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Abstract 
When we use the projection methods in order to obtain the approximation solution of nonlinear 
equations, we always have some difficulties such as solving nonlinear algebraic systems. The 
method of generalized quasilinearization when is applied to the nonlinear integro-differential 
equations of Volterra type, gives two sequences of linear integro-differential equations with 
solutions monotonically and quadratically convergent to the solution of nonlinear equation. In this 
paper we employ step-by-step collocation method to solve the linear equations numerically and 
then approximate the solution of the nonlinear equation. In this manner we do not encounter 
solving nonlinear algebraic systems. Error analysis of the method is performed and to show the 
accuracy of the method some numerical examples are proposed. 
 
Keywords: Volterra integro-differential equation; Collocation method; Quasilinearization 
technique. 
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1.   Introduction 
It is well known that the method of quasilinearization [1] provides an excellent tool for obtaining 
approximated solutions of nonlinear differential equations. This technique works fruitfully for the 
problems that their nonlinear parts involve convex or concave functions and gives two sequences 
of linear problems that their solutions are upper and lower solutions to the nonlinear problem and 
are converging monotonically and quadratically to the unique solution of the given nonlinear 
problem. Recently, this method is applied to a variety of problems [2-5] and in the continuation the 
convexity assumption was relaxed and the method was generalized and extended in various 
directions to make it applicable to a large class of problems [6-15]. 
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The method of quasilinearization is also an effective tool to obtain lower or upper bounds for the 
solutions of nonlinear differential equations [1,17]. To describe it, consider the initial-value 
problem (IVP) 

 ( ) ( )( ) ( ) 0, , 0 ,x t f t x t x x′ = =  (1) 

on [0, ]J T= . If f is convex on x , then we can find a function ( , , )g t x y  which is linear in x  such 
that 

 ( , ) max ( , , ).
y

f t x g t x y=  

By choosing an initial approximation 0 ( )y t , using ( , , )g t x y one can generate a monotone 
sequence ( )ny t , that converges quadratically to the unique solution of Eq. (1). Moreover, the 
sequence provides good lower bounds for the solution. On the other hand, if f  is concave on x , 
same results hold that offer monotone approximations along with similar properties and good 
upper bounds. 
Consider the IVP 

 ( ) ( )( ) ( )( ) ( )
0

0 0, , , , ,
t

t
x t f t x t k t s x s ds x t x′ = + =∫  (2) 

With 
 [ ]0 0 0, , 0, 0.t J t t T t T∈ = + ≥ >  

When the numerical methods are applied to solve these nonlinear problems, they mostly are 
converted to a nonlinear algebraic system. Eq. (2) is studied in [17] using multistep rules with 
quadrature formulas and in [18] using collocation method and in both of them the integral terms 
are discretized to nonlinear algebraic systems. But these nonlinear systems need some conditions 
to have a unique solution and require an iteration method (In many cases the Newton's iteration) 
and a suitable starting point to be convergent to the solution. When we use the multistep methods, 
the process of solving these nonlinear algebraic systems is repeated in each step size to obtain the 
next step nodes and this process causes a lot of computational costs and additional works. In 
equation when f and k are convex in x , the method of quasilinearization [11] is applicable and 
offers the following two linear iterative schemes 

 
( ) ( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( ) ( )
0

1 1

1 1 0 0

, ,

, , , , , ,

p p x p p p

t

p x p p p pt

t f t t f t t t t

k t s s k t s s t t ds t x

α α α α α

α α α α α

+ +

+ +

′ = + −

 + + − = ∫
 (3) 

 
( ) ( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( ) ( )
0

1 1

1 1 0 0

, ,

, , , , , ,

p p x p p p

t

p x p p p pt

t f t t f t t t t

k t s s k t s s t t ds t x

β β α β β

β α β β β

+ +

+ +

′ = + −

 + + − = ∫
 (4) 

for 0,1,2,p =  , as two linear integro-differential equations, where 0 ( )tα  and 0 ( )tβ  are the 
upper and lower solutions of Eq. (2), presented in definition 1. The solutions of the iterative 
schemes (3) and (4) are quadratically and monotonically convergent to the unique solution of Eq.  
(2). In this paper we apply step-by-step collocation method in a piecewise continuous polynomials 
space to solve the linear equations (3) numerically. We combine this method and the iterative 
schemes (3) (where with respect to their linearity and quadratically convergent is rapid in 
convergence) to approximate the unique solution of Eq. (2). 
This paper has been organized as follows: A general framework of the idea of quasilinearization 
used to solve the nonlinear integro-differential equations and some conclusions are recalled in 
section 2. Section 3 shows employing step-by-step collocation method in approximating the 
solution of the linear integro-differential equations in a piecewise continuous polynomials space. 
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Section 4 includes discretization to a linear algebraic system and discussion of the convergence of 
the method and in section 5, the suggested method is applied on some numerical examples. 
 

2. Integro-differential inequalities and quasilinearization 

Consider the nonlinear integro-differential equation 

 ( ) ( )( ) ( )( ) ( ) 00
, , , , 0 ,

t
x t f t x t k t s x s ds x x′ = + =∫  (5) 

For [ ],f C J∈ ×R R  and [ ],k C∈ × D  where T ∈  and [ ]0,t J T∈  and 

( ){ }, :t s J J s t= ∈ × ≤D . Eq. (2) is reducible to Eq. (5) by substituting 0t t− instead of t . 

Definition 1.  if a function [ ]1 ,C Jα ∈   satisfies the inequality 

 ( ) ( )( ) ( )( ) ( ) 00
, , , , 0 ,

t
t f t t k t s s ds xα α α α′ ≤ + ≤∫  

then α  is said to be a lower solution of Eq. (5) on J and an upper solution If the reversed 
inequality is satisfied. 
We have the following conclusions about lower and upper solutions of the IVP (5). 
Lemma 1. ([11]): Consider the IVP (5)  and that: 
(A1) [ ],f C J∈ ×   and [ ],k C∈ × D  and ( ), ,k t s x  is monotone nondecreasing in x  for 

each fixed ( ), ;t s ∈D  

(A2) ( ) ( ) [ ]1
0 0, ,t t C Jα β ∈  are lower and upper solutions of the IVP (5) respectively; 

(A3) for ( ) ( ) ( ) ( ), , , 0, , , ,t s v w L f t v f t w L v w∈ ≥ ≥ − ≤ −D and 

( ) ( ) ( ), , , , , 0.k t s v k t s w N v w N− ≤ − >  

Then we have ( ) ( )0 0t tα β≤  for t J∈ , provided ( ) ( )0 0 0 0t tα β≤ . 

If the Lemma 1 holds, it is shown that the IVP (5) has a unique solution ( )x t  such that satisfies in 
the relation 

 ( ) ( ) ( )0 0 , .t x t t t Jα β≤ ≤ ∈  

Using the norm ( )maxt Jx x t∈=  and defining two iterative schemes (3) and (4), the following 

theorem is applied for the unique solution of (5): 
Theorem 1. ([11]): Assume that: 
(B1) [ ]2 ,f C J∈ ×   , [ ]2 ,k C∈ × D  and ( ) ( ) [ ]1

0 0, ,t t C Jα β ∈   are lower and upper 

solutions of the IVP (5) such that ( ) ( )0 0t tα β≤ on J ; 

(B2) ( ), 0xxf t x ≥  for each t J∈ and ( ), , 0xxk t s x ≥ for each ( ),t s ∈D ; 

(B3) ( ), ,k t s x  is monotone nondecreasing in x  for each ( ),t s ∈D  and for each 

( ) ( ) ( )0 0t v t tα β≤ ≤  

Then the monotone sequences ( ){ }p tα  and ( ){ }p tβ  generated by iterative schemes (3) and (4) 

converge uniformly and quadratically to the unique solution of (5) on J , 

 ( ) 2

1 12
1

2 ,
4

LT

p p
ex M M T x

L L
α α+− ≤ + −

+
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 ( ) 2

1 12
1

2 ,
4

LT

p p
ex M M T x

L L
β β+ − ≤ + −

+
 

 
( ) ( )
( ) ( )

1

1

max , , max , , ,

max , , max , , ,

x xt J t J

xx xxt J t J

L f t x L k t s x

M f t x M k t s x
∈ ∈

∈ ∈

= =

= =
 

And satisfy the relation 
 ( ) ( ) ( ) ( ) ( ) ( )0 1 1 0 .p pt t t t t tα α α β β β≤ ≤ ≤ ≤ ≤ ≤ ≤   

The following Lemma in [19] is required to establish the convergence of the presented method. 
Lemma 2. Suppose .  is a subordinate matrix norm for which the norm of the identity matrix 

1I =  and E  is a matrix such that 1E < .Then ( )I E−  is nonsingular and 

( ) ( ) 11 1 .I E E
−−− ≤ −  

  

3. Piecewise Polynomials Collocation Method 

Consider the partition { }0 10 Nt t t T= < < < =  on J , ( )1n n nh t t+= − : 0, , 1n N= − , 

{ }maxn nh h= , and indicate the above partition by hJ . According to this partition we have the 
following definition. 
Definition 2. Suppose that hJ  is a given partition on J . The piecewise polynomials space 

( ) ( )d
m hS J  with 0m ≥ , 1 d m− ≤ ≤  is defined by 

 ( ) [ ]{ }( ) ( ) , : ;0 1 .
n

d d
m h mS J q t C J q n Nσ π= ∈ ∈ ≤ ≤ −  

Here ( ]1,n n nt tσ +=  and mπ  denotes the space of polynomials of degree not exceeding m . Now the 
linear integro-differential equation (3) may be re-written in the form of 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 00
, , 0 ,

t

p p p p p p pt H t f t t k t s s ds xα α α α′ = + + =∫  (6) 

where 

 
( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( )
1 1 1

1 1 10

, ,

, , , , ,

p p x p p

t

p x p p

H t f t t f t t t

k t s s k t s s s ds

α α α

α α α

− − −

− − −

= −

+ −∫
 (7) 

and 
 ( ) ( )( ) ( ) ( )( )1 1, , , , , .p x p p x pf t f t t k t s k t s sα α− −= =  (8) 

We approximate the solution of the linear IVP (3) in the continuous polynomials space 
 ( ) [ ]{ }(0)

1( ) , : ;0 1 ,
nm h mS J q t C J q n Nσ π −= ∈ ∈ ≤ ≤ −  

By collocation method corresponding to the choice 0d =  in Definition 2 . The collocation solution 
is denoted by ( )ˆ p tα  and defined by the collocation equation 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 00
ˆ ˆ ˆ ˆ, , 0 , ,

t

p p p p p p p ht H t f t t k t s s ds x t Xα α α α′ = + + = ∈∫  (9) 

where hX contains the collocation points 

 { }1: 0 1; 0 1 ,h n i n mX t c h c c n N= + ≤ ≤ ≤ ≤ ≤ ≤ −  (10) 

and is determined by the points of the partition hJ and the given collocation parameters 

{ } [ ]0,1 .ic ∈  
 

4. Lagrange Basis Functions and Discretization 

When the Lagrange polynomials are used as basic functions in each subinterval nσ  for the space 

( )(0)
m hS J , the collocation equation has a simple form. Lagrange polynomials in nσ  can be written 

as 

 ( ) [ ], 0,1 , 1, , .
m

k
j

k j j k

z cL z z j m
c c≠

−
= ∈ =

−∏   (11) 

where belong to 1mπ − . Also set 

 ( ), ˆ , 1, , .p
n j p n j nA t c h j mα′= + =   (12) 

The restriction of the collocation solution ( ) ( )(0)ˆ p m ht S Jα ∈  to the subinterval nσ  is as 

 ( ) ( ) ( ) ( ], ,
1

ˆ ˆ , 0,1
m

p
p n p n n j n j

j
z t zh L z A zα α

=

′ ′= + = ∈∑  (13) 

and by letting ( )
0

( )
z

j jz L v dv= ∫L  and ( )ˆn p ny tα=  the representation of  ( )ˆ p tα  on nσ  is 

obtained as follows: 

 ( ) ( ) ( ) ( ], ,
1

ˆ ˆ , 0,1 .
m

p
p n p n n n n j n j

j
z t zh y h z A zα α

=

= + = + ∈∑L  (14) 

Setting ,n i n i nt t t c h= = +  in Eq. (9) we have 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , , , ,0

, 00

ˆ ˆ ˆ,

ˆ ˆ, , 0

n

i

t

p n i p n i p n i p n i p n i p

c

n p n i n n p n n p

t H t f t t k t s s ds

h k t t sh t sh ds x

α α α

α α

′ = + +

+ + + =

∫
∫

 

by using  (12), (13) and (14), it is written as follows: 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2
, , , , ,0

1 1

, , , ,0

,

, ,

i

i

m m cp p p
n i n p n i j i n j n p n i n n j n j

j j

cn
p n i p n i p n i n p n i n n n

A h f t c A h k t t sh s ds A

H t F t f t h k t t sh ds y

= =

+ − +

= + + + +

∑ ∑ ∫

∫

L L
 (15) 

for 1, ,i n=  , where 

 ( ) ( ) ( ) ( ) ( )
1 1

,0 0
0

ˆ ˆ, , ,n
ntn

p p p p n i pF t k t s s ds h k t t sh t sh dsα α
−

=

= = + +∑∫ ∫    


 (16) 
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Denotes the collocation solution on [ ]0, nt . Using representation (14) and setting ,n it t=  in 
(16) we get 

 
( ) ( )( )

( ) ( )( )

1 1

, ,0
0

1 12
, ,0

0 1

,

, ,

n
n

p n i p n i

n m
p

p n i j j
j

F t h k t t sh ds y

h k t t sh s ds A

−

=

−

= =

= +

+ +

∑ ∫

∑ ∑ ∫

   


   


L
 

and by defining 

 ( ) ( )
1,

,0
, 1, ,

,n
p p n i j

i j m

B k t t sh s ds
=

 
= + 
 
 
∫

 



L  

for 0 1n N≤ < ≤ − , as a ( )m m×  matrix, has the form 

 
( ) ( )( )1 1

, ,0
0

1
2 ,

,
0 1

,

, 1, ,

n
n

p n i p n i

n m
n p

p jij
j

F t h k t t sh ds y

h B A i m

−

=

−

= =

= +

 + = 

∑ ∫

∑ ∑

   



 





 

where ,n
p ij

B  
 shows the ( , )i j ’th component of the matrix ,n

pB  . By letting 

 

( ) ( )( )
( ) ( )( )

( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

1

1 1,
,1 ,0 0

,1 ,0 0

,1 ,

,1 ,

,1 ,

,1 ,

, , , , ,

, , , , ,

, , ,

, , ,

, , ,

, , ,

m

T
n

p p n p n m

Tc cn
p p n n n p n m n n

Tn p p
p n n m

Tn
p p n p n m

Tn
p p n p n m

Tn n n
p p n p n m

C k t t sh ds k t t sh ds

C k t t sh ds k t t sh ds

A A A

H H t H t

f f t f t

G F t F t

= + +

= + +

=

=

=

=

∫ ∫

∫ ∫


   











 

and defining the ( )m m× matrices 

 

( )( ) ( )

( ) ( )

,
, 1, ,

,0
, 1, ,

,

, ,i

n
p p n i j i

i j m

cn
p p n i n n j

i j m

L diag f t c

B k t t sh s ds

=

=

 
=  

 
 

= + 
 
 
∫





L

L

 

For 0 1n N≤ ≤ − , the collocation equation (9) is reduced to the linear algebraic system 
 ( )( ) ( ) ,n n n n n n n

m n p n p p p p p n p nI h L h B A H G f h C y− + = + + +  (17) 

where 0 n N≤ ≤ and 1,2,p =  . 
Here mI  denotes the ( )m m×  identity matrix. The existence and uniqueness of the collocation 

solution in ( ) ( )0
m hS J  is considered in the following theorem. 
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Theorem 2. If ( )pH t , ( )pf t  and ( ),pk t s  in the Volterra integro-differential equation (9) are all 

continuous on their domains J  and D , then there exists an 0h >  such that for any partition hJ  

with partition diameter h , 0 h h< < , the linear algebraic system (17) has a unique solution n
pA  

for 0 1n N≤ ≤ −  and 1,2, .p =   
Proof. The continuity of ( )pH t , ( )pf t  and ( ),pk t s  is obvious with respect to (7), (8) and 

Theorem 1. On the other hand the domains of ( )pf t  and ( ),pk t s  are compact, then the 

components of the matrices n
pL  and n

pB  for 0 1n N≤ ≤ −  and 1,2, .p =  , are all bounded. These 

implies if nh ’s are chosen sufficiently small, the inequality 1n n
n p n ph L h B+ <  holds and by Lemma 

2 the inverse of the matrix ( )n n
m n p n pI h L h B− +  exists. In other words, there is an 0h >  so that for 

any partition hJ  with { }max : 0 1nh h n N h= ≤ ≤ − <  the matrix ( )n n
m n p n pI h L h B− +  has a 

uniformly bounded inverse and the proof is complete. 
When the unknown vector n

pA  is computed from (17), the collocation solution for 

[ ]1,n n n n nt t zh t tσ += + ∈ =  is given by 

 ( ) ( ) ( ],
1

ˆ , 0,1 .
m

p
p n n n n j n j

j
t zh y h z A zα

=

+ = + ∈∑L  

The convergence of this collocation solution is shown in the next theorem. The proof of this 
theorem with some changes may be found in [18]. 
Theorem 3. Suppose that in (6) , ( ) [ ], ,i

pk t s C∈ D  and ( ) ( ) [ ], ,i
p pH t f t C J∈   , where 

1 i m≤ ≤ , and ( )(0)ˆ p m hS Jα ∈  is the collocation solution of equation (6) with ( )0,h h∈ . If ( )p tα  

is the exact solution of equation (6), then 
 ( 1)ˆ ,i i

p p pC hα α α +− ≤  

holds on J , for any collocation points hX . The constant C depends on the parameters { }ic but 

not on  h . 
The above argument yields an approximation solution ( )ˆ p tα  to the unique solution of the linear 

integro-differential equation (6) in the space ( )(0)
m hS J  and the iterative scheme (3) or (6) produces 

a sequence ( ){ }p tα  that is quadratically convergent to the unique solution of nonlinear integro-

differential equation(5). The inequality 
 ˆ ˆ ,p p p px xα α α α− ≤ − + −  (18) 

and Theorems 1 and 3 show that the sequence of the collocation solutions ( ){ }ˆ p tα  is convergent 

to the unique solution ( )x t  of nonlinear equation (5). It is noticeable that in the relation (18) the 

first term is quadratically convergent and the convergence of the second term is ( )mO h . 

 



M. N. Rasoulizadeh / TJMCS Vol .4 No.4 (2012) 542-553 
 

549 
 

5. Numerical Experiments 

For numerical experiments, the presented method is applied to solve three different examples of 
the integro-differential equation (5). In each three examples the subintervals and the collocation 
parameters are chosen such that 

 
, 0, , 1.

1 , 1, , .
1

n

i

Th h n N
N

ic i m
m

= = = −

−
= =

−





 

Example 1. The first example is the following integro-differential equation: 

 ( ) ( ) ( ) ( )5 5 2

0

51 , 0 0.
4

t
x t x t t tsx s ds x′ = + − + =∫  (19) 

here 1o t≤ ≤ , ( ) 2, ,k t s x tsx=  and ( ) 5 55, 1
4

f t s x t= + − . Then k  is nondecreasing and k  and 

f  are both convex with respect to x  on D  and ( )0 2
ttα =  is a lower solution of (19) on [ ]0,1 . On 

the other hand, the exact solution is ( )x t t=  where with respect to the Theorem 1 the solutions of 
the iterative scheme 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

4
1

10

5

2 , 0 0, 1,2,

p p p p

t

p p p

t H t t t

ts s s ds p

α α α

α α α

−

−

′ = +

+ = =∫ 
 

with 

 ( ) ( ) ( )5 5 2
1 10

51 4 ,
4

t

p p pH t t t ts s dsα α− −= − − − ∫  

is convergent to the exact solution of (19). To employ the given numerical procedure for 
approximating the solutions of these linear integro-differential equations, the values 4, 5m N= =  

are chosen. The absolute values of errors, ( ) ( )ˆi p ix t tα− , for equation (19) are shown in Table 1 

and Figure 1 shows the convergence of the sequence ( ){ }ˆ p tα  to the exact solution. 

 
 

Table 1. Absolute errors in Example 1: ( ) ( )ˆi p ix t tα−  

4 , 5m N= =  

it  2p =  4p =  6p =  
0.125 
0.250 
0.375 
0.500 
0.625 
0.750 
0.875 
1.000 

2.5576E-12 
1.0678E-11 
6.5008E-08 
2.5310E-07 
1.8806E-05 
1.1042E-04 
1.4790E-04 
9.4680E-03 

5.5511E-15 
7.2164E-14 
8.1593E-14 
9.4779E-13 
6.2839E-12 
2.1603E-12 
1.4916E-11 
3.5989E-10 

5.5511E-17 
1.1102E-17 
2.2493E-16 
2.8270E-16 
3.0340E-16 
5.6564E-15 
7.1957E-15 
7.1534E-15 
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Fig 1. convergence of the sequence ( ){ }ˆ p tα  to the exact solution of Example 1 

 
 
 
 

Table 2. Absolute errors in Example 2 for lower solutions: ( ) ( )ˆi p ix t tα−  

4 , 5m N= =  6 , 5m N= =  

it  2p =  4p =  6p =  2p =  4p =  6p =  

0.125 
0.250 
0.375 
0.500 
0.625 
0.750 
0.825 
1.000 

9.9528E-10 
9.9683E-09 
2.3559E-09 
4.3242E-07 
1.5111E-06 
3.6688E-05 
3.2453E-04 
9.8331E-04 

9.9528E-10 
4.9761E-09 
1.4969E-08 
2.0257E-08 
2.8473E-08 
7.0239E-08 
1.1222E-07 
1.2696E-07 

9.9528E-10 
4.9761E-09 
9.2451E-09 
2.0257E-08 
2.8473E-08 
7.0248E-08 
1.0102E-07 
1.3180E-07 

1.8496E-13 
2.5706E-09 
1.3277E-08 
5.5749E-07 
1.5322E-06 
3.2160E-05 
2.1509E-04 
7.6373E-04 

1.8995E-13 
1.0480E-12 
7.9847E-13 
2.3450E-12 
3.5107E-12 
2.0534E-11 
8.8511E-10 
3.7158E-09 

1.8995E-13 
1.0480E-12 
7.9847E-13 
2.3450E-12 
3.5107E-12 
5.1030E-12 
8.2789E-12 
7.9523E-12 

 
 
 
 

 Table 3. Absolute errors in Example 3 for lower solutions: ( ) ( )ˆi p ix t tα−  

5 , 5m N= =  6 , 5m N= =  

it  2p =  4p =  6p =  2p =  4p =  6p =  

0.125 
0.250 
0.375 
0.500 
0.625 
0.750 
0.825 
1.000 

1.3983E-10 
1.7805E-10 
1.6270E-10 
5.9400E-11 
1.8052E-11 
3.4455E-08 
5.6256E-07 
3.0593E-06 

1.3983E-10 
1.7805E-10 
1.6270E-10 
3.4832E-11 
8.1493E-11 
5.1929E-11 
2.1977E-11 
9.6862E-11 

1.3983E-10 
1.7805E-10 
1.6270E-10 
3.4832E-11 
8.1493E-11 
5.1929E-11 
2.1977E-11 
9.6863E-11 

1.7406E-12 
4.6023E-11 
3.3139E-11 
2.2047E-10 
1.0421E-10 
2.4242E-08 
4.5155E-07 
2.2083E-06 

1.7406E-12 
4.6027E-12 
3.3147E-12 
5.1262E-11 
5.3321E-11 
4.8154E-11 
4.8538E-10 
2.6134E-10 

1.7406E-12 
4.6027E-12 
3.3147E-12 
5.1262E-12 
5.3320E-12 
4.8152E-12 
4.8533E-12 
2.6129E-11 
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Fig 2. convergence of the sequence ( ){ }ˆ p tα  to the exact solution of Example 2 

 
 
 

 
Fig 3. convergence of the sequence ( ){ }ˆ p tα  to the exact solution of Example 3 

 
 
Example 2.  The second example 

 ( ) ( )( ) ( ) ( ) ( )5 4

0
1 sin sin ,

5
ttx t x t t t s x s ds′ = − − + ∫  

with initial condition (0) 1x =  has the exact solution ( ) cos( )x t t=  and the lower solution 
2

0 ( ) 1t tα = −  in the interval [ ]0,1 . The kernel of this equation satisfies the necessary conditions 
and as in example 1 the method is applied to this equation and the absolute values of the errors are 
presented in Table 2 and Figure 2. 
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Example 3.  As the third example, we have examined the method on the problem 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( )( )( ) ( )

2 2 3 2 2

2 2

0

1 sin sin

cos , 0 1.
t

x t t t t x s t t x t

t x s s t x s ds x

′ = − + + + −

− + =∫
 

for 0 1t≤ ≤ , with the exact solution ( ) tx t e −= . This problem is contained in the assumptions of 

the presented method with the lower solution ( )0 1t tα = − . Table 3 and Figure 3 show obtained 
results about this problem. 
 
6. Conclusions 
In this article we applied the method of quasilinearization and approximated the solution of 
nonlinear Volterra integro-differential equation. Collocation method was employed to solve the 
arisen linear integro-differential equations. Of advantage of the presented method is that we do not 
encounter solving nonlinear algebraic systems. Obtained numerical results show the accuracy and 
efficiency of the method.  A weakness for this method is its limiting assumptions that a nonlinear 
equation must have them to be solvable by this method. 
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