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Abstract 

             The Adomian Decomposition Method is employed in the solution of the unsteady 

convective radiative equation. The Adomian Decomposition Method is provided an analytical 

solution in the form of an infinite power series. The comparison of the results obtained by 

ADM and VIM The effect of Adomian   polynomials terms is considered on accuracy of the 

results. The temperature profiles in fin are obtained. Results show a good accuracy. The 

Adomian decomposition method (ADM) is used in obtaining more meaningful and valid 

solutions.    
 

 

Keywords: Adomian decomposition method, Heat transfer, Radiation equation  
 

1. Introduction 

Most of scientific problems and phenomena especially in mechanical engineering occur 

nonlinearly. Heat transfer equations in straight surfaces, are one most applicable of them. One 

of these surfaces is straight fins that are employed to enhance the heat transfer between the 

primary surface and its convective, radiating or convective-radiating environment. Extended 

surfaces are extensively used in various industrial applications [1]. Aziz and Hug [2] used the 

regular perturbation method to obtain a closed form solution for a straight convecting fin with 

temperature dependent thermal conductivity. A method of temperature correlated profiles is 

used to obtain the solution of optimum convective fin when the thermal conductivity and heat 
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transfer coefficient are functions of temperature [3].Yu and Chen [4] assumed that the linear 

variation of the thermal conductivity and exponential function with the distance of the heat 

transfer coefficient and then, solved the nonlinear conducting-convecting-radiating heat 

transfer equation by the differential transformation method. Bouaziz et al. [5] presented the 

efficiency of longitudinal fins with temperature-dependent thermo-physical properties.  

Many different methods have recently introduced to solve nonlinear problems, such as the  

homotopy analysis method [6], the variational iteration method (VIM) [7–11,12], the 

Adomian’s decomposition method (ADM) [13,14] , homotopy analysis  method [15, 16], and 

homotopy perturbation method [17–19,20-23].Recently, the Adomian Decomposition 

Method (ADM) was used to solve a wide range of physical problems. This method provides a 

direct scheme for solving linear and nonlinear deterministic and stochastic equations without 

the need for linearization and yields convergent series solutions rapidly [24]. 

 An advantage of this method is that, it can provide analytical or an approximated solution to 

a rather wide class of nonlinear (and stochastic) equations without linearization, perturbation, 

closure approximation, or discretization methods. Unlike the common methods which are 

only applicable to systems with weak nonlinearity and small perturbation and may change the 

physics of the problem due to simplification, AD Mgives the approximated solution of the 

problem without any simplification. Thus, its results are more realistic [25]. During recent 

years, several researchers have tried to modify the ADM.  

Wazwaz [26] developed a fast and accurate algorithm for solution of sixth-order boundary 

value problems. Jafari and Daftardar-Gejji [27] modified ADM to solve a system of nonlinear 

equations. They obtained a series solution with faster accelerated convergence than the series 

obtained by the standard ADM. Luo [28] revised ADM for cases involving inhomogeneous 

boundary conditions, using a suitable transformation. Luo [29] proposed an efficient 

modification to ADM, namely two-step Adomian Decomposition Method (TSADM) that 

facilitated the calculations. Zhang [30] presented a modified ADM to solve a class of 

nonlinear singular boundary value problems, which arise as nonlinear normal model 

equations in nonlinear conservative vibratory systems. Zhu et al.[31] presented a new 

algorithm using parameterization for calculating Adomian polynomials for nonlinear 

operators. Abbasbandy [32] presented some efficient numerical algorithms to solve a system 

of two nonlinear equations (with two variables) based on Newton’s method. Biazar et al. [33] 

extended the solution of ordinary differential equations by ADM. Daftardar-Gejji and Jafari 

[34] presented an iterative method for solving nonlinear functional equations. Now, several 

researchers have used the ADM to solve a wide range of physical problems in various 

engineering fields such as vibration and wave equation [35], porous media simulation [36], 

and other nonlinear systems. 

In this Letter, the mathematical model of Adomian decomposition method is introduced and 

then its application in heat transfer equations is studied. 

 

 

2. Formulation of Adomian Decomposition Method 

 Consider equation )()( tgtFu  , where F  represents a general nonlinear ordinary or partial 

differential operator including both linear and nonlinear terms. The linear terms are 

decomposed into R , where L is easily invertible (usually the highest order derivative) and 

R R is the remains of the linear operator. Thus, the equation can be written as [3] 
            

gNuRuLu                                                                                                                              (1) 
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Where, Nu   indicates the nonlinear terms. By solving this equation for Lu , since L is 

invertible, we can write 
 

 NuLRuLgLLuL 1111                                                                                                    (2)   

 

If L  is a second-order operator, 1L  is a two fold indefinite integral, by solving Eq. (2) foru , 

we get                                                                                                             

NuLRuLgLBtAu 111 )(                                                                                                  (3)   

 

 where A and B are constants of integration and can be found from the boundary or initial 

conditions. Adomian method assumes the solution u can be expanded into infinite series as 







0n nuu                                                                                                                                   (4)  

 

 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

also, the nonlinear term Nu  will be written as 
        

 





0n nANu                                                                                                                                     (5) 

           Nomenclature 

A area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m2)          V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m3) 
 

C specific heat . . . . . . . . . . . . . . . . . . . . . . . .  (J/kg K)      Q heat-transfer rate . . . . . . . . . . . . . . . . . . . . . . .  (W) 

 

Ca specific heat at temperature Ta . . . . . . . . . (J/kg K)      α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . .  (m2/s) 

 

Eg surface emissivity . . . . . . . . . . . . . . . . . . . .(W)             β constant, volumetric thermal expansion 

 

h coefficient of natural convection . . . . . .      (W/m2K)     coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1/K) 

 

VIM variational iteration method                                        ε small parameter . . . . . . . . . . . . . . . . . . . . . . . . . .(–) 

 

k thermal conductivity . . . . . . . . . . . . . . . . . . (W/mK)       ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg/m3) 

 

ka thermal conductivity in T = Ta . . . . . . . .   (W/mK)       σ Stefan–Boltzman constant . . . . . . . . . . . . . . . . . (–) 

 

L latent heat length . . . . . . . . . . . . . . . . . . . . . (m)             η fin efficiency 

 

T temperature . . . . . . . . . . . . . . . . . . . . . . . . .  (K)             Subscripts 

 

Ta environment temperature . . . . . . . . . . . . . . (K)             a air 

 

Ts effective sink temperature . . . . . . . . . . . . . .(K)             g surface emissivity 

 

Tb temperature at the base . . . . . . . . . . . . . . . . (K)            S surface 

 

Ti initial temperature . . . . . . . . . . . . . . . . . . . . (K)           b base temperature 
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 where nA are the special Adomian polynomials. By   substituting Eqs. (4)  and (5) in Eq. (3), 

the solution can  be written  as 
        















0

1

0

1

00 n nn nn n ALuRLuu                                                                                      (6) 

 

where 0u  is identified as: )(1 gLBtA   [3]. 

In Eq. (6), the Adomian polynomials can be generated by several means. Here we used the 

following recursive formulation:   
         

    
0

0

1





 







 






in

i

nn uN
d

dn

n
A   , n=0, 1, 2, 3,…                                                                           (7)  

 

 

Since the method does not resort to linearization or assumption of weak nonlinearity, the 

solution is generated in the form of general solution and it is more realistic compared to the 

method of simplifying the physical problems.  
 

 

   3. Problem description 
 

The example to be studied is the one-dimensional heat transfer in a straight fin with the 

length of L and the cross section area of A and the perimeter of P (see Fig. 1). The fin surface 

transfers heat through both convection and radiation. Suppose the temperature of the 

surrounding air is 0T and the effective sink temperature for the radiative heat transfer is sT  . 

We assume that base temperature of the fin is bT and there is no heat transfer of the tip of the 

fin. It is also assumed that the convection heat transfer coefficient, h, and the emissivity 

coefficient of surface, Eg, are both constant while conduction coefficient, k, can be variable. 

The energy equation and the boundary conditions for the fin are as follows:  
 

 

 

 

 0)()()( 44  s

g

a TT
A

E
TT

A

hp

dx

dT
k

dx

d 
                                                                            (8) 

 

,00 
dx

dT
x     bTTLx                                                                                                  (9) 
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                                     Fig.1. Geometry of a strait fin 

 

 

Assuming k as a linear function of temperature, we have: 

 

))(1( aa TTkk                                                                                                                          (10) 

 

After making the equation dimensionless and changing parameters, we have: 

 

 
bT

T
   , 

b

a

a
T

T
     , 

b

s

s
T

T
     ,     

L

x
X        ,     

Ak

hpL
N

a

2
2     ,      BT 1                  (11) 

  
Ak

pLTEg

a

b

22

2


   

 

And substituting Eq. (11) in Eq. (8) we have: 

                                                             (12)      0)()()(1
44

2

2

1 








 saa N
dx

d

dx

d



                                                    

 (13) 11  x        ,00 
dx

d
x


  

  by      assuming 0 sa     we have :  

4

22

2
2

1

2

2

2

))(( 









dX

d

dX

d
N

dX

d
                                                                                              (14) 

 

4. Problem Solution: 

To apply ADM on the wedge Eq. 14 in operator form as 
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4

22

2
2

1

2 ))(( 





 
dX

d

dX

d
NL                                                                                                (15) 

where the differential operator  L  is given by  
2

2

dx

d
L   and assume the inverse of the 

operator  L  exists and it can be integrated from 0 to X  i.e.  

x x

dXdXL
0 0

1 (.) .Operating with  

1L  on 15, yields )))((( 4

22

2
2

1

211 





  

dX

d

dX

d
NLLL  . Then, we have: 

 

)))((()0()0()( 4

22

2
2

1

21' 





  

dX

d

dX

d
NLXx .                                              (16) 

 

From the boundary conditions of (13) and taking   a)0(   ADM solution can be obtained 

by: 
 

)))((()( 4

22

2
2

1

21 





  

dX

d

dX

d
NLax                                                                              (17) 

ADM is introduced in the following expression: 

)()(
0

XX n


                                                                                                                                           (18) 

The ADM is defined as the nonlinear function ))(( xN   by an infinite series of polynomials 

)))(())(( 4

22

2
2

1 





 
dX

d

dX

d
xN                                                                                                (19)       

Adomian polynomials nA   represent the nonlinear term   ))(( xN  and can be calculated from 

(7). The ADM is defined as the linear function ))(( xR   by an infinite series of polynomials. 

Adomian polynomials nR  represent the linear term  ))(( xR   and can be calculated from  

  2))(( NxR                                                                                                                                                (20)    

 Substituting (18) and (19) and (20) into (17) yields  

 













0

1

0

1

0
)(

n nn nn n ALRLax                                                                                          (21)  

 To determine the components of  nA  and  n  , 0   was defined from the boundary condition of (13)   

ax )(0                                                                                                                                                           (22) 

 For determination of the other components of )(x  , we have    

 nnn ALRLx 11

1 )( 

                    n=1,2,…                                                                                    (23) 
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By using (7) and, we obtain the following few terms of Adomian polynomials nA : 

4

022

0

2

0

20

10 )))(( 





 
dX

d

dX

d
A  

 

 
1

2

02
10

2

1

2

02

0

2

111 4)))((2)()(( 





 
dX

d

dX

d

dX

d

Xd

d
A  

 

 

2

2

02

2

0

2

12
2021

2

2

2

02

1

2

12

0

2

212

4

6)))((4)(2)(2)(2)(2)(
2

1
(

















dX

d

dX

d

dX

d

dX

d

dX

d

dX

d
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3

03221

2

020

3

12

3

021

2

2

2
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2

2

12

1

2

22

0

2

313

4124))(

)(12))((12)(6)(6)(6)(6)(
6

1
(




















dX

d

dX

d

dX

d

dX

d

dX

d

dX

d

dX

d

dX

d
A

 

  And of (23), for determining of )(X   , we have  

a0  

24

2

22

1
2

1

2

1
XaaXN                                                                                                                         (24) 
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(
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XaaNaXaaNaXaaNN    

242222
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4
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2
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42223
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1
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1
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1
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1
(
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1
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1
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1
(

3

1
)

6

1

6

1
(
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1
(

5

4
)

2

1
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1
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5

6
(

6

1
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1
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1
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1
(

15

1
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1

6

1
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1
(

6

1
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a 














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            …  . 

 

We use 
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...32100







n n                                                                                                     (25) 

According to Eq. (25), the accuracy of ADM solution increases by increasing the number of 

solution terms (n).For the complete solution of Eq. (25), a should be determined. From the 

boundary conditions of (13) and   taking   1)1(    and by substituting Eq (25) a can be 

obtained:  

a = 0.6687006641 
 

5-Results and discussion 

Fig. 2 shows the temperature distribution in convective–radiative conduction fins with 

variable thermal conductivity at 2.2  and 1N  . Fig. 3 shows the temperature distribution 

in convective–radiative conduction fins with variable fin dimension at 2.2  and 1N

.According to eq (11) this dimension are L ,A and Р .Fig. 4 shows temperature distribution in 

convective–radiative conduction fins with variable parameter N.  
 

 

 

 
Fig.2. Temperature distribution in convective–radiative conduction finswithvariablethermal 

conductivity for 2.2   , 1N  
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Fig.3. Temperature distribution in convective–radiative conduction fins with variable fin 

dimension for 2.1   , 1N  

 

 

 

 
Fig. 4 Temperature distribution in convective–radiative conduction fins with variable 

parameter N.  
 

 

We show in fig 4 the comparison of the results obtained by ADM and VIM [37], for the

2.1  , 2.2   , 1N and in fig 5 the comparison of the results obtained by ADM and HAM 

[38], for the 2.1  , 2.2   , 1N . There are a few differences between the ADM and VIM 

solution   because the ADM   provides an analytical solution in terms of an infinite power series. 

There is not difference between the ADM and HAM solution because these methods are very similar.     
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Fig 5. The comparison of the results obtained by ADM and VIM [37], at 2.2  , 2.1  and 

1N  
 

 

 

 
Fig 6. The comparison of the results obtained by ADM and HAM [38], at 2.2  , 2.1  and 

1N  

 

6. Conclusions 
In this Letter the Adomian decomposition method has been successfully implemented to find 

the solution of nonlinear heat transfer equations. The results are shown graphically. The 
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Adomian decomposition method (ADM) can provide analytical approximation or 

approximated solution to a rather wide class of nonlinear (and stochastic) equations without 

linearization, perturbation, closure approximation, or discretization methods. The effect of 

Adomian polynomial terms is considered and shows that the accuracy of results is increased 

with the increasing of Adomian polynomial terms. 
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