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Abstract 
    In this paper we prove that the class of QS-algebras, p-semi simple algebras and BP-algebras are 
equivalent. 
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   1.   Introduction. 
 In  1966, Y. Imai  and  K. Iseki  introduced  two  classes  of  abstract  algebras:  BCK-algebras  and 
BCI-algebras [5, 6].  It  is  known  that  the  class  of  BCK-algebras  is  a  proper  subclass  of  BCI-
algebra.  P-Semisimple  algebras  are  another  special  class of  BCI-algebras, which  were  
introduced  by  T. D.  Lei  in 1982 ([11]).  They  play  a  basic  role  in  the  theory of  BCI-algebras  
and  have  close  contacts  with  abelian  groups.  Neggers, Ahn  and  Kim ([12])  introduced  the  
notion  of  Q-algebras  in  2001  and  after  that  Ahn  and  Kim  introduced  the notion  of  QS-
algebras  which  is  a  generalization  of  Q-algebras. In 2002, Neggers and Kim [14] introduce the 
notion of B-algebra and obtained several results. In  2006,  G. B. Kim  and  H.S  Kim ([8]) introduced  
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the  notion  of  a  BM-algebra  which is  a  specialization  of B-algebra.  The concept of a BP-algebra is    
introduced by   S.  S. Ahn  and  J. S.  Han [9], which is another generalization of B-algebra. 
 
 In  this  paper, we  prove  that  QS-algebras and  BP-algebras  are  equal to  P-Semisimple  algebras  
and so  they are  equal together. 
 
2. Preliminaries. 
 
Definition2.1. [8] A BM-algebra is a non-empty set X with a constant 0 and a binary operation " * " 
satisfying the following axioms: 
(A1) *0x x= , 
(A2) ( * )*( * ) * ,z x z y y x=  
for all , , .x y z X∈  
 
Definition2.2. [17] Let X be a set with a binary operation * and a constant 0. Then ( ,*,0)X  is 
called BCI- algebra if satisfies the following conditions: 
(BCI-1)  (( * )*( * ))*( * ) 0,x y x z z y =  
 (BCI-2) ( *( * ))* 0,x x y y =  
(BCI-3) * 0,x x =  
(BCI-4) * 0x y =  and * 0y x =  imply ,x y=  
 for all , , .x y z X∈  
 
Definition2.3.[17] A BCI-algebra X is called p-semi simple-algebra if 
0*(0* )    , for all x x x X= ∈ . 
 
Theorem 2.4. [17] Let X be a BCI-algebra. Then the following hold:  

(i) *0 ,x x=  
(ii) (ii) ( * )* ( * )* ,x y z x z y=  

for all , , .x y z X∈  
 
Theorem 2.5. [17] Let X be a BCI-algebra. Then the following are equivalent: 
 

(i) X is a p-semi simple algebra, 
(ii) every element of X is minimal, 
(iii) {0* | }.X x x X= ∈  

 
We note that an element x X∈  is called minimal, if * 0y x = , implies y x= . 
 
Definition 2.6.[1] Let X be a set with a binary operation * and a constant 0. Then (X,*,0) is called a 
BP-algebra if satisfies (A2) and the following conditions: 
 
(BP1) *( * ) ,x x y y=  
(BP2) * 0.x x =  
 
X is called QS-algebra, if satisfies A1, A2, BP2 and  
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(Q) ( * )* ( * )* ,x y z x z y=  
for any , , .x y z X∈  
 
Theorem 2.7.[1] Let X be a BP-algebra. Then *0 ,x x=  for all .x X∈  
 
Definition 2.8. [9] A BO-algebra is an algebra (X,*,0) of type (2,0) satisfying A1, BP2 and  

(BO) *( * ) ( * )*(0* ),x y z x y z=  
for all , , .x y z X∈  
 
Theorem 2.9. [9] BO-algebras, BM-algebras, P-semi simple algebras are equivalent and they are 
logically equivalent by abelian group. 
 
3. QS-algebras, BP-algebras and P-semi simple algebras 
 
Theorem 3.1. Let X be a set with a binary operation * and a constant 0. Then X is a p-semi simple-
algebra if and only if satisfies in the following conditions: 
 
(i) ( * )* ( * )* ,x y z x z y=  
(ii) * 0x y =  iff ,x y=  
for all , , .x y z X∈  
 
Proof. Let X be a p-semi simple-algebra. Then by Theorem 2.5(ii), * 0x y =  implies x y=  and by 
BCI-3, * 0x x = . Hence ( )ii  is hold. By Theorem 2.4(ii), ( )i  is hold. 
 
Conversely, let (i) and (ii) are hold. By (ii), (BCI-4) is hold. Also by (ii), * 0x x =  and (BCI-3)  is 
hold. 
 

By * 0x x =  and ( )i  we have ( *0)* ( * )*0 0x x x x= = . Now, by (ii) and 
*( * ))* ( * )*( * )* 0x x y y x y x y y= = , we conclude that  

 *( * ) . (1)x x y y=  
 
By (1), (ii) and (i) we have  

 (( * )*( * ))*( * ) (( *( * ))* )*( * ) ( * )*( * ) 0.x y x z z y x x z y z y z y z y= = =  
Thus, X is a BCI-algebra. By (ii), every element of X is minimal. By Theorem 2.5, X is a p-semi simple-
algebra. 
 
Corollary 3.2. Let X be a p-semi simple-algebra. Then the following hold: 
 

(i)  ( * )*( * ) * ,x y x z z y=  
(ii) *( * ) ,x x y y=  

for all , , .x y z X∈  
 
Proof. By Theorem 3.1 and definition of p-semi simple algebra the proof is clear. 
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Theorem3.3. X is a BP-algebra if and only if X is a p-semi simple-algebra. 
 
Proof. Let X be a p-semi simple-algebra. By Theorem 3.2(i), (ii) and  BCI-2, X is a BP-algebra. 
 
Conversely, let X be a BP-algebra and * 0x y = , for some ,x y X∈ . Then by BP1 and Theorem 2.7 

 *0 *( * ) .x x x x y y= = =  
Thus by BP2, * 0x y =  if and only if x y= . 
 
Let *x y z= , for some , , .x y z X∈  Then by BP1, * *( * )x z x x y y= = . Thus 

 *  if and only if * . (2)x y z x z y= =  
 

Let ( * )*x y z t=  and *x y a= . By (2) , *x a y= . Thus by A2, 

 ( * )* ( * )*( * ) * ( * )* .x z y x z x a a z x y z= = =  
By Theorem 3.1, X is a p-semi simple-algebra. 
 
Theorem 3.4. X is a QS-algebra if and only if X is a p-semi simple-algebra. 
 
Proof. Let X be a p-semi simple-algebra. Then by Theorem 3.2, X is a QS-algebra. 
 
Conversely, let X be a QS-algebra. Then by A1 and A2, 

 *( * ) ( *0)*( * ) *0 .x x y x x y y y= = =  
Thus X is a BP-algebra. By Theorem 3.3, X is a p-semi simple-algebra. 
 
Corollary 3.5. BM-algebras, BP-algebras, BO-algebras, QS-algebras and p-semisimple algebra are 
equivalent and they are logically equivalent by abelian group. 
 
Proof. By Theorems 3.3, 3.4 and Theorem 2.9 the proof is clear. 
 
4. Conclusion. 
 
The concept of a BP-algebra introduced by  S.  S. Ahn  and  J. S.  Han [8], which is another 
generalization of B-algebra. In this paper we show that this algebraic structure is equivalent to p-
semisimple BCI-algebras. 
 
 
Acknowledgments: The authors would like to express their thanks to referees for their comments 
and suggestions which improved the paper. 
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