S.A. Nematoalah Zadeh, A. Radfar, A. Borumand Saied/ TJMCS Vol .5 No.1 (2012) 17-21

Available online at http://www.TJMCS.com

The Journal of Mathematics and Computer Science Vol .5 No. 1 (2012) 17-21

On BP-algebras and QS-algebras

S.A. Nematoalah Zadeh

PayameNoor Tehran University, Tehran, Iran <u>sanemat254@yahoo.com</u>

A. Radfar

PayameNoor Boshehr University, Boshehr, Iran <u>ateferadfar@yahoo.com</u>

A. Borumand Saied

Shahid Bahonar University of Kerman, Kerman, Iran <u>arsham@mail.uk.ac.ir</u>

Received: April 2012, Revised: December 2012 Online Publication: December 2012

Abstract

In this paper we prove that the class of QS-algebras, p-semi simple algebras and BP-algebras are equivalent.

Keywords: QS-algebra, BP-algebra, BCI-algebras.

2010 Mathematics Subject Classification: Primary 54A40; Secondary 46S40.

1. Introduction.

In 1966, Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [5, 6]. It is known that the class of BCK-algebras is a proper subclass of BCI-algebra. P-Semisimple algebras are another special class of BCI-algebras, which were introduced by T. D. Lei in 1982 ([11]). They play a basic role in the theory of BCI-algebras and have close contacts with abelian groups. Neggers, Ahn and Kim ([12]) introduced the notion of Q-algebras in 2001 and after that Ahn and Kim introduced the notion of QS-algebras which is a generalization of Q-algebras. In 2002, Neggers and Kim [14] introduce the notion of B-algebra and obtained several results. In 2006, G. B. Kim and H.S Kim ([8]) introduced

the notion of a BM-algebra which is a specialization of B-algebra. The concept of a BP-algebra is introduced by S. S. Ahn and J. S. Han [9], which is another generalization of B-algebra.

In this paper, we prove that QS-algebras and BP-algebras are equal to P-Semisimple algebras and so they are equal together.

2. Preliminaries.

Definition2.1. [8] A BM-algebra is a non-empty set X with a constant 0 and a binary operation " * " satisfying the following axioms:

(A1) x * 0 = x, (A2) (z * x) * (z * y) = y * x, for all $x, y, z \in X$.

Definition2.2. [17] Let X be a set with a binary operation * and a constant 0. Then (X, *, 0) is called BCI- algebra if satisfies the following conditions:

(BCI-1) ((x * y) * (x * z)) * (z * y) = 0, (BCI-2) (x * (x * y)) * y = 0, (BCI-3) x * x = 0, (BCI-4) x * y = 0 and y * x = 0 imply x = y, for all $x, y, z \in X$.

Definition2.3.[17] A BCI-algebra X is called p-semi simple-algebra if $0^*(0^*x) = x$, for all $x \in X$

Theorem 2.4. [17] Let X be a BCI-algebra. Then the following hold:

(i) x * 0 = x, (ii) (ii) (x * y) * z = (x * z) * y, for all $x, y, z \in X$.

Theorem 2.5. [17] Let X be a BCI-algebra. Then the following are equivalent:

(i) X is a p-semi simple algebra,
(ii) every element of X is minimal,
(iii) X = {0*x | x ∈ X }.

We note that an element $x \in X$ is called minimal, if y * x = 0, implies y = x.

Definition 2.6.[1] Let X be a set with a binary operation * and a constant 0. Then (X,*,0) is called a BP-algebra if satisfies (A2) and the following conditions:

(BP1) x * (x * y) = y, (BP2) x * x = 0.

X is called QS-algebra, if satisfies A1, A2, BP2 and

(Q) (x * y) * z = (x * z) * y, for any $x, y, z \in X$.

Theorem 2.7.[1] Let X be a BP-algebra. Then x * 0 = x, for all $x \in X$.

Definition 2.8. [9] A BO-algebra is an algebra (X,*,0) of type (2,0) satisfying A1, BP2 and (BO) x * (y * z) = (x * y) * (0 * z),

for all $x, y, z \in X$.

Theorem 2.9. [9] BO-algebras, BM-algebras, P-semi simple algebras are equivalent and they are logically equivalent by abelian group.

3. QS-algebras, BP-algebras and P-semi simple algebras

Theorem 3.1. Let X be a set with a binary operation * and a constant 0. Then X is a p-semi simplealgebra if and only if satisfies in the following conditions:

(i) (x * y) * z = (x * z) * y, (ii) x * y = 0 iff x = y, for all $x, y, z \in X$.

Proof. Let X be a p-semi simple-algebra. Then by Theorem 2.5(ii), x * y = 0 implies x = y and by BCI-3, x * x = 0. Hence (*ii*) is hold. By Theorem 2.4(ii), (*i*) is hold.

Conversely, let (i) and (ii) are hold. By (ii), (BCI-4) is hold. Also by (ii), x * x = 0 and (BCI-3) is hold.

By x * x = 0 and (*i*) we have (x * 0) * x = (x * x) * 0 = 0. Now, by (*ii*) and x * (x * y)) * y = (x * y) * (x * y) * y = 0, we conclude that x * (x * y) = y. (1)

By (1), (ii) and (i) we have

((x * y)*(x * z))*(z * y) = ((x * (x * z))* y)*(z * y) = (z * y)*(z * y) = 0.

Thus, X is a BCI-algebra. By (ii), every element of X is minimal. By Theorem 2.5, X is a p-semi simplealgebra.

Corollary 3.2. Let X be a p-semi simple-algebra. Then the following hold:

(i) (x * y) * (x * z) = z * y, (ii) x * (x * y) = y, for all $x, y, z \in X$.

Proof. By Theorem 3.1 and definition of p-semi simple algebra the proof is clear.

Theorem3.3. X is a BP-algebra if and only if X is a p-semi simple-algebra.

Proof. Let X be a p-semi simple-algebra. By Theorem 3.2(i), (ii) and BCI-2, X is a BP-algebra.

Conversely, let X be a BP-algebra and x * y = 0, for some $x, y \in X$. Then by BP1 and Theorem 2.7 x = x * 0 = x * (x * y) = y.

Thus by BP2, x * y = 0 if and only if x = y.

Let x * y = z, for some $x, y, z \in X$. Then by BP1, x * z = x * (x * y) = y. Thus x * y = z if and only if x * z = y. (2)

Let (x * y) * z = t and x * y = a. By ⁽²⁾, x * a = y. Thus by A2, (x * z) * y = (x * z) * (x * a) = a * z = (x * y) * z.

By Theorem 3.1, X is a p-semi simple-algebra.

Theorem 3.4. X is a QS-algebra if and only if X is a p-semi simple-algebra.

Proof. Let X be a p-semi simple-algebra. Then by Theorem 3.2, X is a QS-algebra.

Conversely, let X be a QS-algebra. Then by A1 and A2,

 $x^{*}(x^{*}y) = (x^{*}0)^{*}(x^{*}y) = y^{*}0 = y.$

Thus X is a BP-algebra. By Theorem 3.3, X is a p-semi simple-algebra.

Corollary 3.5. BM-algebras, BP-algebras, BO-algebras, QS-algebras and p-semisimple algebra are equivalent and they are logically equivalent by abelian group.

Proof. By Theorems 3.3, 3.4 and Theorem 2.9 the proof is clear.

4. Conclusion.

The concept of a BP-algebra introduced by S. S. Ahn and J. S. Han [8], which is another generalization of B-algebra. In this paper we show that this algebraic structure is equivalent to p-semisimple BCI-algebras.

Acknowledgments: The authors would like to express their thanks to referees for their comments and suggestions which improved the paper.

References

[1] S. S. Ahn and J. S. Han, On BP-algebras, Submitted.

[2] R. Ameri, H. Hedayati, and E. Ghasemian, Filteristic soft BCK-algebras, TJMCS Vol .2 No.1 (2011) 81-87

[3] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.

S.A. Nematoalah Zadeh, A. Radfar, A. Borumand Saied/ TJMCS Vol .5 No.1 (2012) 17-21

[4] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.

[5] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.

[6] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.

[7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347-354.

[8] C. B Kim and H. S. Kim, On BM-algebras, Math. Japonica, 211-215 (2006).

[9] C. B Kim and H. S. Kim, On BO-algebras, Mathematica Slovaca, 2012, Vol 62, No. 5, 855-864.

[10] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26, Vol. 4, 471-481, (2004).

[11] T. D. Lei, Structure of finite associative BCI-algebras}, J. of Shaanxi Teachers Univ, 2(1982), 17-20.

[12] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Int. J. of Mathematics and Mathematical Sciences 27(no. 12), (2001), 749-757.

[13] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.

[14] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.

[15] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 215-219.

[16] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56(2006) 3, 301-306.

[17] H. Yisheng, BCI-algebra, Science Press, (2006).