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Abstract 

It is quite known that there are various methods for treatment of cancer. Although virus therapy 

has been proved to effective in the improvement of cancer, this method is still at its primary 

stage. Therefore, treatment methods such as chemotherapy and radiotherapy are still versatile. 

In these methods, drugs are prescribed. The most important question in the treatment of brain 

tumors is the rate of drug prescription for the patient so that it can help the patient recover and 

minimize damages to the healthy cells. A.El-Ghohary demonstrated that a mathematical model 

of brain tumor system can be seen in an optimal nonlinear control problem. In this paper, 

attempt is made to transform the nonlinear optimal control problem into an optimal control 

problem in the measure theory and to approximate a new problem with a linear programming 

problem and subsequently, to specify the drug dose for the patients with cancer. In addition, we 

deal with the examination of stability of system balance points. Using drug dose control 

stabilizes the unstable balance points of the tumor system. In the end, a comparison is made 

between the results obtained from the above mentioned method and the approximate solution 

proposed by Al-Gohary.  

Keywords:  Nonlinear optimal control, Measure theory, Tumor, linear programming. 
 
1. Introduction  
Cancer means growth, multiplication and sometimes abnormal proliferation of cells in the 

human body which is the second major cause of death around the world and an estimated 

number of 8,500,000 people die every year. Surgical operation, chemotherapy, hormone 

therapy and radiotherapy are considered the effective ways of cancer treatment. Any of the 

specific methods mentioned above are used based on the kind, stage and location of cancer. 

Human body is formed by millions of cells which, altogether, build tissues such as muscles, 

bones and skin. In response to the stimuli, most natural human cells penetrate from the 
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inside and outside of the body and grow and duplicate and finally die. If this process 

happens in balance and under its proper condition, body remains healthy and keeps on 

performing in a natural order. But problems occur when some genes of a natural cell suffer 

mutation and the cell transforms into a cancer cell. In cancer, the cells lose their ability to 

divide and grow normally and this issue results in the capture, destruction and decay of the 

healthy tissues. These cancer cells are accumulated and then destroy the healthy cells of the 

tissues and create a mass called tumor.  

 

If the tumor is restricted by a limited layer and doesn’t permeate the other tissues and 

organs the tumor is called "benign" (non-cancerous) and if the tumor is extended or 

potentially spreads and encompasses other tissues and organs is called "malignant" or 

cancerous. 

 

 Different mathematical models have been presented for tumor, the model proposed in this 

paper have been proposed in 2006 by Rassel and Dinjelli[3], then it has been revised and 

modified by Al-Gohary [1].it will be demonstrated that a mathematical model for the 

treatment of cancer through drug prescription is an optimal control problem with nonlinear 

systems which using measure theory it has been transformed into a linear optimization 

problem and solved. 

 
 

2. Tumor model 
 
This section concerns with the construction of the mathematical model of tumor system with 
drug. Also the linear stability analysis of this model is introduced. The tumor system with drug 
will be constructed based on the following processes. The growth of immune cells can be 
stimulated by the presence of tumor cells, and these immune cells destroy the tumor cells 
through a kinetic process. It should be noted that the presence of a detectable tumor does not 
necessarily imply that the tumor has completely escaped from active immunosurveillance. It is 
completely possible that although a tumor is immunogenetic, the immune response is not 
sufficient on its own to entirely combat the rapid growth of the tumor population and the final 
development into a tumor. Actually, there is even some speculation that all tumors are 
immunogenetic[7]. The normal cells and tumor cells compete for available resources, while 
immune cells and tumors cells compete in a prey–predator behavior. Finally, the optimal drug 
therapies are calculated from the conditions that minimize both the final tumor population cells, 
the average tumor over time, while keeping the normal cells above a requested level. For more 
details about the kinetics processes of this model can be found in Refs. [8–10]. we start with the 
building of the tumor with drug mathematical model. 
Assume that𝐼(𝑡) denote the number of immune cells at time t, while 𝑇(𝑡) is the number of tumor 
cells at same time 𝑡 and 𝐻(𝑡) is the number of the host cells or normal cells at the same time 𝑡. 
We consider that the resource of the immune cells is to be outside the system so it is reasonable 
to assume that theimmune cells have a constant influx rate 𝑠. In the absence of any tumor, the 
cells will die off at a per capita rate 𝑑1,resulting in long-term population size of 𝑠/𝑑1 cells. 
Therefore, immune cell proliferation will suffer from immunity uponimmune crowding. The 
immune response stimulates by positive nonlinear growth in the presence of tumor cells That is 
 

𝑟3𝐼 𝑡 𝑇(𝑡)

𝛼 + 𝑇(𝑡)
                                                                              (1) 
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Where𝑟3 and a are positive real constants. Moreover, the reaction of immune cells and tumor 
cells represents in either death of tumor cells or the inactivation of the immune cells which can 
be represented by the following two competition terms: 

 
𝑑𝐼

dt
= −c1T t I(t)   ,       

𝑑𝑇

𝑑𝑡
= −𝑐2𝑇 𝑡 𝐼 𝑡                                                                   (2) 

 
where𝑐1 and 𝑐2 are also positive real constants. 

Now, the tumor cells as well as hosting cells can be modelled by a logistic growth law with 
parameters 𝑟1and 𝑏1, representing the per capita growth rate and reciprocal carrying capacity of 
the tumor cells, 𝑟2 and 𝑏2 represent the same rates for the host cells. In addition, there are two 
terms which represent the competition between tumor and host cells. Based on the above 
description of the model, all the terms together give the following system of nonlinear ordinary 
differential equations: 
 

dT

𝑑𝑡
= T t [r1 1 − b1T t  − c2I t − c3H(t)] 

𝑑𝐻

𝑑𝑡
= 𝐻 𝑡  𝑟2 1 − 𝑏2𝐻 𝑡  − 𝑐4𝑇 𝑡                                                                  (3) 

𝑑𝐼

𝑑𝑡
= 𝑠 + 𝐼 𝑡 [

𝑟3𝑇 𝑡 

𝛼 + 𝑇 𝑡 
− 𝑐1𝑇 𝑡 − 𝑑1  

This model describes the tumor model without drug interaction [11]. Next, we will extend the 

mathematical model (3) to describe the dynamical behavior of the tumor system with drug 

interaction.Now we add the effect of the drug on the tumor system. We denote he amount of 

drug at the tumor site at time 𝑡by 𝐷(𝑡). Also we assume that the drug kills all types of cells, but 

that the kill rate differs for every type of cell, with theresponse curve in all the cases given by an 

exponential 

𝜑(𝐷) = (1 − e−kD )                                                                        (4) 

where𝜑(𝐷) is the fractional cell kill for a given amount of drug 𝐷, at the tumor site and 𝑘 is 
positive real constant.  
We denote the response system coefficients by 𝑎1; 𝑎2 and 𝑎3. Now let us add these terms to the 
system (3) as well as anequation for 𝐷(𝑡), the amount of drug at the tumor site. This can be 
determined by the dose given 𝑣(𝑡), and a per capitadecay rate of the drug once it is injected. 
This decay rate incorporates all the pathways of elimination of the drug.Therefore, tumor 
system with drug interaction can describe the following system of nonlinear differential 
equations 

𝑇 (t) = T t [r1 1 − b1T t  − c2I t − c3H t − α1(1 − 𝑒−𝐷(𝑡))] 

𝐻  𝑡 = 𝐻 𝑡  𝑟2 1 − 𝑏2𝐻 𝑡  − 𝑐4𝑇 𝑡 − 𝛼2 1 − 𝑒−𝐷 𝑡   (5) 

𝐼 (𝑡) = 𝑠 + 𝐼 𝑡 [
𝑟3𝑇 𝑡 

𝛼 + 𝑇 𝑡 
− 𝑐1𝑇 𝑡 − 𝑑1 − 𝛼3(1 − 𝑒−𝐷(𝑡))] 

D (t) = 𝑣 t − d2D t . 

Where 𝑑2 is per capita death rate of the drug amount. Next we look at the linear stability 
analysis of both tumor and tumor with drug systems. Also, we study the optimal control of the 
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tumor system with drug using the dose 𝑣(𝑡) as control variable and tumor, host, immune cells 
and drug as state variables. 
 
3. Reduction of the system parameters 

In this subsection, we will reduce the system parameters by defining new variables and new 

system parameters. Now, the following new variables are used to reduce the number of the 

system parameters from 16 to 12 only: 

𝑥1 = 𝑏1𝑇 𝑡 ,     𝑥2 = 𝑏2𝐻 𝑡 ,        𝑥3 =
𝑑2

𝑠
𝐼 𝑡 ,          𝑣 𝑡 = 𝑑2𝑢 𝑡 ,    𝑥4 = 𝐷 𝑡 ,        𝜏 = 𝑑2𝑡        (6) 

where the new system parameters are related to old system parameters by the following 
relations: 

𝑥1 = 𝑥1 𝑘1 1 − 𝑥1 − 𝑛2𝑥3 − 𝑛3𝑥2 −𝑚1 1 − 𝑒−𝑥4   

𝑥2 = 𝑥2 𝑘2 1 − 𝑥2 − 𝑛4𝑥1 −𝑚2 1 − 𝑒−𝑥4  (7)                                                                                        

𝑥3 = 1 + 𝑥3  
𝑘3𝑥1

𝑣1+𝑥1
− 𝑛1𝑥1 − 𝑣2 −𝑚3 1 − 𝑒−𝑥4   

𝑥4 = 𝑢 − 𝑥4. 

where the new system parameters are related to old system parameters by the following 

relations: 

 
𝑘𝑖 =

𝑟𝑖

𝑑2
,        𝑚𝑖 =

𝛼𝑖

𝑑2
,           𝑖 = 1,2,3               𝑛1 =

𝑐1

𝑑2𝑏1
           𝑣2 =

𝑑1

𝑑2

𝑛2 =
𝑐2𝑠

𝑑2
2 ,               𝑛3 =

𝑐3

𝑏2𝑑2
,            𝑛4 =

𝑐4

𝑏1𝑑2
,                     𝑣1 = 𝛼𝑏1

                                   (8) 

The system (7) is more simple than (5) for the mathematical study since the number of system 
parameters has been reduced from 16 to 12 only. 
  

4. Stability of the equilibrium states  
 
The present section is devoted to study the linear stability of the tumor system whit drog. 

(1) The first equilibrium state is given by𝐸1 =  0,0,
1

𝑣2
, 0 . The eigenvalues of the Jacobian 

matrix about this position are 

𝛾1 = 𝑘1 −
𝑛2

𝑣2
 

𝛾2 = 𝑘2  

  𝛾3 = −𝑣2 

 𝛾4 = −1              

 

 It is to verify whether two of these eigenvalues are positive if 𝑘1 >
𝑛2

𝑣2
so this equilibriumpoint is 

absolutely unstable. 
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(2)The second equilibrium state is given by 𝐸2 = (0,1,
1

𝑣2
, 0). The eigenvalues of the Jacobian 

about this position are  

𝛾1 = 𝑘1 −
𝑛2

𝑣2
 

𝛾2 = −𝑘2 

𝛾3 = −𝑣2 

𝛾4 = −1 

 

It is easy to verify that the system is absolutely unstable if 𝑘1 >
𝑛2

𝑣2
.  

(3) The third equilibrium state is given by 𝐸3 = (𝑎, 1,
𝑘1(1−𝑎)

𝑛2
, 0), where the values of a are the 

real roots of the cubic equation: 
𝑛1𝑛2

2𝑥1
3 +  𝑣2 + 2𝑛1 + 𝑛1𝑣1 − 𝑘3 𝑛2𝑘1𝑥1

2 +  𝑛1𝑘1 − 𝑛2 − 𝑘1𝑘3 + 𝑣1𝑣2𝑘1 + 𝑛1𝑣1𝑘1 + 𝑣2𝑘1 𝑘1𝑥1

− 𝑘1
2 1 + 𝑣1 = 0 

which has exact three roots giving three equilibrium states; among them at least one real root 

yields at a real equilibrium state and the eigenvalues of the Jacobian about this state are 

𝛾1 = 𝑘2 − 𝑛4𝑎 

𝛾2 =
𝑛2 𝛿 − 1 − 𝑘1

2𝑎(1 − 𝑎)

2𝑘1(1 − 𝑎)
 

𝛾3 =
𝑛2 −𝛿 − 1 − 𝑘1

2𝑎(1 − 𝑎)

2𝑘1(1 − 𝑎)
 

𝛾4 = −1 

Where 

δ={(n2
2 + k1

4a2 1 − a 2 + 2k1
2n2a 1 − a + 4𝑘1

3𝑎(1 − 𝑎)3 𝑛1 𝑣1 + 𝑎 2 − 𝑘3𝑣1 )/𝑛2
2(𝑣1 + 𝑎)}

1
2  

Since, the first eigenvalue of the Jacobian can be positive or negative depending upon the value 

of the parameters k2,𝑛4, so this equilibrium state is absolutely unstable if k2 > n4aand further 

the stability analysis of this equilibrium state depends on the two other eigenvalues. 

(4) The fourth equilibrium state of the tumor system with drug is given by 

     𝐸4 = (0,0,
1

𝑣2+𝑚3(1−𝑒−𝑑 )
, 𝑑)where 𝑥4 = 𝑑 = 𝑢 ≠ 0 which is absolutely unstable if 

𝑘1 + 𝑘2 >  𝑚1 + 𝑚2  1 − 𝑒−𝑑 − 𝑛2 𝑣2 + 𝑚3 1 − 𝑒−𝑑  
−1

 

(5)The fifth equilibrium state of the tumor system with drug is given by 

𝐸5 = (0,
𝑘2−𝑚2(1−𝑒−𝑑 )

𝑘2
,

1

𝑣2+𝑚3(1−𝑒−𝑑 )
, 𝑑)where 𝑥4 = 𝑑 = 𝑢 ≠ 0, which is absolutely unstable if 

𝑘1 + 𝑘2 >  𝑚1 + 𝑚2  1 − 𝑒−𝑑 − 𝑛2[𝑣2 + 𝑚3 1 − 𝑒−𝑑 ]−1 + 𝑛3𝑚2 1 − 𝑒−𝑑 /𝑘2 

4. Optimal drug for the tumor 
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In this section, we will study the problem of optimal control of the tumor system with drug. 
We consider the effect of chemotherapy to our tumor system. For the purpose of optimal 
control, we will use Pontryagin minimum principle and measure theory. Since the state of 
the tumor system with drug is given by 𝑥𝑖  with equilibrium states 𝑥𝑖 = 𝑥 𝑖 ; (i=1,2,3,4). If 
𝑢 = 𝑢(𝑡) is 
the control variable, state equations that typifies potentially unstable behavior are 

𝑥1 = 𝑥1  𝑘1 1 − 𝑥1 − 𝑛2𝑥3 − 𝑛3𝑥2 −𝑚1 1 − 𝑒−𝑥4   

𝑥2 = 𝑥2  𝑘2 1 − 𝑥2 − 𝑛4𝑥1 −𝑚2 1 − 𝑒−𝑥4         (9) 

𝑥3 = 1 + 𝑥3  
 𝑘3𝑥1

𝑣1 + 𝑥1

− 𝑛1𝑥1 − 𝑣2 −𝑚3 1 − 𝑒−𝑥4   

𝑥4 = 𝑢 − 𝑥4 

without any amount of drug, the tumor system with drug is absolutely unstable. The target 
of this section to be reached in a given time 𝑇 is the equilibrium state with an optimal drug. 
Hence, the initial and final conditions are 
𝑥𝑖(0) = 𝑥𝑖0  , 𝑥𝑖(𝑇) = 𝑥 𝑖 i=1,2,3,4 

Next, we select the cost function as the one that penalizes the usage with large magnitude 

and define the cost by 

𝐽 = 1

2
  𝛽 𝑢 − 𝑢  2 +  𝛽𝑖(𝑥𝑖 − 𝑥 𝑖)

24
𝑖=1  𝑑𝑡

𝑇

0
,                    (10) 

Where   β,𝛽𝑖 ,  𝑖 = 1,2,3,4 ,are positive constants. 

In thenext sectiontheanalytical solution, using the Pontryagin minimum principle andinthe 

end, weusemeasure theoryto solve it. 

4.1. Solution of the problem using Pontryagin minimum principle 

We now go through the procedure of applying Pontryagin minimum principle. First, we 
replace the cost integral (10) by an additional state variable 𝑥(𝑡), which satisfies the state 
equation 
 
𝑥 = 1

2
 𝛽 𝑢 − 𝑢  2 +  𝛽𝑖(𝑥𝑖 − 𝑥 𝑖)

24
𝑖=1                              (11) 

 
Next, we introduce the five co-state variable 𝜌𝑖  ,  𝑖 = 0,1,2,3,4 and so the Hamiltonian 
function is given by 
 
𝐻 = 𝜌0𝑥 +  𝜌𝑖𝑥 𝑖

4
𝑖=1 ,                                                          (12) 

 
Substituting (9) and (11) in (12) we get 
 

𝐻 = 𝜌0[𝛽 𝑢 − 𝑢  2 +  𝛽𝑖 𝑥𝑖 − 𝑥 𝑖 
2]4

𝑖=1 /2 + 𝜌1𝑥1  𝑘1 1 − 𝑥1 − 𝑛2𝑥3 − 𝑛3𝑥2 + 𝜌2𝑥2  𝑘2 1 −

𝑥2 − 𝑛4𝑥1 + 𝜌3𝑥3  
 𝑘3𝑥1

𝑣1+𝑥1
− 𝑛1𝑥1 − 𝑣2 + 𝜌4 𝑢 − 𝑥4 −  1 − 𝑒−𝑥4  𝜌𝑖𝑚𝑖𝑥𝑖

3
𝑖=1 + 𝜌3 ,                (13) 

 
The Hamilton equations are 
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𝜌 0 = −
𝜕𝐻

𝜕𝑥
= 0,        𝜌 𝑖 =

𝜕𝐻

𝜕𝑥𝑖
,        

𝜕𝐻

𝜕𝑢
= 0            𝑖 = 1,2,3,4                                   (14) 

 
The other pair of Hamilton equations are just the state Esq. (9) and (11). Without the loss of 
generality, we can choose𝜌0 = −1. Substituting (13) in (14), the co-state equations can be 
derived in the following form: 
 

𝜌 1 = 𝛾1 𝑥1 − 𝑥 1 + 𝑛4𝑥2𝜌2 − 𝜌1 𝑘1 1 − 2𝑥1 − 𝑛2𝑥3 − 𝑛3𝑥2 − 𝑥3𝜌3 𝑘3𝑣1  𝑣1 + 𝑥1 
2 − 𝑛1  

+𝑚1𝜌1(1 − 𝑒−𝑥4 )  , 

𝜌 2 = 𝛾2 𝑥2 − 𝑥 2 + 𝑛3𝑥1𝜌1 − 𝜌2 𝑘2 1 − 2𝑥2 − 𝑛4𝑥1 + 𝑚2𝜌2 1 − 𝑒−𝑥4 ,(15) 

𝜌 3 = 𝛾3 𝑥3 − 𝑥 3 + 𝑛2𝑥1𝜌1 − 𝜌3 𝑘3𝑥1 (𝑣1 + 𝑥1) − 𝑛1𝑥1 − 𝑣2 + 𝑚3𝜌3 1 − 𝑒−𝑥4 , 

𝜌 4 = 𝛾4 𝑥4 − 𝑥 4 + 𝜌4 + (𝑚2𝑥2𝜌2 + 𝑚1𝑥1𝜌1 + 𝑚3𝑥3𝜌3)𝑒−𝑥4 , 

The control function that has to be used is determined from the condition 
𝜕𝐻

𝜕𝑢
= 0. Hence, we 

get 

𝑢 = 𝑢 +
𝜌4

𝛾
                                               (16) 

Substituting (16) in (9), we get the nonlinear controlled state system 

𝑥1 = 𝑥1 𝑘1 1 − 𝑥1 − 𝑛2𝑥3 − 𝑛3𝑥2 −𝑚1 1 − 𝑒−𝑥4   

𝑥2 = 𝑥2 𝑘2 1 − 𝑥2 − 𝑛4𝑥1 −𝑚2 1 − 𝑒−𝑥4                                             (17) 

𝑥3 = 1 + 𝑥3  
𝑘3𝑥1

𝑣1 + 𝑥1

− 𝑛1𝑥1 − 𝑣2 −𝑚3 1 − 𝑒−𝑥4   

𝑥4 = −𝑥4 + 𝑢 + 𝜌4 𝛾 , 

This system of nonlinear differential equations form a complete system to solve the optimal 
control of the tumor system with drug. This system has the following boundary conditions: 

𝑥𝑖 0 = 𝑥𝑖0  , 𝑥𝑖 𝑇 = 𝑥 𝑖  , 𝜌𝑖 𝑇 = 0        𝑖 = 1,2,3,4.                              (18) 

Next, we look at the numerical integration of the nonlinear systems (17) with the boundary 
conditions (18) using Runge–Kutta numerical method with step size 0.01. 
 
4.2. approximate solution of the problem using Measure Theory 

Assume:  

x(t)=(𝑥1 𝑡 , 𝑥2 𝑡 , 𝑥3 𝑡 , 𝑥4(𝑡)), 

𝑓 𝑡, 𝑥, 𝑢 =  𝛽 𝑢 − 𝑢  2 +  𝛽𝑖(𝑥𝑖 − 𝑥 𝑖)
2

4

𝑖=1

 /2 

𝑔1 𝑡, 𝑥, 𝑢 = 𝑥1  𝑘1 1 − 𝑥1 − 𝑛2𝑥3 − 𝑛3𝑥2 −𝑚1 1 − 𝑒−𝑥4  (19) 

𝑔2 𝑡, 𝑥, 𝑢 = 𝑥2  𝑘2 1 − 𝑥2 − 𝑛4𝑥1 −𝑚2 1 − 𝑒−𝑥4   
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𝑔3 𝑡, 𝑥, 𝑢 = 1 + 𝑥3  
 𝑘3𝑥1

𝑣1 + 𝑥1
− 𝑛1𝑥1 − 𝑣2 −𝑚3 1 − 𝑒−𝑥4   

𝑔4 𝑡, 𝑥, 𝑢 = 𝑢 − 𝑥4 

𝑔(𝑡, 𝑥, 𝑢) = ( 𝑔1 𝑡, 𝑥, 𝑢 , 𝑔2 𝑡, 𝑥, 𝑢 , 𝑔3 𝑡, 𝑥, 𝑢 , 𝑔4 𝑡, 𝑥, 𝑢 ), 

𝑥 0 = 𝑥0 =  𝑥10 , 𝑥20 , 𝑥30 , 𝑥40 ,          U =  𝑎, b ,           𝑥 𝑇 = 𝑥 =  𝑥 1 , 𝑥 2 , 𝑥 3 , 𝑥 4 ,    𝐽 =  0, 𝑇 , 

Also A as a cell in 𝑅4 , take: 

∀𝑡 ∈ 𝐽              𝑥(𝑡) ∈ 𝐴. 

In this optimal control problem (19), it can totally be written as:  

Min  𝑓 𝑡, 𝑥, 𝑢 𝑑𝑡
𝑇

0
 

       s.t: 𝑥′ = 𝑔 𝑡, 𝑥, 𝑢                          𝑡 ∈ 𝐽 =  0, 𝑇 (20) 

x(0)= 𝑥0 ,         𝑥 𝑇 = 𝑥 𝑖                𝑢 ∈ 𝑈, 

Where 𝑓 and 𝑔 are continuous functions over 𝑄 = 𝐽 × 𝐴 × 𝑈.  

Assume that the control function 𝑢(𝑡): 𝐽 → 𝑈is measureable, 𝑥(. ) is called a 𝑢(. ) circuit 

Whereas it is absolutely continuous and is applicable to the control system (20). Hence, 

control-circuit couples 𝑆(. ) = (𝑥(. ), 𝑢(. )) is called an admissible couple. If the 𝑢 is the control 

function and 𝑥 is a circuit for 𝑢 that 𝑥(0) = 𝑥0and 𝑥(𝑇) = 𝑥 , the total admissible couples are 

demonstrated by 𝑊. function𝐼:𝑊 → 𝑅 is defined as follows:  

𝐼(𝑠)=  𝑓 𝑡, 𝑥, 𝑢 𝑑𝑡
𝐽

 

Therefore, classic optimal control problem (20) is transformed into optimal control 

problem:  

𝑀𝑖𝑛    𝐼(𝑠) 

    𝑠. 𝑡:   𝑠 ∈ 𝑊                                       (21)                                                                         

Now the optimal control problem above is transformed into an optimal control problem in 

the measure theory. Assume 𝐵 is an open set in 𝑅5  including 𝐴 × 𝐽 and 𝐶1 𝐵 are the 

collection of all the continuous function derivatives over 𝐵 which in itself and their partial 

derivatives of the first rank on 𝐵 are bounded, for each 𝜑 ∈ 𝐶1(𝐵) the function of 𝜑𝑔  over the 

𝑄 is defined as follows:  

𝜑𝑔(𝑡, 𝑥, 𝑢) = 𝜑𝑥 𝑡, 𝑥 𝑔 𝑡, 𝑥, 𝑢 + 𝜑𝑡(𝑡, 𝑥)(22) 

Therefore, we have:  

 φg t, x, u dt = φ tb , xb − φ ta , xa = ∆φ
𝐽

 ,                                       (23) 

In this particular state if 𝑕 (𝑡, 𝑥, 𝑢) is a real continuous function over the 𝑄 so that it is just 

time-dependent:  
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 𝑕 𝑡, 𝑥, 𝑢 𝑑𝑡 = 𝑎𝑕𝐽
,                                                                                   (24) 

The constant number 𝑎𝑕  is theLebesgue integral value of the function 𝑕over 𝐽. 

 Now, we assume that 𝐽0 is the internal points of 𝐽 and 𝐷(𝐽0) is the space of all the real 

functions of infinite derivative compact base in 𝐽 the functions 𝜓𝑗   j=1, 2, 3, and 4, 𝜓𝑗  over 𝑄 

is defined as follows: 

𝜓𝑗  𝑡, 𝑥, 𝑢 = 𝑥𝑗𝛷
′ 𝑡 + 𝑔𝑗  𝑡, 𝑥, 𝑢 𝛷 𝑡            ∀𝛷 ∈ 𝐷(𝐽0) 

Where 𝑔𝑗and 𝑥𝑗 for j=1,2,3,4 are the components of the function 𝑔 and 𝑥 in the equation (19). 

In this case using integration by parts we have:  

 𝜓𝑗 (𝑡, 𝑥, 𝑢)
J

𝑑𝑡 = 0,                     j=1,2,3,4(25) 

Equations 23-25 show the properties of the admissible couples. Such as the admissible 

couple 𝑠, we have:  

𝛬𝑠   ∶ 𝐹 →  𝐹(𝑡, 𝑥, 𝑢)
𝐽

𝑑𝑡 

A linear positive functional is over space 𝐶(𝑄), the 𝐶(𝑄) is the space of continuous real 

functions on 𝑄 . hence, for each acceptable couple 𝑠 , there is a positive linear 

functional𝛬𝑠which is applicable to the following properties:  

𝛬𝑠 𝜑
𝑔 = ∆𝜑           𝜑 ∈ 𝐶1 𝐵  

𝛬𝑠 𝑕 = 𝑎𝑕                 𝑕 ∈ 𝐶1(𝑄)                                                    (26) 

𝛬𝑠 𝜓𝑗  = 0               𝜓𝑗 ∈ 𝐷 𝐽0 ,     𝑗 = 1,2,3,4 

Where 𝐶1(𝑄) is a sub space of 𝐶(𝑄) which these sets of functions are time dependent. 

Assume that 𝑊1is the set of all the linear positive functions over 𝐶 (𝑄) which is applicable to 

the properties mentioned above. According to the Reiss theorem, there is corresponding 

positive measure for each function over 𝑄 which is applicable to the following conditions: 

𝜇 𝜑𝑔 = ∆𝜑           𝜑 ∈ 𝐶1 𝐵  

𝜇 𝑕 = 𝑎𝑕                 𝑕 ∈ 𝐶1(𝑄) 

𝜇 𝜓𝑗  = 0               𝜓𝑗 ∈ 𝐷 𝐽0 , 𝑗 = 1,2,3,4 

The total measures which are applicable to the conditions above are shown by W1. 

Thus,choosing the linear function 𝜑:𝑊1 → 𝑅 and inserting in the following relation:  

𝜑 𝜇 =  𝑓
𝑄

𝑑𝜇 = 𝜇(𝑓) 
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Classic optimal control problem is transformed into a new optimization problem in the 

measure theory, i.e. minimum of function 𝜑over W1, so we have:  

Theorem:  

optimal problem in the measure theory, i.e.:  

𝑀𝑖𝑛      𝜑 𝜇  

    𝑠. 𝑡:  𝜇 ∈ 𝑊1 

has an answer such as 𝜇0 ∈ 𝑊1 (proof in [6]). 

Obviously, the solution of the classic optimal problem, i.e. 𝜇0(𝑓), is the same solution as the 

main optimal problem. For the calculation of its approximate value, we do as follows:  

Primarily, we divide the length of each interval related with components t, x1, x2 , x3 , x4 , ,u  

to a number of equal sub intervals, in this case 𝑄 is partitioned to sub cell 𝑄𝑗 , (𝑗 = 1,2, … , 𝑛). 

We choose point 𝑍𝑗 = (𝑡𝑗  , 𝑥1𝑗  , 𝑥2𝑗 , 𝑥3𝑗  , 𝑥4𝑗  , 𝑢𝑗 ) in the region 𝑄𝑗  and assume σ = {𝑍𝑗  ; 𝑗 =

1,2,… , 𝑛}, in this caseσis a density subset in 𝑄. it can be proved that through choosing 

constant natural numbers N, M1, M2, and M3 the approximate value 𝜇0(𝑓) is the solution to 

the linear planning problem with finite dimension [6]: 

Min       𝛼𝑗𝑓 𝑧𝑗  
𝑁
𝑗=1  

       s.t:  𝛼𝑗𝜑𝑖
𝑔
 𝑧𝑗  = ∆𝜑𝑖                                     𝑖 = 1,2, … ,𝑀1  ,𝑁

𝑗=1  

 𝛼𝑗

𝑁

𝑗=1

𝑕𝑖 𝑡𝑗  = 𝑎𝑖                                          𝑖 = 1,2, … ,𝑀2 , 

 𝛼𝑗

𝑁

𝑗=1

𝜓𝑘𝑖 𝑧𝑗  = 0                                       𝑖 = 1,2,… ,𝑀3 ,       𝑘 = 1,2,3,4   

𝛼𝑗  ≥ 0 ,                                                             𝑗 = 1,2, … ,𝑁 

In which 𝑎𝑖 =  𝑕𝑖(𝑡)𝑑𝑡𝐽
,i=1,2,…,M2 . 

 

 For more simplification in the calculations functions φ
𝑖 

 , hi  و 𝜓𝑘𝑖  can be chosen as follows:   

Φ)i )=

 
 
 

 
 𝑥1

𝑘                      𝑖 = 4𝑘 − 3

𝑥2
𝑘                       𝑖 = 4𝑘 − 2 

𝑥3
𝑘                       𝑖 = 4𝑘 − 1

𝑥4
𝑘                       𝑖 = 4𝑘        

                           𝑖 = 1,2,… ,𝑀1 , 
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𝑕𝑖 𝑡 =  
1             𝑡 ∈ (

𝑖 − 1

𝑀2
 ,
𝑖

𝑀2
)

0                              o. w    

                          𝑖 = 1,2,… ,𝑀2 , 

 

Also, functions 𝛷
𝑖
which is used for definition of functions𝜓𝑘𝑖  can be chosen as follows:  

 

𝛷𝑖 =   
𝑠𝑖𝑛 2𝑘𝜋𝑡                                𝑖 = 4𝑘 − 3,4𝑘 − 2
1 − 𝑐𝑜𝑠 2𝑘𝜋𝑡                        𝑖 = 4𝑘 − 1 , 4𝑘     

  

 

Assuming M= M1+M2+2M3, linear planning problem containing N the variable M is unknown 

and solving it and calculating the coefficients α𝑗  the approximate control function can be 

proves using the method proposed by Robio [6].  

 

5. Numerical solution 

In this part nonlinear optimal control problem can be solved using the methods already 

mentioned and the diagrams of optimal values of tumor cells , healthy cells, immune cells, 

optimal dosage of drug in the tumor system with drug, in terms of primary variables and 

the proposed parameters are obtained:   

k1 = 30,  k2 = 48, k3 = 29, n1 = 2,  n2 = 1.3,  n3 = 0.47,  n4 = 8,  m1 = 9, m2 = 15  

m3 = 4 , v1 = 0.25,  v2 = 10,  γ1 = 10,  γ2 = 20,  γ3 = 8,  γ4 = 5, γ = 15, x1 0 = 2.5  

x2 0 = 0.25,  𝑥3 0 = 1.55,  𝑥4 0 = 1.35, 𝑇 = 0.125 

 

1- The optimal diagrams obtained Pontryagin minimum principle: 
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Fig. 1. (a) Optimal density of tumor cells. (b) Optimal density of host cells. (c) Optimal 
density of immune cells. (d) Optimal amount ofdrug. (e) Optimal dose of drug. 
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2- The optimal diagrams obtained Measure Theory: 

 

Fig. 2. (a) Optimal density of tumor cells. (b) Optimal density of host cells. (c) Optimal 
density of immune cells. (d) Optimal amount ofdrug. (e) Optimal dose of drug. 
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