The Journal of

Mathematics and Computer Science

Available online at

http://www.TIMCS.com

The Journal of Mathematics and Computer Science / TJMCS Vol . 4 No. 4 (2012) 585-590

A Unique Common Fixed Point Theorem For Three Mappings in G-Cone metric spaces

K.P.R. Rao
Department of Mathematics
Acharya Nagarjuna University
Nagarjuna Nagar-522 510, A.P., India
email: kprrao2004@yahoo.com
\section*{K. Bhanu Lakshmi}
Science and Humanities Department
Lakireddy Balireddy College of Engineering
Mylavaram-521230,A.P., India
email: bhanulaks@gmail.com
V.C.C. Raju
Department of Mathematics, University of Botswana
Private Bag UB 00704, Gaborone, Botswana
email: varanasi@mopipi.ub.bw

Received: March 2012 , Revised: November 2012
Online Publication: November 2012

Abstract

In this paper we obtain a unique common fixed point theorem for three mappings in G-cone metric spaces and obtain an extension and improvement of a theorem of I. Beg et. al. [1].

Keywords: G - cone metric space, common fixed points, symmetric space.
2010 Mathematics Subject Classification: 47H10; 54H25 .
K.P.R. Rao, K. Bhanu Lakshmi and V.C.C. Raju / TJ MCS Vol . 4 No. 4 (2012) 585-590

1. Introduction and preliminaries

Based on cone metric spaces introduced by [2] and on G-metric spaces introduced by [4], I. Beg et. al. [1] introduced generalized cone metric spaces as follows:

Let E be a real Banach space and P be a subset of E . The subset P is called a Cone if it has the following properties:
(i) P is non empty, closed and $P \neq\{0\}$;
(ii) $0 \leq a, b \in R$ and $x, y \in P \Rightarrow a x+b y \in P$;
(iii) $\mathrm{P} \cap(-\mathrm{P})=\{0\}$.

For a given cone $\mathrm{P} \subseteq \mathrm{E}$, we can define a partial ordering \leq on E with respect to P by $\mathrm{x} \leq \mathrm{y}$ if and only if $\mathrm{y}-\mathrm{x} \in \mathrm{P}$. We will write $\mathrm{x}<\mathrm{y}$ if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{x} \neq \mathrm{y}$, while $\mathrm{x} \ll \mathrm{y}$ will stands for $\mathrm{y}-\mathrm{x} \in \mathrm{P}^{0}$, where P^{0} denotes the interior of P .

Proposition 1.1 ([5]). Let P be a cone in a real Banach space E. If $a \in P$ and $a \leq \lambda$ a for some $\lambda \in[0,1)$ then $\mathrm{a}=0$.

Proposition 1.2 ([3],Cor.1.4).Let P be a cone in a real Banach space E .
(i) If a $\leq \mathrm{b}$ and $\mathrm{b} \ll \mathrm{c}$, then $\mathrm{a} \ll$ c
(ii) If $\mathrm{a} \in \mathrm{E}$ and $\mathrm{a} \ll \mathrm{c}$ for all $\mathrm{c} \in \mathrm{P}^{0}$, then $\mathrm{a}=0$.

Remark 1.3 ([3]). $\lambda \mathrm{P}^{0} \subseteq \mathrm{P}^{0}$ for $\lambda>0$ and $\mathrm{P}^{0}+\mathrm{P}^{0} \subseteq \mathrm{P}^{0}$.
Definition 1.4 ([1]). Let X be a nonempty set and let $G: X \times X \times X \rightarrow E$ be a function satisfying the following properties :
$\left(G_{1}\right): G(x, y, z)=0$ if $x=y=z$,
$\left(G_{2}\right): 0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
$\left(G_{3}\right): G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,
$\left(G_{4}\right): G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots$ (symmetry in three variables),
$\left(G_{5}\right): G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$.
Then the function G is called a generalized cone metric on X and X is called a generalized cone metric space or a G - cone metric space. It is clear that if $G(x, y, z)=0$ then $x=y=z$ for any $x, y, z \in X$.

Definition 1.5 ([1]). A G - cone metric space X is called symmetric if $G(x, x, y)=G(x, y, y)$ for all x, y $\in \mathrm{X}$.

Definition 1.6 ([1]). Let X be a G - cone metric space and $\left\{x_{n}\right\}$ be a sequence in X. The sequence $\left\{x_{n}\right\}$ is said to converge to a point $x \in X$ if for every $c \in E$ with $0 \ll c$ there is N such that $G\left(x_{n}, x_{m}, x\right) \ll c$ for all $n, m>N$. In this case, we write $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ as $\mathrm{n} \rightarrow \infty$.

The sequence $\left\{x_{n}\right\}$ is said to be a G - Cauchy sequence in X if for every $c \in E$ with $0 \ll c$ there is N such that $G\left(x_{n}, x_{m}, x_{l}\right) \ll c$ for all $n, m, l>N$.
X is said to be complete if every G - Cauchy sequence in X is convergent in X.

Proposition 1.7 ([1],Lemma 2.8). Let X be a G - cone metric space. Then for a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\} \subseteq \mathrm{X}$ and a point $\mathrm{x} \in \mathrm{X}$, the following are equivalent
(i) $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is G - convergent to x ,
(ii) $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$,
(iii) $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{x}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$,
(iv) $\mathrm{G}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$ as $\mathrm{n}, \mathrm{m} \rightarrow \infty$.

Proposition 1.8 ([1],Lemma 2.9). Let X be a G - cone metric space. Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.
Remark 1.9 ([5]). If $c \in P^{0}, 0 \leq a_{n}$ and $a_{n} \rightarrow 0$, then there exists $n_{0} \in N$ such that for all $n>n_{0}$ we have $\mathrm{a}_{\mathrm{n}} \ll \mathrm{c}$.

Ismat Beg et.al [1] proved the following
Theorem 1.10 ([1],Theorem 3.1). Let X be a complete symmetric G - cone metric space and T : X $\rightarrow X$ be a mapping satisfying one of the following conditions

$$
\begin{gathered}
G(T x, T y, T z) \leq a G(x, y, z)+b G(x, T x, T x)+c G(y, T y, T y)+d G(z, T z, T z) \\
\text { and } \\
G(T x, T y, T z) \leq a G(x, y, z)+b G(x, x, T x)+c G(y, y, T y)+d G(z, z, T z)
\end{gathered}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$, where $0 \leq \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}<1$.
Then T has a unique fixed point in X.
Now, we give a Lemma in G - cone metric spaces which is similar in cone metric spaces given by Jain et.al [6].
Lemma 1.11: Let X be a G - cone metric space, P be a cone in a real Banach space E and $k_{1}, k_{2}, k_{3}, k_{4}$ ≥ 0 such that $\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+\mathrm{k}_{4}>0$ and $\mathrm{k}>0$. If $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}, \mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{y}, \mathrm{z}_{\mathrm{n}} \rightarrow \mathrm{z}$ and $\mathrm{p}_{\mathrm{n}} \rightarrow \mathrm{p}$ in X and
(1.11.1) $\mathrm{ka} \leq \mathrm{k}_{1} \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}\right)+\mathrm{k}_{2} \mathrm{G}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}, \mathrm{y}\right)+\mathrm{k}_{3} \mathrm{G}\left(\mathrm{z}_{\mathrm{n}}, \mathrm{z}_{\mathrm{m}}, \mathrm{z}\right)+\mathrm{k}_{4} \mathrm{G}\left(\mathrm{p}_{\mathrm{n}}, \mathrm{p}_{\mathrm{m}}, \mathrm{p}\right)$
then $\mathrm{a}=0$.
Proof. Since $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}, \mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{y}, \mathrm{z}_{\mathrm{n}} \rightarrow \mathrm{z}$ and $\mathrm{p}_{\mathrm{n}} \rightarrow \mathrm{p}$, we have for $\mathrm{c} \in \mathrm{P}^{0}$, there exists a positive integer N_{c} such that
$\frac{c}{k_{1}+k_{2}+k_{3}+k_{4}}-\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}\right), \frac{c}{k_{1}+k_{2}+k_{3}+k_{4}}-\mathrm{G}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}, \mathrm{y}\right)$,
$\frac{c}{k_{1}+k_{2}+k_{3}+k_{4}}-G\left(z_{n}, z_{m}, z\right), \frac{c}{k_{1}+k_{2}+k_{3}+k_{4}}-G\left(p_{n}, p_{m}, p\right) \in P^{0} \forall n>N_{c}$.
From Remark 1.3, we have

$$
\begin{aligned}
& \frac{k_{1} c}{k_{1}+k_{2}+k_{3}+k_{4}}-k_{1} G\left(x_{n}, x_{m}, x\right), \frac{k_{2} c}{k_{1}+k_{2}+k_{3}+k_{4}}-k_{2} G\left(y_{n}, y_{m}, y\right), \\
& \frac{k_{3} c}{k_{1}+k_{2}+k_{3}+k_{4}}-k_{3} G\left(z_{n}, z_{m}, z\right), \frac{k_{4} c}{k_{1}+k_{2}+k_{3}+k_{4}}-k_{4} G\left(p_{n}, p_{m}, p\right) \in P^{0} \forall n>N_{c} .
\end{aligned}
$$

Adding these four and by Remark 1.3, we have
$c-\left[k_{1} G\left(x_{n}, x_{m}, x\right)+k_{2} G\left(y_{n}, y_{m}, y\right)+k_{3} G\left(z_{n}, z_{m}, z\right)+k_{4} G\left(p_{n}, p_{m}, p\right)\right] \in P^{0} \forall n>N_{c}$.
Now from(1.11.1) and Proposition 1.2(i), we have ka<<c for all c $\in \mathrm{P}^{0}$.
By Proposition 1.2(ii), we have $\mathrm{a}=0$ as $\mathrm{k}>0$.

2. Main result

Theorem 2.1. Let (X, G) be a symmetric G-cone metric space and $A, B, C: X \rightarrow X$ be satisfying

$$
G(A x, B y, C z) \leq \quad k \max \left\{\begin{array}{c}
G(x, y, z), G(x, A x, B y) \tag{2.1.1}\\
G(y, B y, C z), G(z, C z, A x) \\
G(x, A x, A x), G(y, B y, B y), G(z, C z, C z)
\end{array}\right\}
$$

for all $x, y, z \in X$, where $0 \leq k<1$.
Then the mappings A, B and C have a unique common fixed point in X.
Proof. Choose $x_{0} \in X$. Define $x_{3 n+1}=A x_{3 n}, x_{3 n+2}=B x_{3 n+1}, x_{3 n+3}=C x_{3 n+2}, n=0,1,2, \ldots \ldots$.
Case(I) If $x_{3 n}=x_{3 n+1}$ then $x_{3 n}$ is a fixed point of A. Denote $x_{3 n}=x$. Then $A x=x$.
Suppose $B x \neq C x$. Then from (2.1.1)

$$
\begin{aligned}
G(x, B x, C x) & =G(x, B x, C x) \\
& \leq k \max \left\{\begin{array}{c}
0, G(x, x, B x), G(x, B x, C x), G(x, C x, x) \\
0, G(x, B x, B x), G(x, C x, C x)
\end{array}\right\} \\
& =k \max \{G(x, x, B x), G(x, B x, C x), G(x, x, C x)\} \ldots(1) \text {, as } X \text { is symmetric } \\
& \leq k \operatorname{G}(x, B x, C x) \quad \text { from }\left(G_{3}\right)
\end{aligned}
$$

It is a contradiction. Hence $B x=C x$.
Now from(1), $G(x, B x, B x) \leq k G(x, B x, B x)$.
Now from Proposition 1.1, $\mathrm{Bx}=\mathrm{x}$. Hence $\mathrm{Cx}=\mathrm{x}$.
Thus x is a common fixed point of A, B and C.
Suppose x^{1} is another common fixed point of A, B and C. Then

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{x}, \mathrm{x}, \mathrm{x}^{1}\right) \quad & =\mathrm{G}\left(A x, B x, C x^{1}\right) \\
& \leq \mathrm{k} \max \left\{\mathrm{G}\left(\mathrm{x}, \mathrm{x}, \mathrm{x}^{1}\right), 0, \mathrm{G}\left(\mathrm{x}, \mathrm{x}, \mathrm{x}^{1}\right), \mathrm{G}\left(\mathrm{x}^{1}, \mathrm{x}^{1}, \mathrm{x}\right), 0,0,0\right\} \\
& =\mathrm{k} G\left(\mathrm{x}, \mathrm{x}, \mathrm{x}^{1}\right) \text { as } \mathrm{X} \text { is symmetric }
\end{aligned}
$$

Hence $x=x^{1}$. Thus x is the unique common fixed point of A, B and C.
Similarly, if $\mathrm{x}_{3 \mathrm{n}+1}=\mathrm{x}_{3 \mathrm{n}+2}$ or $\mathrm{x}_{3 \mathrm{n}+2}=\mathrm{x}_{3 \mathrm{n}+3}$ then we can show that A, B and
C have a unique common fixed point in X.
Case(II): Assume that $\mathrm{X}_{\mathrm{n}} \neq \mathrm{X}_{\mathrm{n}+1}$ for all n .
As X is symmetric and from $\left(\mathrm{G}_{3}\right)$, we have
$G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)$
$=G\left(A x_{3 n}, B x_{3 n+1}, C x_{3 n+2}\right)$
$\leq \quad k \max \left\{\begin{array}{c}G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \\ G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+1}\right), G\left(x_{3 n}, x_{3 n+1}, x_{3 n+1}\right) \\ G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+2}\right), G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+3}\right)\end{array}\right\}$

$$
\begin{aligned}
& \leq \quad k \max \left\{\begin{array}{c}
G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \\
G\left(x_{3 n}, x_{3 n}, x_{3 n+1}\right), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+2}\right), G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+3}\right)
\end{array}\right\} \\
& \leq \quad k \max \left\{\begin{array}{c}
G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \\
G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n}\right), G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+1}\right)
\end{array}\right\}
\end{aligned}
$$

Thus $G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right) \leq k G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)$.
Similarly, we can show that $G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+4}\right) \leq k G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)$
and $G\left(x_{3 n+3}, x_{3 n+4}, x_{3 n+5}\right) \leq G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+4}\right)$.
Thus $G\left(x_{n}, x_{n+1}, x_{n+2}\right) \leq k G\left(x_{n-1}, x_{n}, x_{n+1}\right), n=1,2,3, \ldots$.
Hence
$\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right) \leq \quad \mathrm{kG}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)$

$$
\begin{array}{ll}
\leq & \mathrm{k}^{2}\left(\mathrm{G}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right. \\
\cdot & \tag{2}\\
\cdot & \\
\leq & \mathrm{k}^{\mathrm{n}}\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)\right) \ldots . .
\end{array}
$$

From (G_{3}) and (2), we have
$G\left(x_{n}, x_{n}, x_{n+1}\right) \leq G\left(x_{n}, x_{n+1}, x_{n+2}\right) \leq k^{n}\left(G\left(x_{0}, x_{1}, x_{2}\right)\right)$.
Now for $m>n$,

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) & \leq \quad \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{G}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)+\ldots+\mathrm{G}\left(\mathrm{x}_{\mathrm{m}-1}, \mathrm{x}_{\mathrm{m}-1}, \mathrm{x}_{\mathrm{m}}\right) \\
& \leq \mathrm{k}^{\mathrm{n}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{k}^{\mathrm{n}+1} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)+\ldots+\mathrm{k}^{\mathrm{m}-1} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& \leq \frac{\mathrm{k}^{\mathrm{n}}}{1-\mathrm{k}} \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& \rightarrow \quad 0 \text { as } \mathrm{n} \rightarrow \infty .
\end{aligned}
$$

From Remark 1.9, it follows that for $0 \ll c$ and large $n, \frac{k^{n}}{1-k} G\left(x_{0}, x_{1}, x_{2}\right) \ll c$.
Now from Corollary 1.2(i), we have $G\left(x_{n}, x_{n}, x_{m}\right) \ll c$ for all $m>n$. Hence $\left\{x_{n}\right\}$ is G - Cauchy. Since X is G - complete, there exists $p \in X$ such that $X_{n} \rightarrow p$ as $n \rightarrow \infty$.
Now
G(Ap, p, p)
$\leq \quad G\left(A p, B x_{3 n+1}, B x_{3 n+1}\right)+G\left(B x_{3 n+1}, p, p\right)$
$\leq \quad G\left(\mathrm{Bx}_{3 n+1}, \mathrm{Cx}_{3 n+2}, \mathrm{Cx}_{3 n+2}\right)+\mathrm{G}\left(\mathrm{Cx}_{3 n+2}, A p, B x_{3 n+1}\right)+\mathrm{G}\left(\mathrm{Bx}_{3 n+1}, \mathrm{p}, \mathrm{p}\right)$
$=G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+3}\right)+G\left(x_{3 n+2}, p, p\right)+G\left(A p, B x_{3 n+1}, C x_{3 n+2}\right)$
$\leq \quad G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+3}, x_{3 n+3}\right)+G\left(x_{3 n+2}, p, p\right)+$
$k \max \left\{\begin{array}{c}G\left(p, x_{3 n+1}, x_{3 n+2}\right), G\left(p, A p, x_{3 n+2}\right), \\ G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right), G\left(x_{3 n+2}, x_{3 n+3}, A p\right), \\ G(p, A p, A p), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+2}\right), G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+3}\right)\end{array}\right\}$
$\leq \quad 2 \mathrm{G}\left(\mathrm{x}_{3 \mathrm{n}+2}, \mathrm{p}, \mathrm{p}\right)+\mathrm{G}\left(\mathrm{p}, \mathrm{x}_{3 \mathrm{n}+3}, \mathrm{x}_{3 \mathrm{n}+3}\right)+$

$$
k \max \left\{\begin{array}{c}
G\left(p, x_{3 n+1}, x_{3 n+2}\right), G(A p, p, p)+G\left(p, p, x_{3 n+2}\right) \\
G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+1}, x_{3 n+3}\right), G(A p, p, p)+G\left(p, x_{3 n+2}, x_{3 n+3}\right) \\
G(p, p, A p), G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+1}, x_{3 n+2}\right) \\
G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+3}, x_{3 n+3}\right)
\end{array}\right\}
$$

Thus we have
$G(A p, p, p) \leq 2 G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+3}, x_{3 n+3}\right)+k G\left(p, x_{3 n+1}, x_{3 n+2}\right)$ or
$(1-k) G(A p, p, p) \leq(2+k) G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+3}, x_{3 n+3}\right)$ or
$G(A p, p, p) \leq(2+k) G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+3}, x_{3 n+3}\right)+k G\left(p, x_{3 n+1}, x_{3 n+3}\right)$ or $(1-k) G(A p, p, p) \leq 2 G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+3}, x_{3 n+3}\right)+k G\left(p, x_{3 n+2}, x_{3 n+3}\right)$ or $(1-k) G(A p, p, p) \leq 2 G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+3}, x_{3 n+3}\right)$ or
$G(A p, p, p) \leq(2+k) G\left(x_{3 n+2}, p, p\right)+G\left(p, x_{3 n+3}, x_{3 n+3}\right)+k G\left(p, x_{3 n+1}, x_{3 n+2}\right)$ or $G(A p, p, p) \leq(2+k) G\left(x_{3 n+2}, p, p\right)+(1+k) G\left(p, x_{3 n+3}, x_{3 n+3}\right)$.
Now from Proposition 1.7 and from Lemma 1.11, it follows that $G(A p, p, p)=0$ so that $A p=p$. The rest of the proof follows as in Case(I).

References.

[1] Ismat Beg, Mujahid Abbas and Talat Nazir, Generalized cone metric spaces, J. Nonlinear Sci. Appl. 3, No. 1 (2010), 21 - 31.
[2] L.G. Huang and X. Zhang , Cone metric spaces and fixed point theorems of contractive mappings, J.Math.Anal.Appl., 332(2) (2007), 1468-1476.
[3] S. Rezapour and R. Hamlbarani, Some notes on the paper " Cone metric spaces and fixed point theorems of contractive mappings ",J.Math.Anal. Appl., 345 (2008), 719-724.
[4] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis,Vol.7, no.2, (2006), 289-297.
[5] G. Jungck, S. Radenovic ,S. Radojevic and V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed point theory and Applications,Vol.2009,Article ID 643840,13 pages, doi:10.1155/2009/643840.
[6] Shoba Jain, Shishir Jain and Lal Bahadur, Compatibility and weak compatibility for four self maps in a cone metric space, Bulletin of Mathematical Analysis and Applications,Vol.2,Issue 1 (2010), 15-24.

