Thus {Ii}Y, is a g-Riesz basis
for C?" with respect to C? with g-Riesz bounds 1 and 4n’. Moreover, we can write N, ={&u sy,
where U is a bounded bijective operator defined by

1 0 ... O

02 ... 0
u= . . . ’

00 ... 2n

and = = {Zy}}}_; is the g-orthonormal basis defined in Example 1.8.

2. The g-R-dual sequence

In this section we define the g-R-dual sequence from a sequence of operators. Then we exactly charac-
terize to which extent the g-R-dual sequence of a g-Bessel sequence depends on the chosen g-orthonormal
bases.

Definition 2.1. Let = = {Z;}ic1 and ¥ = {¥}ic1 be g-orthonormal bases for J{ with respect to {W;}ic1 and
{Vi}ie1, respectively. Let A = {/\i H - Vilie I} be such that the series } ;.; A g{ is convergent for all
{gitier € (Ziel @Vi)ez. Forallj €1, let

A . A —_ *
iel
Then {F]/\}jel is called the generalized Riesz-dual sequence (g-R-dual sequence) for the sequence A with
respect to (S, V).
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Notice that the hypothesis that the series ) ;. A7 g{ is convergent for all {g{}ic1 € (X ic1®Vi),. is
always fulfilled if the sequence A = {Aj}ic1 is g-Bessel sequence with respect to {V;}ie1.

Example 2.2. Let 3 = C?™ and let {Zi ., {Yi}iY, be the g-orthonormal bases for J{ with respect to C?
defined in Example 1.8. Define

11 ..00 00 ...11
Al_[o 1 ...0 0]""’/\“_[0 0 ... 0 1]'

Then, A = {A{}l*, is a g-Bessel sequence for } with respect to C? with g-Bessel bound B = 3. The
g-R-dual sequence for the sequence A with respect to (Z, V) is defined as follows:

pA_[01 .00 A_[00 .01
L=l11 ...00]"™" {00 ... 11}

which is also a g-Bessel sequence for H with respect to C? with g-Bessel bound B = 3.
Now, we need an algorithm to invert the process and calculate {A;}ic1 from the sequence {Fj/\}jel.

Theorem 2.3. Let = = {Zi}ic1 and ¥ = {Vi}ic1 be g-orthonormal bases for J with respect to {Wi}ic1 and {Vitier,
respectively. Let {\i}ic1 be a g-Bessel sequence for I with respect to {Vi}ic1. Then, for all i € 1,

A=) Wi
jel
In particular, this shows that {\i}ie1 is the g-R-dual sequence for {Fj/\}]-@ with respect to (¥, Z).

Proof. The definition of {T*}j¢1 implies that for every 1,j € I
Vi) =) AT =) WIIAGE = ) SuAS = AL
kel kel kel
Therefore V; (F/\) /\1_* Now, by Lemma 1.5 we have
Av=Adpc=A( ) E5) =) ASIE =) W(TYE
)61 jel jel
0
Definition 2.4. Let = = {Z;}jc1 be a g-orthonormal basis for H{ with respect to {W;}jc1 and let A = {Ai}ic1
be a g-Bessel sequence for J{ with respect to {V;}ic1 with the g-frame operator Sp : 7 — 3, respectively.

Then the matrix representation of SA with respect to = is the matrix [SA] = [Si;], with Si; = =S AE;“.
Therefore

(D _&Wi)p = ()_8Wi)p, with [Saflz=[SAllflz, Vfe .

Suppose A = [Ay;] with Ayj = /\iE]?‘, then A* = [Ai*j] and Afj = :i/\;k for all i,j € 1. Therefore
(Z @Wi)fz — (Z @Vi)(’,z’ and A*A: (Z @Wi)ez — (Z @Wi)ez
i€l iel iel i€l
The matrix A is called the analysis matrix for A with respect to =. A direct calculation shows that for
every f € 7 we have A[f]z = TAf. We also have

[A*A]ij = Z[A*]ik[A]kj = Z Ei/\]t/\kz}k = Ei(z Alt/\k) E}k = EiS/\E;( = Si5 = [Sali;

kel kel kel

Thus, A*A = SA, where A*A = S, means that A*A = [SA].
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The following result is a generalization of [4, Proposition 3] to g-frames about dependence of the
g-R-dual sequence {F]-A}jel to choose the g-orthonormal bases = = {Zi}ic; and ¥ = {V}ie1.

Theorem 2.5. Let = = {Sj}jer, =/ = {Ej/}]'eI and ¥ = {\Pilicr, ¥/ = {P{}ie1 be g-orthonormal bases for H with
respect to {Wj}je1 and {Vi}ic1 and let A = {Ai}ie1 be a g-Bessel sequence for J( with respect to {Vi}ic1. Denote
the analysis matrix for A with respect to = by A and the g-R-dual sequences of /\ with respect to (=, V) and (Z',¥’)
by {Fj/\}jg,{rj/ Yiey, respectively. Then the following conditions are equivalent.

(i) TN =T/ forallj e L
(ii) If B and C are the transition matrices from = to =" and V¥ to V', respectively, then AB* = CA.

Proof. Let B = [By;] and C = [Cyj]. By the definition of {Fj/\}jel,{rj’/\})-e] for every i,j € 1 we have
Wi (FA) = AT and V! (F”\) /\lu’* Since

[AB*]U = Z AikB]tj = Z /\iE]tEkE/;k =N\ < Z :]t:k> /;K = /\iE/;'k = ly/i(r‘j//\)*

kel kel kel
and
[CAL; =) CiAwy =D WIVIAZ =) Wwiw (1Y) (Z‘l’k‘l’k> =iy,
kel kel kel kel
the conclusion follows. O

Corollary 2.6. In addition to the hypothesis of Theorem 2.5, if A = {Ai}ie1 is a g-frame for I with respect to
(Vidier and {F]/\}jel ={I/ Ye1, then A*C*AS\'B* =1, where 1 is the identity matrix.

Proof. Let A ={Ai}ic1 be a g-frame for H with respect to {Vi}ic1. Definition 2.4 implies that S/_\lA*A =1
Thus, if F)/\ = Fj’ A for all j € I, then by Theorem 2.5, AB* = CA. This implies B* = Sj\lA* CA. But B has
to be unitary, which yields A*C*AS!B* = 1. O

Recall that two sequences {Ij}jc1 and {F]-’ Jje1 are called equivalent (unitarily equivalent) in J with
respect to {Wjljer, if there exists a bounded linear invertible (unitary) operator T : H{ — J such that
T =T/ forallj € L

To have a better understanding of the different types of equivalency, we prove the following charac-
terization result.

Theorem 2.7. In addition to the hypothesis of Theorem 2.5, if I' = {F]/\}jel and " = {T Ner are g-frames for H
with respect to {Wj}je1 and {Vj}je1, respectively, then the following statements hold.

(i) If A ={Ai}ic1 is a g-frame for IH with respect to {Vi}ie1, then {F]/\}jel is equivalent to {F].’ A}jEI in H with
respect to {Wj}je1 if and only if ker(A) = ker(AB*).
(ii) {F)/\}jel is unitarily equivalent to {F)/A}jel in J with respect to {Wj};e1, if and only if
A*A = (AB*)*(AB*).
Moreover, if A = {Ai}lic1 is a g-frame for I with respect to {Vilic1, then the above is equivalent to SA =
BSAB*.

Proof.
(i) First we observe that, for every g’ ={g; Jxe1 € (Zjel @Vj) 2 We have

Z ”912”2 = Z {9k, 9 Z <Z‘ykw/1 9u9k <ZW/191/Z k9k> = H Z 91’<H2'

kel kel kel iel icl kel kel
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Therefore,
D Vigi=0&g' =0
kel

(Necessity). Suppose that {F)/\}jel is equivalent to {F]-’ A}jel in 3 with respect to {Wj}jc1, then there exists
a bounded linear invertible operator T : 7{ — J{ such that

T(Y (M) =Y (Mg, Yigihere (D_oW),
jel jel jel

Now, Ag = 0 with g ={gj}je1, if and only if

T (MM g) =D (Mg =Y Y WiAZigi =) Y WiAggi =) WilAgh =0,

jel jel kel jel kel jel kel
if and only if
Y WRAB gl =) Wi( ) [AB"gg;)
kel kel jel
=) > > ViAuBig;
kel jel iel
=Y > Y VIAEET g
kel jel iel
=3 > WRA(D TIEESg)
kel jel iel
=D D> ViAEfe =) (T g =TT (3_(1)"g) =0,
kel jel jel jel

if and only if AB*g = 0.
(Sufficiency). Suppose that ker(A) = ker(AB*). Define the operator T as follows:

jel %span{(r’;\)*(wj)}jel, T(Z(FA) gj) = Z(FIA) 9j,

j€] je]

forall ] C Iwith [J| < coand g; € Wj (j € J). Let C,D > 0 be the g-frame bounds for g-frame A = {Ai}ic1.

Then we have
T o) =1 ™ gl = 2 Y v g5

T : span {(FjA)*(Wj)}

IS jeJ kel j€]
= X ViAd Y =) P = X A ZG )l
kel jeJ kel jeJ
<D| Y=gl =D Y lgl’ =Dl }_Zg
IS j€) S
D -
< Mz = IIZ‘Pk/\k > Zg)l’
kel jeJ kel j€]
B D - % * 2 D A 2
= ol (A g7 = 1l 2 g5
je] kel je]

This shows that T is a bounded linear operator. To prove invertibility of T we compute

T(Z(FA) gj) = Z F’A ZZ‘P'k/\k:'fg) quﬂk/\k :t:l:/;kg])

je] je] kel jej] kel jej] iel

=Y V(D [AB*Lg) =) Wi(AB*g

kel jeJ kel
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We also have

D (Mg =) Y YiAEig =) YilAgh

jeJ kel jeJ kel
Hence,
T(Y (MM)*gy) =0« Y (YY) gy =0.
j€] j€]
This implies that T is invertible operator. Now, the g-completeness of I and '’ for H with respect to
{Wilier implies that T has an extension invertible on H and T(Fj/\)* = (T’ )A )* forall j € L.

(ii) First, we prove [A*Alj; = F{\(F]/\)* and [(AB*)*(AB*)]y; = F.’A(F.’A)*. To see this, we have

= (D ZA) (D YrART) =D ) SemTiAARE =) SIAIAGS

kel mel kel mel kel
= E AL AL = [ATA];
kel

Moreover, we obtain

AN = (D ZIAY) () YiAnE)

kel mel
=Y D mZAARE =) (MG (AET)
kel mel kel
=3 (D AEREED) (D AEREmEY)
kel nel mel
=3 (D AwnBii) (D AxmBiy)
kel nel mel
=Y (AB*){x(AB*)ij = [(AB*)*(AB*)]y
kel

Now, let A*A = (AB*)*(AB*). Define the operator T as follows:
T :span { (I")* (W)}, —>span{(r’jA)*(wj)}j€I, T(Y (M7 gy) =Y (fN)*g;,
j€] je]
for all finite subsets ] C I and gj € Wj (j € J). Let f1,f2 € span{(l“)/\)*(W)-)}jGI as f; = ZJEJ](F )* g1
and f, = Z]e]z(r )*g2j, we have

(Tf, Tf2) = (> ()" g15, D () ganc)

i€l ke]a
=D > A g, 920)
j€J1 k€]
= Z(rj/\)*glj/ Z (M) *gok )
j€eh k€]
= (f1, f2).

This implies that T is a bounded linear surjective isometry operator. Thus, the g-completeness of I' and T’
for H with respect to {W;}ic1 implies that T has an extension isometry on H and T(Fj/\)* = (T’ )A )* for all
j € L This shows that I" is unitarily equivalent to I'" in J{ with respect to {Wj}je1. The converse implication
is obvious. Finally, if A = {Aj}ie1 is a g-frame for J with respect to {Vi}ic1, then, since A*A = S, thus

Sp = A*A = (AB*)*(AB*) = BA*AB* = BSAB*.
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3. Characterizations of equivalence of the g-R-dual sequence

In this section we first characterize all sequences with lower g-frame bound. Next, we obtain the g-
frame conditions for a sequence of operators and its g-R-dual sequence. We also characterize those pairs
of g-frames and their g-R-dual sequences, which are equivalent (unitarily equivalent).

Recall that a family {Ai}icr is a g-frame sequence with respect to {Vi}ic1, if it is a g-frame for
span{A}(Vi)}ie1 with respect to {Vi}icr.

There exists a characterization of frames which keeps the information about the frame bounds ([5,
Lemma 5.5.5]). A similar result holds in g-frame situation.

Proposition 3.1. Let A ={A; € B(J(, Vi) : i€ I}. Then the following conditions are equivalent.

(i) A ={Ailie1 is a g-frame sequence with respect to {Vi}ic1 with g-frame bounds A and B.
(ii) The synthesis operator T} is well-defined on ()_;c; ®Vi) . such that:

Allgll: < ITAgI? < Bllg'llfz, ¥ 9" € (kerry)™.
Proof. This follows immediately from [5, Lemma 5.5.5]. O

The next result shows a basic connection between a sequence of operators and its g-R-dual sequence
which will be used frequently in what follows.

Theorem 3.2. Let A = {Ai}ic1 be a g-Bessel sequence for H with respect to {Vi}ic1. Then for every {g;}je1 €
(Zjel EBW)')(,;, {9itier € (Zier @Vi)zz satisfying f =3 ;e Z5gj and h = 2 ic1 ¥igi, we have

2 2
| Xy = YAz and || X Avet]| = Y ImwR
jel iel iel jel
Proof. 1t is easy to check that
A * 2 - * * 2 *
| gl = || X (X marw) g = || X i
jel jel iel iel
=3 > (A, YYIA)

2
- <Z\y1‘/\if,Zw;</\jf>
icl jel

i€l jel
=) D) (A BA) =D ||
i€l jel iel
Similarly, the second claim follows from Theorem 2.3. O

Corollary 3.3. Let A = {Ai}ie1 be a g-Bessel sequence for JH with respect to {Vi}ie1. Then
ITEA(f2) 1 = ITAflle2,  ITA(Fw) [l = [Traflle2,
for every f € .
Proof. This follows immediately from Theorem 3.2. O

There exists an interesting relation between the synthesis operator of A = {Ai}ic1 and the span of
{(F]/\)* (Wj)}je1, which will turn out to be very useful in the sequel.

Theorem 3.4. Let A = {Ai}ic1 be a g-Bessel sequence for H with respect to {V;}ic1 with g-R-dual sequence {F]/\}jel
with respect to (Z,¥). Then the following statements hold.

(i) f e (span{(T{)*(W;)her) " if and only if [fly € ker T
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(i) fe (span{Af(V; Ve1) " if and only if [f]= € ker Tin
Proof. Let f € H. First for each j € ] and g; € Wj we observe that
(£, (M) g5) = Y (EYIAZg5) = () ATWif,Z5g;) = (TA(lflw),Zfg;)-
ig] i€]

Since = = {Zj}jey is a g-orthonormal basis for 3 with respect to {Wj}jcr, (Tx ([flw), =5 gj)=0foralljel

and g; € W;, if and only if T ([fly) = 0. Thus, f € (span{(rj/\)*(Wj)}561)l is equivalent to [fly € ker T.
Similarly, the second claim follows from Theorem 2.3. O

Corollary 3.5. Let A = {Ai}ie1 be a g-Bessel sequence for H with respect to {Vi}ie1 with g-R-dual sequence
{T\Yjex with respect to (Z,¥). Then
. S AN % 1 . * . [ A% 1 . *
dim (span{(rj ) (W )}jel) =dimkerTy and dim (span{/\j (V; )}jel) = dimker T/A.
Proof. This follows immediately from Theorem 3.4. O

The next result shows a kind of equilibrium between a sequence of operators and its R-dual sequence.
It can be viewed as a general version of [4, Proposition 13].

Corollary 3.6. The following conditions are equivalent.
(i) A ={Ailie1 is a g-frame sequence with respect to {Vi}ic1 with g-frame bounds A, B.
(i) {T\}icr is a g-frame sequence with respect to {W;}ic1 with g-frame bounds A, B.
j Ui 8 q p if 8
(iii) {T\}icr is a g-Riesz basic sequence with respect to {W;}; 1 with g-frame bounds A, B.
j Ji€ 8 q P e 8

Proof. (i)« (ii). The Proposition 3.1 and Theorem 3.4 conclude that A = {Ai}ier is a g-frame sequence
with respect to {Vi}ic1 with g-frame bounds A, B if and only if

Alllflw |2 < IITA ()] < BI| (w3,
for all f € span{(rj/\)* (W;)}je1. Now, Corollary 3.3 implies
Af? < I Tpafl[3 < BJIf[1%
(i)<(iii). This equivalence follows immediately from Theorem 3.2. O

The dimension condition in Corollary 3.5 will play a crucial role for the g-R-dual sequence. Using
Corollary 3.5 we can derive a simple characterization of a g-Riesz basic sequence being a g-R-dual se-
quence of a g-frame in the tight case.

Theorem 3.7. Let A = {Ai}ic1 be a A-tight g-frame for H with respect to {Vi}ier and let {T}je1 be an A-tight
§-Riesz basic sequence in I with respect to {W;}je1. Then {T}je1 is a g-R-dual sequence of {A\i}ie1 with respect to
=, VYY), if and only if

dim (span{T} (W;)}jer) + — dimker Th. (3.1)

Proof. The necessity of the condition in (3.1) follows from Corollary 3.5. Now, assume that (3.1) holds.
Then, according to Lemma 1.6 the sequence {ﬁrj }jer1 is a g-orthonormal system for J with respect
to {Wj}je1. Suppose that = = {Tj}jec1 and ¥ = {¥i}ic1 are g-orthonormal bases for H with respect to
{Wjljer and {Vi}ie1, respectively. Consider the g-R-dual {O;}je1 of A = {A;}ic1 with respect to (Z,¥), i.e.,
05 = ) ic1ZA{Y;, j € L. By Corollary 3.6 {O;}jc1 is an A-tight g-Riesz basic sequence with respect to
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{Wj}je1 and hence { @ j}je1 is also a g-orthonormal system for H with respect to {Wj}jc1. By Corollary
3.5 and (3.1),

dim (span{@; (W; )}jel)L = dimker T} = dim (span{I}"(W; )}jel)L. (3.2)

In case (span{@%k (W; )}jel)L = (span{Fj* (W; )}jel) L ={0}, the g-orthonormality of the sequences {ﬁ@i}iel

and {ﬁ li}ie1 implies that there exists unitary operator
U:H—-H, by @=06;U", Vjel
In case (span{@]f‘ (W; )}jGI)J' # {0}, letting {®;};¢1 and {Q;}jc1 be g-orthonormal bases for

(span{®; (Wj)lier)™  and  (span{ly (W;)lier) ™,
with respect to {Wj};je1, respectively, (3.2) implies that there exists unitary operator
U:H -3, by @=06;U", Q;=0;Uu" vjel
In both cases, we have
N=6;u*=() SA[Y)U" =) AW UY, Vel
i€l iel
which shows that {Tj}je1 is a g-R-dual sequence of {Ai}ic1 with respect to {Zj}je1 and {W;U" }ier1. O

The following result is about different types of equivalence of g-frames, which is taken from [12]. This
result will moreover be employed in several proofs in the sequel.

Proposition 3.8. Let A = {Ai}icr and A" = {A{}ic1 be Parseval g-frames for 3y and H, with respect to {Vil}ict,
respectively. Then A is unitarily equivalent to A’ if and only if the analysis operators Ta and Tp: have the same
range. Likewise, two g-frames with respect to {Vi}ie1 are equivalent if and only if their analysis operators have the
same range.

In the following we characterize those pairs of g-frames and their g-R-dual sequences, which are
equivalent (unitarily equivalent).
Theorem 3.9. Let {Ai}icr and {A}ic1 be g-frames for H with respect to {Vi}ic1. Then
(1) {Aitier is equivalent to {A\{}ic1 in H with respect to {Vi}ie1 if and only if

span{(1YY)*(Wj)}jer = spant(T{™)*(Wj)}jer;
(i) {Ailier is unitarily equivalent to {A\{}ic1 in H with respect to {Vilier if and only if Spa = Spas;
(iii) {F)/\}jel is unitarily equivalent to {F)/\/}jel in I with respect to {Wj}je1 if and only if SA = Sa.
Proof.

(i) By Proposition 3.8, {Ai}ic1 and {A{}ic1 are equivalent in H with respect to {Vi}ic, if and only if Rt, =
Rt,, and hence ker T} = ker T},. Now the claim follows from Theorem 3.4.

(ii) Using Propositions 3.1 and 3.8, {Ai}ic1 is unitarily equivalent to {A{}ic1 if and only if

1> AP =112 Afalll’ Vigiher € (ker TR)™.
iel i€l

2

By Theorem 3.2, this in turn is equivalent to
(Spat, f) = 3 ITMIZ = 3KV = (Spart, 6),
jel jel

for all f € H and g{ = W¥if (i € I). It follows that Spa = Sp-a/, as required.
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(iif) The proof follows immediately from (ii) and Theorem 2.3. O

Corollary 3.10. Let {Ai}ic1 be a g-frame for I with respect to {Vi}ie1. Then
span{(I'7")*(W))}je1 = span{(I7")*(W))}jer,
where {/A\i}iel is the canonical dual g-frame of {Ai}ic1.

Proof. Since {/A\i}iel is equivalent to {Ai}ic1, this claim follows from Theorem 3.9. O

4. Duality properties of the g-R-dual sequence

In this section we characterize all properties of a g-Bessel sequence in terms of properties of their g-R-
dual sequence. We will study properties of dual g-frames and canonical dual g-frames. This is a general
version of duality principle for g-frames which follows from the Casazza duality relations [4].

The next result gives an explicit form for g-R-dual sequence of the canonical dual g-frame.

Theorem 4.1. Let {Ai}ic1 and {Qi}ic1 be g-frames for F with respect to {Vi}ic1. Then {Q;}icr is a dual g-frame
of {Ailier if and only if g-R-dual sequences {rjA}jeI and {er}jeI are g-biorthogonal, i.e.,

M) gy =T (MY g5 = 84595, VijeL gj e W,

Proof. Let {Qi}ic1 be a dual g-frame of {A}ic1. By definition of {er}jeI and {F)/\}jel for every i,j € I and
g; € Wj we have

Mg =Y ZAL( Y 5505Ym) g,

kel mel
=Y ) SIAWVYLQRElg
kel mel
=D SIAE g =S ) AE]g5) = EiE5 g5 = 84595
kel kel
The converse implication similarly follows from Theorem 2.3. O

Corollary 4.2. Let A ={Ai}ic1 be a g-frame for I with respect to {Vi}ic1 with canonical dual g-frame denoted by
{/A\i}iel. Then the g-R-dual sequences {F)/\}jel and {F)/\}jel are g-biorthogonal, i.e.,

MY g = TN g5 = by

1

foralli,j € land g; € W;. Thus {F)/A\}jel is the dual g-Riesz basic sequence of {F]/\}je I
The next result is a characterization of tight g-frames in terms of their g-R-dual sequence.

Corollary 4.3. {Ai}ie1 is an A-tight g-frame for H with respect to {Vilier if and only if g-R-dual sequence
{ﬁl‘)f\}jel is a g-orthonormal system for H with respect to {W;}jc1. Thus the sequence {Ai}ic1 is a Parseval
g-frame if and only if, its g-R-dual sequence is an orthonormal system.

Proof. This follows immediately from Lemma 1.6, Corollary 3.6, and Theorem 4.2. O

Theorem 4.4. Let {A\i}ic1 and {Qi}ie1 be g-frames for H with respect to {Vi}ie1. Then {Qi}ie1 is a dual g-frame of
{Ailier if and only if, there exists a g-Bessel sequence {Oj}je1 for (span{(FjA)* (W; )}jel) + with respect to {W;}je1,
such that T[> =T 4-@j for all j € L
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Proof. Suppose that {Q;}ic1 is a dual g-frame of {A;}ic1. By Theorem 4.1 we have
(M =TY*gu, (7Y g5) = (i, (T2 =TT g5) = (9, T2 () g5) — (9o, TV (TN g5)
= (91,81j95) — (91, 83595) =0,
for alli,j € T'and g; € Wj, g; € Wj. Thus, Definition 2.1 implies that ©; = F]-Q — F]/A\ is a g-Bessel sequence
for (span{(FjA)*(Wj )}]—el)J' with respect to {Wj}jer and F)-Q = F)/\ +0j. Now for the opposite implication,

suppose that there exists a g-Bessel sequence {®;};c1 for (span{(FjA)*(Wj )}561)L with respect to {Wj}jer,
such that er = Fj/\ +©j for all j € I. By Theorem 2.3, we have

Qi=Ai+ ) Wi(6)'E foralliel
jel

So, for each f € H

S AQif =) AH(A+ ) WiOIE) =) ATAF+Y Y ATWOISf=f+) Y AIW0[I;f,

iel iel jel iel iel jel jel iel
since O] Z;f € (W{(F{\)*(Wj )}jel)L for all j € I. Theorem 3.4 implies that
D ATWOrEf =0.
i€l
This proves that {Q;}ic1 is a dual g-frame of {Aj}ic1. a
Among the dual g-frames the canonical dual g-frame is distinguished by the following properties.

Theorem 4.5. Let A = {Ai}ie1 be a g-frame for H with respect to {Vi}ie1 with canonical dual g-frame denoted by
{Ailier and let {Qi}icr be a dual g-frame of {Ai}ic1. Then

T <GP forallj €1,

with equality if and only if {Q;}je1 = {Kj er-

Proof. By Theorem 4.4, {Q;}ic1 is a dual g-frame of {Ai}ic1 if and only if F)-Q = F]?\ + 05, where (F]-A)*g €
span{(FjA)*(Wj)}jel and ©} g € (spalrl{(l“)/\)*(W]-)}jel)L for all j € I, g € Wj. Hence

5212 = 115 (1* = sup [I(F) gl = sup [[(ITY)*g]*+ sup €59l
loli=1 lgli=1 lgli=1

= [P+ 185112 = M1+ N8 1% = ITM1%,
with equality if and only if {Q;}je1 = {Kj Her. O
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