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ABSTRACT

An analogue of £-fuzzy Banach's fixed point theorem in partially ordered sets is proved in this paper, and
several applications to linear and nonlinear matrix equations are discussed.
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1.Introduction

In this paper we discuss an analogue of £-fuzzy Banach’s fixed point theorem in
partially ordered sets and several applications. The key feature in this fixed point
theorem 1s that the contractility condition on the nonlinear map 1s only assumed
to hold on elements that are comparable in the partial order. However, the map
is assumed to be monotone. We show that under such conditions the conclusions
of Banach’s fixed point theorem still hold. It should be noted that there are many
fixed point theorems for order-preserving or order-reversing maps on lattices. See
[1]. However, for order-preserving maps the assumption is usually that the lattice
is complete, which implies, for instance, that there is a maximal element in the
lattice. Since the applications we have in mind concern the lattice of Hermitian
matrices or the cone of positive definite matrices, this does not hold for some of
our applications. For order-reversing maps there are usually conditions that imply
that there cannot be a periodic orbit of period two. For our applications such
assumptions are either not true or hard to check.
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2. PRELIMINARIES

In the sequel, we shall adopt the usual terminology, notation and conventions of
L-tuzzy metric spaces introduced by Saadati et al. [9] which are a generalization of
fuzzy metric sapces [4] and intuitionistic fuzzy metric spaces [7, 10].

Definition 2.1. ([5]) Let £ = (L, <) be a complete lattice, and U a non-empty
set called a universe. An L-fuzzy set A on U is defined as a mapping A: U — L.
For each u in U, A(u) represents the degree (in L) to which u satisfies A.

Lemma 2.2. ([2, 3]) Consider the set L* and the operation <. defined by:
L* = {(z1,29) : (x1,20) € [0,1]? and 1 + zo < 1},

(r1.72) <p+ (y1,92) < =1 < y1 and x9 = yo, for every (x1,x2), (y1,y2) € L*.
Then (L™, <y~) is a complete lattice .

Classically, a triangular norm 7" on ([0, 1], <) is defined as an increasing, com-
mutative, associative mapping T : [0, 1]2 — [0,1] satistying T(1,z) = =, for all
r € [0,1]. These definitions can be straightforwardly extended to any lattice
L = (L,<p). Define first Oz = inf L and 1, = sup L.

Definition 2.3. A negation on £ is any strictly decreasing mapping N : L — L
satisfying N'(0z) =1, and N (1z) =0, . TN (N(z)) ==z, for all z € L, then A is
called an involutive negation.

(z1,20) <+ (Y1.y2) = 71 < y1 and xo = ya, for every (x1,z2),(y1,y2) € L*.
Then (L*, <) is a complete lattice .

Classically, a triangular norm T on ([0, 1], <) is defined as an increasing, com-
mutative, associative mapping T : [0,1]2 — [0,1] satisfying T(1,z) = z, for all
xz € [0,1]. These definitions can be straightforwardly extended to any lattice
L = (L,<p). Define first Oz = inf L and 1z, =sup L.

Definition 2.3. A negation on £ is any strictly decreasing mapping N : L — L
satisfying N(0z) =1, and N'(1z) =0, . TN (N(z)) ==z, for all z € L, then N is

called an involutive negation.

In this paper the negation N : L — L is fixed.

Definition 2.4. A triangular norm (t-norm) on £ is a mapping 7 : L?> — L
satistying the following conditions:
(i) (Yz € L)(7T (z,1z) = z); (boundary condition)
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(i1) (V(z,y) € LH)(T(z,y) =T (y, z)); (commutativity)
(iii) (V(x,y,2) € L*)(T (2, T(y,2)) = T(T (z.y). 2)); (associativity)
(iv) (V(I‘! :E!; y]y!} € Ld)(m <L 2’ and ¥y <L y! = T(Iﬂyj =L T(E’1yj))'
(monotonicity)
A t—norm 7 on L is said to be continuous if for any =,y € £ and any sequences
{zn} and {yn} which converge to = and y we have

li;,n T (zn,yn) = T(z,y)

For example, 7 (z,y) = min(r,y) and 7(z,y) = zy are two continuous f-norms on
[0,1]. A t-norm can also be defined recursively as an (n + 1)-ary operation (n € N)
by T' =T and

Tn(ml':' o :I:TH-]-) = T(Tn_l(:rl: e ?1'?1):1:1’14-1)
forn > 2 and z; € L.
A t-norm 7 is said to be of Hadzé type if the family {7}, is equicontinuous
at x = 1., that 1s,
Veel \ {Dﬁ,l,ﬂ} dde L\‘{Og,lﬁ} a >LN(O‘) = Tn[:{l:] = N(E‘} (’.-‘1 = 1:!

Ty is a trivial example of a t-norm of Hadzié type, but there exist t-norms of
Hadzi¢ type weaker than 7, ([6]) where

Tu(z,y) = {

z, iftx <py,
Y. lfy <L .

Definition 2.5. The 3-tuple (X, M.T) is said to be an L-fuzzy metric space if
X is an arbitrary (non-empty) set, 7 is a continuous t—norm on £ and M is an

L-fuzzy set on X2x 10, +o0[ satisfying the following conditions for every =, y,z in
X and t,s in |0, 4+oc]:
(a) M(z,y,t) > Og;
(b) M(z,y,t) = 1, for all ¢ > 0 if and only if » = y;
(c) Mz, y,t) = Mly,z,1);
(d) T(M(z,y,t), M(y,z,s)) =i M(z,2,t+s);
(e) M(zx,y,-):]0,0¢[ — L is continuous.

If the £-fuzzy metric space (X, M, T ) satisfies the condition:
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(f) tligch(T y:t) = 11'13

then (X, M, T) is said to be Menger L-fuzzy metric space or for short a ML-fuzzy
metric space.

Let (X, M,T) be an £-fuzzy metric space. For t € |0, +00[, we define the open
ball B(z,r,t) with center z € X and radius r € L\ {0z, 1.}, as
B(z,r,t)={y € X : M(z,y,t) > N(r)}.

A subset A C X is called openif for each z € A, thereexist ¢ > Oand r € L\{0¢, 1}
such that B(z,r,t) C A. Let 744 denote the family of all open subsets of X. Then
Tz is called the topology induced by the L-fuzzy metric M.

Example 2.6. ([11]) Let (X, d) be a metric space. Denote 7 (a,b) = (a;b;, min(ag+
by, 1)) for all @ = (aj,a9) and b = (by,be) in L* and let M and N be fuzzy sets on
X2 x (0,00) be defined as follows:

t d(z,y)
t+d(z,y) t+d(z,y)
Then (X, Marn.7T) is an intuitionistic fuzzy metric space.

Example 2.7. Let X = N. Define 7 (a,b) = (max(0,a; +b; — 1), a9 + by — asbs)
for all a = (a;,as) and b = (by,b9) in L, and let M(z,y,t) on X? x (0,00) be

defined as follows:

Mun(z,y,t) = (M(z,y,1), N(z,y,1)) = ( )-

(3:%57) if z<y

M(r;y,t)={ (L,Z¥) if y<a

for all z,y € X and t > 0. Then (X, M, T) is an L-fuzzy metric space.

Lemma 2.8. ([4]) Let (X, M,T) be an L-fuzzy metric space. Then, M(x,y,t) is
nondecreasing with respect to t, for all z,y in X.

Definition 2.9. A sequence {z,}ney in an L-fuzzy metric space (X, M,T) is
called a Cauchy sequence, if for each € € L\ {0z} and ¢ > 0, there exists ng € N
such that for all m > n > ng (n > m > nyg),

M(zm, zn, t) >0 N(€).
The sequence {z,, }nen is said to be convergent to z € X in the L-fuzzy metric space
(X, M, T) (denoted by z, M, z) if M(zp,z,t) = M(z,2,,t) — 1z whenever

n — +oo for every t > 0. A L-fuzzy metric space is said to be complete if and only
if every Cauchy sequence is convergent.

Let T be a continuous t—norm on the lattice £ such that for every p € L\{0z, 1.},
there isa A € L\ {0Og, 12} (which may depend on n) such that

(2.1) T YN, ..u N(V) > N(p) foreach ne{1,2,..}.
For the remainder of this paper we assume (1.1) holds.

Definition 2.10. Let (X, M,7) be an L-fuzzy metric space. M is said to be
continuous on X x X x]0, oo[ if

].ll'I'l M(‘Tﬂ: Yn, tﬂ-) = M(‘T? Y, t)

n—oo
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whenever a sequence {(zy,yn,tn)} in X x X x]0, 00[ converges to a point (z,y,t) €
X x X x]0, 00[ 1.e., limy M(zp, z,t) = limy, M(yn,y,t) = 1 and lim, M(z,y,t,) =
M(z,y,t).

Lemma 2.11. Let (X, M, T) be an L-fuzzy metric space. Then M is continuous
function on X x X x]0, ocl.

Proof. The proof is the same as that for fuzzy spaces (see Proposition 1 of [?]).
Lemma 2.12. If a ML-fuzzy metric space (X, M, T) satisfies the following con-
dition:

M(z,y.t)=C, forall t>0.
Then we have C =1, and x = y.

Proof. Let M(z,y,t) = C for all £ > 0. Then by (f) of Definition 1.8, we have
C =1, and by (b) of Definition 1.5 we conclude that =z = y.

Lemma 2.13. ([6]) Let (X, M, T) be an ML-fuzzy metric space which T is HadZié
type. Suppose

t
M(Tn,.l"n+1,t) ZL M (TO':'TI'! ﬁ)
for some 0 < k <1 and n € N. Then {x,} is a Cauchy sequence.

3. FIXED POINT THEOREM

Theorem 3.1. Let X be a partially ordered set such that every pair z,y € X
has a lower bound and an upper bound. Let (X, M,T) be an ML-fuzzy metric
space, in which T is HadZi¢ type. If A is a continuous, monotone (i.e., either
order-preserving or order-reversing) map from X into X such that

(1)30<c<l: M(Fz,Fyt) >, M(z,y,L), vz >y e X;

(2) 320 € X: 2o < Fzo) or 0 2 F(z0),

then F' has a unique fived point T. Moreover, for every r € X,

lim F"(x) = .

N— oo

Proof. Let 2y € X be such that zg < F(zp) or zg > F(xz). The monotonicity of
F implies that either F™(zq) < F" ! (zg) or F™(zg) > F™"(zp) for n =1,2,3, ...
So,

M(F”H(:gg):}"”(m),t) > M (Fn(:cg):F”_l(:ro),E) .
c
Hence, induction gives

M(Fn+1(lto),Fn(ToJ,f) Z M (F(Iﬁo), To, C_tn) .

By Lemma 2.13, { F™(x¢)} is Cauchy sequence. Since F' is complete, it follows that,
lim F"(zq) = z.
n—oo

Also, 7 is the unique fixed point of F' see [§].

Remark 3.2. There are some application from fixed point theorem in ML-fuzzy
metric space to linear and nonlinear matrix equations. In fact, by a standard ML-
fuzzy metric (see Example 2.6) we can conclude all result of [8].
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