

Available online at http://www.TJMCS.com

The Journal of Mathematics and Computer Science / TJMCS Vol .4 No.4 (2012) 585-590

A Unique Common Fixed Point Theorem For

Three Mappings in G – Cone metric spaces

K.P.R. Rao

Department of Mathematics

Acharya Nagarjuna University

Nagarjuna Nagar-522 510, A.P., India

email: <u>kprrao2004@yahoo.com</u>

K. Bhanu Lakshmi

Science and Humanities Department

Lakireddy Balireddy College of Engineering

Mylavaram-521230, A.P., India

email: <u>bhanulaks@gmail.com</u>

V.C.C. Raju

Department of Mathematics, University of Botswana Private Bag UB 00704, Gaborone, Botswana email: <u>varanasi@mopipi.ub.bw</u>

Received: March 2012 , Revised: November 2012 Online Publication: November 2012

Abstract

In this paper we obtain a unique common fixed point theorem for three mappings in G-cone metric spaces and obtain an extension and improvement of a theorem of I. Beg et. al. [1]. **Keywords**: G – cone metric space, common fixed points, symmetric space.

2010 Mathematics Subject Classification: 47H10; 54H25.

K.P.R. Rao, K. Bhanu Lakshmi and V.C.C. Raju / TJMCS Vol .4 No.4 (2012) 585-590

1. Introduction and preliminaries

Based on cone metric spaces introduced by [2] and on G-metric spaces introduced by [4], I. Beg et. al. [1] introduced generalized cone metric spaces as follows:

Let E be a real Banach space and P be a subset of E. The subset P is called a Cone if it has the following properties:

(i) P is non empty, closed and $P \neq \{0\}$;

(ii) $0 \le a, b \in R \text{ and } x, y \in P \Rightarrow ax + by \in P;$

(iii) $P \cap (-P) = \{0\}$.

For a given cone $P \subseteq E$, we can define a partial ordering \leq on E with respect to P by $x \leq y$ if and only if $y - x \in P$. We will write x < y if $x \leq y$ and $x \neq y$, while $x \ll y$ will stands for $y - x \in P^0$, where P^0 denotes the interior of P.

Proposition 1.1 ([5]). Let P be a cone in a real Banach space E. If $a \in P$ and $a \le \lambda a$ for some $\lambda \in [0, 1)$ then a = 0.

Proposition 1.2 ([3],Cor.1.4).Let P be a cone in a real Banach space E.

(i) If $a \le b$ and $b \le c$, then $a \le c$

(ii) If $a \in E$ and $a \ll c$ for all $c \in P^0$, then a = 0.

Remark 1.3 ([3]). $\lambda P^0 \subseteq P^0$ for $\lambda > 0$ and $P^0 + P^0 \subseteq P^0$.

Definition 1.4 ([1]). Let X be a nonempty set and let $G : X \times X \times X \rightarrow E$ be a function satisfying the following properties :

 $(G_1): G(x, y, z) = 0 \text{ if } x = y = z$,

(G₂): 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$,

 $(G_3): G(x, x, y) \leq G(x, y, z) \text{ for all } x, y, z \in X \text{ with } y \neq z,$

 (G_4) : G(x, y, z) = G(x, z, y) = G(y, z, x) = ...(symmetry in three variables),

 $(G_5): G(x, y, z) \leq G(x, a, a) + G(a, y, z) \text{ for all } x, y, z, a \in X.$

Then the function G is called a generalized cone metric on X and X is called a generalized cone metric space or a G – cone metric space. It is clear that if G(x, y, z) = 0 then x = y = z for any $x, y, z \in X$.

Definition 1.5 ([1]). A G – cone metric space X is called symmetric if G(x, x, y) = G(x, y, y) for all x, y $\in X$.

Definition 1.6 ([1]). Let X be a G – cone metric space and $\{x_n\}$ be a sequence in X. The sequence $\{x_n\}$ is said to converge to a point $x \in X$ if for every $c \in E$ with $0 \ll c$ there is N such that $G(x_n, x_m, x) \ll c$ for all n, m > N. In this case, we write $x_n \rightarrow x$ as $n \rightarrow \infty$.

The sequence $\{x_n\}$ is said to be a G – Cauchy sequence in X if for every $c \in E$ with 0 << c there is N such that $G(x_n, x_m, x_l) << c$ for all n, m, l > N.

X is said to be complete if every G – Cauchy sequence in X is convergent in X.

Proposition 1.7 ([1],Lemma 2.8). Let X be a G – cone metric space. Then for a sequence $\{x_n\} \subseteq X$ and a point $x \in X$, the following are equivalent

- (i) $\{x_n\}$ is G convergent to x,
- (ii) $G(x_n, x_n, x) \rightarrow 0$ as $n \rightarrow \infty$,
- (iii) $G(x_n, x, x) \rightarrow 0$ as $n \rightarrow \infty$,
- (iv) $G(x_m, x_n, x) \rightarrow 0$ as $n, m \rightarrow \infty$.

Proposition 1.8 ([1],Lemma 2.9). Let X be a G – cone metric space. Then the function G(x, y, z) is jointly continuous in all three of its variables.

Remark 1.9 ([5]). If $c \in P^0$, $0 \le a_n$ and $a_n \rightarrow 0$, then there exists $n_0 \in N$ such that for all $n > n_0$ we have $a_n \le c$.

Ismat Beg et.al [1] proved the following

Theorem 1.10 ([1],Theorem 3.1). Let X be a complete symmetric G – cone metric space and T : X \rightarrow X be a mapping satisfying one of the following conditions

$$G(Tx, Ty, Tz) \le aG(x, y, z) + bG(x, Tx, Tx) + cG(y, Ty, Ty) + dG(z, Tz, Tz)$$

and

$$G(Tx, Ty, Tz) \leq aG(x, y, z) + bG(x, x, Tx) + cG(y, y, Ty) + dG(z, z, Tz)$$

for all x, y, $z \in X$, where $0 \le a + b + c + d \le 1$.

Then T has a unique fixed point in X.

Now, we give a Lemma in G – cone metric spaces which is similar in cone metric spaces given by Jain et.al [6].

Lemma 1.11 : Let X be a G – cone metric space, P be a cone in a real Banach space E and k_1 , k_2 , k_3 , $k_4 \ge 0$ such that $k_1 + k_2 + k_3 + k_4 > 0$ and k > 0. If $x_n \rightarrow x$, $y_n \rightarrow y$, $z_n \rightarrow z$ and $p_n \rightarrow p$ in X and (1.11.1) ka $\le k_1G(x_n, x_m, x)+k_2G(y_n, y_m, y)+k_3G(z_n, z_m, z)+k_4G(p_n, p_m, p)$ then a = 0.

Proof. Since $x_n \rightarrow x$, $y_n \rightarrow y$, $z_n \rightarrow z$ and $p_n \rightarrow p$, we have for $c \in P^0$, there exists a positive integer N_c such that

$$\frac{c}{k_1 + k_2 + k_3 + k_4} - G(x_n, x_m, x), \frac{c}{k_1 + k_2 + k_3 + k_4} - G(y_n, y_m, y),$$

$$\frac{c}{k_1 + k_2 + k_3 + k_4} - G(z_n, z_m, z), \frac{c}{k_1 + k_2 + k_3 + k_4} - G(p_n, p_m, p) \in P_0 \forall n > N_c.$$

From Remark 1.3, we have

$$\frac{k_1c}{k_1 + k_2 + k_3 + k_4} - k_1 G(x_n, x_m, x), \frac{k_2c}{k_1 + k_2 + k_3 + k_4} - k_2 G(y_n, y_m, y),$$

 $\frac{k_{3}c}{k_{1}+k_{2}+k_{3}+k_{4}} - k_{3} \operatorname{G}(z_{n}, z_{m}, z), \ \frac{k_{4}c}{k_{1}+k_{2}+k_{3}+k_{4}} - k_{4} \operatorname{G}(p_{n}, p_{m}, p) \in P^{0} \forall \ n > N_{c}.$

Adding these four and by Remark 1.3, we have

 $c - [k_1G(x_n, x_m, x) + k_2G(y_n, y_m, y) + k_3G(z_n, z_m, z) + k_4G(p_n, p_m, p)] \in P_0 \forall n > N_c.$ Now from(1.11.1) and Proposition 1.2(i), we have ka<< c for all $c \in P_0$. By Proposition 1.2(ii), we have a = 0 as k > 0.

2. Main result

Theorem 2.1. Let (X,G) be a symmetric G-cone metric space and A,B,C : $X \rightarrow X$ be satisfying

 $(2.1.1) \quad G(Ax, By, Cz) \le k \max \begin{cases} G(x, y, z), G(x, Ax, By), \\ G(y, By, Cz), G(z, Cz, Ax), \\ G(x, Ax, Ax), G(y, By, By), G(z, Cz, Cz), \end{cases}$

for all x, y, $z \in X$, where $0 \le k \le 1$.

Then the mappings A, B and C have a unique common fixed point in X.

Proof. Choose
$$x_0 \in X$$
. Define $x_{3n+1} = Ax_{3n}$, $x_{3n+2} = Bx_{3n+1}$, $x_{3n+3} = Cx_{3n+2}$, $n = 0, 1, 2, ...$

Case(I) If
$$x_{3n} = x_{3n+1}$$
 then x_{3n} is a fixed point of A. Denote $x_{3n} = x$. Then $Ax = x$.

Suppose $Bx \neq Cx$. Then from (2.1.1)

$$G(x, Bx, Cx) = G(x, Bx, Cx)$$

$$\leq k \max \begin{cases} 0, G(x, x, Bx), G(x, Bx, Cx), G(x, Cx, x), \\ 0, G(x, Bx, Bx), G(x, Cx, Cx) \end{cases}$$

$$= k \max \{G(x, x, Bx), G(x, Bx, Cx), G(x, x, Cx)\} ...(1) , as X is symmetric$$

$$\leq k G(x, Bx, Cx) \qquad \text{from}(G_3)$$

It is a contradiction. Hence Bx = Cx.

Now from(1),G(x,Bx,Bx)
$$\leq$$
 k G(x,Bx,Bx).

Now from Proposition 1.1, Bx = x. Hence Cx = x.

Thus x is a common fixed point of A,B and C.

Suppose x¹ is another common fixed point of A,B and C. Then

$$G(x, x, x^{1}) = G(Ax, Bx, Cx^{1})$$

$$\leq k \max \{G(x, x, x^{1}), 0, G(x, x, x^{1}), G(x^{1}, x^{1}, x), 0, 0, 0\}$$

$$= k G(x, x, x^{1}) \text{ as } X \text{ is symmetric}$$

Hence $x = x^1$. Thus x is the unique common fixed point of A,B and C.

Similarly, if $x_{3n+1} = x_{3n+2}$ or $x_{3n+2} = x_{3n+3}$ then we can show that A , B and

C have a unique common fixed point in X.

Case(II): Assume that $x_n \neq x_{n+1}$ for all n.

As X is symmetric and from (G₃),we have

 $G(x_{3n+1}, x_{3n+2}, x_{3n+3})$

$$= G(Ax_{3n}, Bx_{3n+1}, Cx_{3n+2})$$

$$\leq k \max \begin{cases} G(x_{3n}, x_{3n+1}, x_{3n+2}), G(x_{3n}, x_{3n+1}, x_{3n+2}), G(x_{3n+1}, x_{3n+2}, x_{3n+3}) \\ G(x_{3n+2}, x_{3n+3}, x_{3n+1}), G(x_{3n}, x_{3n+1}, x_{3n+1}) \\ G(x_{3n+1}, x_{3n+2}, x_{3n+2}), G(x_{3n+2}, x_{3n+3}, x_{3n+3}) \end{cases}$$

$$\leq k \max \begin{cases} G(x_{3n}, x_{3n+1}, x_{3n+2}), G(x_{3n+1}, x_{3n+2}, x_{3n+3}) \\ G(x_{3n}, x_{3n}, x_{3n+1}), G(x_{3n+1}, x_{3n+2}, x_{3n+2}), G(x_{3n+2}, x_{3n+3}, x_{3n+3}) \end{cases}$$

$$\leq k \max \begin{cases} G(x_{3n}, x_{3n+1}, x_{3n+2}), G(x_{3n+1}, x_{3n+2}, x_{3n+3}) \\ G(x_{3n}, x_{3n+1}, x_{3n+2}), G(x_{3n+1}, x_{3n+2}, x_{3n}), G(x_{3n+2}, x_{3n+3}, x_{3n+1}) \end{cases}$$

Thus $G(x_{3n+1}, x_{3n+2}, x_{3n+3}) \le k G(x_{3n}, x_{3n+1}, x_{3n+2})$. Similarly, we can show that $G(x_{3n+2}, x_{3n+3}, x_{3n+4}) \le k G(x_{3n+1}, x_{3n+2}, x_{3n+3})$ and $G(x_{3n+3}, x_{3n+4}, x_{3n+5}) \le G(x_{3n+2}, x_{3n+3}, x_{3n+4})$. Thus $G(x_n, x_{n+1}, x_{n+2}) \le k G(x_{n-1}, x_n, x_{n+1}), n = 1, 2, 3,$ Hence $G(x_n, x_{n+1}, x_{n+2}) \le k G(x_{n-1}, x_n, x_{n+1})$

 k^2 (G(x_{n-2}, x_{n-1}, x_n)

 $\leq k^{n} (G(x_{0}, x_{1}, x_{2})) \dots (2)$ From (G₃) and (2), we have $G(x_{n}, x_{n}, x_{n+1}) \leq G(x_{n}, x_{n+1}, x_{n+2}) \leq k^{n} (G(x_{0}, x_{1}, x_{2})).$

.

≤

Now for m > n,

$$\begin{array}{ll} G(x_n, x_n, x_m) & \leq & G(x_n, x_n, x_{n+1}) + G(x_{n+1}, x_{n+1}, x_{n+2}) + ... + G(x_{m-1}, x_{m-1}, x_m) \\ & \leq & k^n G(x_0, x_1, x_2) + k^{n+1} G(x_0, x_1, x_2) + ... + k^{m-1} G(x_0, x_1, x_2) \\ & \leq & \frac{k^n}{1-k} G(x_0, x_1, x_2) \\ & \rightarrow & 0 \text{ as } n \rightarrow \infty. \end{array}$$

From Remark 1.9, it follows that for 0 << c and large n, $\frac{K}{1-k}$ G(x₀, x₁, x₂) << c.

Now from Corollary 1.2(i), we have $G(x_n, x_n, x_m) \ll c$ for all m > n. Hence $\{x_n\}$ is G – Cauchy. Since X is G – complete, there exists $p \in X$ such that $x_n \rightarrow p$ as $n \rightarrow \infty$. Now

G(Ap, p, p)

$$\leq G(Ap, Bx_{3n+1}, Bx_{3n+1}) + G(Bx_{3n+1}, p, p) \leq G(Bx_{3n+1}, Cx_{3n+2}, Cx_{3n+2}) + G(Cx_{3n+2}, Ap, Bx_{3n+1}) + G(Bx_{3n+1}, p, p) = G(x_{3n+2}, x_{3n+3}, x_{3n+3}) + G(x_{3n+2}, p, p) + G(Ap, Bx_{3n+1}, Cx_{3n+2}) \leq G(x_{3n+2}, p, p) + G(p, x_{3n+3}, x_{3n+3}) + G(x_{3n+2}, p, p) + \\ \begin{cases} G(p, x_{3n+1}, x_{3n+2}, x_{3n+3}), G(p, Ap, x_{3n+2}), \\ G(p, Ap, Ap), G(x_{3n+1}, x_{3n+2}, x_{3n+3}), G(x_{3n+2}, x_{3n+3}, Ap), \\ G(p, Ap, Ap), G(x_{3n+1}, x_{3n+2}, x_{3n+2}), G(x_{3n+2}, x_{3n+3}, x_{3n+3}) \end{cases} \leq 2 G(x_{3n+2}, p, p) + G(p, x_{3n+3}, x_{3n+3}) + \\ \begin{cases} G(p, x_{3n+1}, x_{3n+2}), G(Ap, p, p) + G(p, p, x_{3n+2}, x_{3n+3}, x_{3n+3}) \\ G(x_{3n+2}, p, p) + G(p, x_{3n+1}, x_{3n+3}), G(Ap, p, p) + G(p, x_{3n+2}, x_{3n+3}), \\ G(p, p, Ap), G(x_{3n+2}, p, p) + G(p, x_{3n+1}, x_{3n+2}), \\ G(x_{3n+2}, p, p) + G(p, x_{3n+2}, p, p) + G(p, x_{3n+3}, x_{3n+3}) \\ \end{cases}$$

Thus we have

$$\begin{split} G(Ap, p, p) &\leq 2G(x_{3n+2}, p, p) + G(p, x_{3n+3}, x_{3n+3}) + k \ G(p, x_{3n+1}, x_{3n+2}) \ or \\ (1 - k) \ G(Ap, p, p) &\leq (2 + k) G(x_{3n+2}, p, p) + G(p, x_{3n+3}, x_{3n+3}) \ or \\ G(Ap, p, p) &\leq (2 + k) \ G(x_{3n+2}, p, p) + G(p, x_{3n+3}, x_{3n+3}) + k \ G(p, x_{3n+1}, x_{3n+3}) \ or \\ (1 - k) G(Ap, p, p) &\leq 2G(x_{3n+2}, p, p) + G(p, x_{3n+3}, x_{3n+3}) + k \ G(p, x_{3n+2}, x_{3n+3}) \ or \\ (1 - k) G(Ap, p, p) &\leq 2G(x_{3n+2}, p, p) + G(p, x_{3n+3}, x_{3n+3}) \ or \end{split}$$

 $G(Ap, p, p) \le (2+k) G(x_{3n+2}, p, p)+G(p, x_{3n+3}, x_{3n+3})+kG(p, x_{3n+1}, x_{3n+2})$ or $G(Ap, p, p) \le (2+k) G(x_{3n+2}, p, p) + (1+k)G(p, x_{3n+3}, x_{3n+3}).$ Now from Proposition 1.7 and from Lemma 1.11, it follows that G(Ap, p, p) = 0 so that Ap = p. The rest of the proof follows as in Case(I).

References.

- Ismat Beg, Mujahid Abbas and Talat Nazir, Generalized cone metric spaces, J. Nonlinear Sci.
 Appl. 3, No.1 (2010), 21 31.
- [2] L.G. Huang and X. Zhang , Cone metric spaces and fixed point theorems of contractive mappings, J.Math.Anal.Appl., 332(2) (2007), 1468 1476.
- [3] S. Rezapour and R. Hamlbarani, Some notes on the paper " Cone metric spaces and fixed point theorems of contractive mappings ",J.Math.Anal. Appl., 345 (2008), 719-724.
- [4] Z. Mustafa and B. Sims, A new approach to generalized metric spaces,

Journal of Nonlinear and Convex Analysis, Vol.7, no.2, (2006), 289 – 297.

- [5] G. Jungck, S. Radenovic, S. Radojevic and V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed point theory and Applications, Vol.2009, Article ID 643840, 13 pages, doi:10.1155/2009/643840.
- [6] Shoba Jain, Shishir Jain and Lal Bahadur, Compatibility and weak compatibility for four self maps in a cone metric space, Bulletin of Mathematical Analysis and Applications,Vol.2,Issue 1 (2010), 15 24.