The Journal of

Mathematics and Computer Science

Available online at

http://www.TIMCS.com

The Journal of Mathematics and Computer Science Vol . 5 No. 1 (2012) 17-21

On BP-algebras and QS-algebras

S.A. Nematoalah Zadeh
PayameNoor Tehran University, Tehran, Iran sanemat254@yahoo.com
A. Radfar
PayameNoor Boshehr University, Boshehr, Iran ateferadfar@yahoo.com

A. Borumand Saied

Shahid Bahonar University of Kerman, Kerman, Iran arsham@mail.uk.ac.ir

Received: April 2012, Revised: December 2012
Online Publication: December 2012

Abstract

In this paper we prove that the class of QS-algebras, p -semi simple algebras and BP -algebras are equivalent.

Keywords: QS-algebra, BP-algebra, BCI-algebras.
2010 Mathematics Subject Classification: Primary 54A40; Secondary 46S40.

1. Introduction.

In 1966, Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK-algebras and BCI -algebras [5,6]. It is known that the class of BCK -algebras is a proper subclass of $\mathrm{BCI}-$ algebra. P-Semisimple algebras are another special class of BCI-algebras, which were introduced by T. D. Lei in 1982 ([11]). They play a basic role in the theory of BCI-algebras and have close contacts with abelian groups. Neggers, Ahn and Kim ([12]) introduced the notion of Q-algebras in 2001 and after that Ahn and Kim introduced the notion of QSalgebras which is a generalization of Q-algebras. In 2002, Neggers and Kim [14] introduce the notion of B-algebra and obtained several results. In 2006, G. B. Kim and H.S Kim ([8]) introduced
the notion of a BM-algebra which is a specialization of B-algebra. The concept of a BP-algebra is introduced by S. S. Ahn and J. S. Han [9], which is another generalization of B-algebra.

In this paper, we prove that QS-algebras and BP-algebras are equal to P-Semisimple algebras and so they are equal together.

2. Preliminaries.

Definition2.1. [8] A BM-algebra is a non-empty set X with a constant 0 and a binary operation " *" satisfying the following axioms:
(A1) $x * 0=x$,
(A2) $(z * x) *(z * y)=y * x$,
for all $x, y, z \in X$.

Definition2.2. [17] Let X be a set with a binary operation * and a constant 0 . Then ($X,{ }^{*}, 0$) is called BCI- algebra if satisfies the following conditions:
(BCI-1) $((x * y) *(x * z)) *(z * y)=0$,
(BCI-2) $(x *(x * y)) * y=0$,
(BCI-3) $x * x=0$,
(BCI-4) $x * y=0$ and $y * x=0$ imply $x=y$,
for all $x, y, z \in X$.
Definition2.3.[17] A BCI-algebra X is called p-semi simple-algebra if $0^{*}\left(0^{*} x\right)=x \quad$, for all $x \in X$

Theorem 2.4. [17] Let X be a BCI-algebra. Then the following hold:
(i) $x * 0=x$,
(ii) (ii) $(x * y) * z=(x * z) * y$,
for all $x, y, z \in X$.

Theorem 2.5. [17] Let X be a BCI-algebra. Then the following are equivalent:
(i) X is a p-semi simple algebra,
(ii) every element of X is minimal,
(iii) $X=\left\{0^{*} x \mid x \in X\right\}$.

We note that an element $x \in X$ is called minimal, if $y * x=0$, implies $y=x$.

Definition 2.6.[1] Let X be a set with a binary operation * and a constant 0 . Then ($\mathrm{X},{ }^{*}, 0$) is called a BP-algebra if satisfies (A2) and the following conditions:
(BP1) $x *(x * y)=y$,
(BP2) $x * x=0$.
X is called QS-algebra, if satisfies A1, A2, BP2 and
(Q) $(x * y) * z=(x * z) * y$,
for any $x, y, z \in X$.

Theorem 2.7.[1] Let X be a BP-algebra. Then $x * 0=x$, for all $x \in X$.
Definition 2.8. [9] A BO-algebra is an algebra ($\mathrm{X}, *, 0$) of type (2,0) satisfying A1, BP2 and

$$
(\mathrm{BO}) x *(y * z)=(x * y) *(0 * z)
$$

for all $x, y, z \in X$.

Theorem 2.9. [9] BO-algebras, BM-algebras, P-semi simple algebras are equivalent and they are logically equivalent by abelian group.

3. QS-algebras, BP-algebras and P-semi simple algebras

Theorem 3.1. Let X be a set with a binary operation * and a constant 0 . Then X is a p-semi simplealgebra if and only if satisfies in the following conditions:
(i) $(x * y) * z=(x * z) * y$,
(ii) $x^{*} y=0$ iff $x=y$,
for all $x, y, z \in X$.

Proof. Let X be a p-semi simple-algebra. Then by Theorem 2.5(ii), $x * y=0$ implies $x=y$ and by BCI-3, $x{ }^{*} x=0$. Hence (ii) is hold. By Theorem 2.4(ii), (i) is hold.

Conversely, let (i) and (ii) are hold. By (ii), (BCI-4) is hold. Also by (ii), $x * x=0$ and (BCI-3) is hold.

By $\quad x^{*} x=0$ and (i) we have $(x * 0) * x=\left(x^{*} x\right) * 0=0$. Now, by (ii) and $x *(x * y)) * y=(x * y) *(x * y) * y=0$, we conclude that $x^{*}(x * y)=y$.

By (1), (ii) and (i) we have

$$
((x * y) *(x * z)) *(z * y)=((x *(x * z)) * y) *(z * y)=(z * y) *(z * y)=0
$$

Thus, X is a BCI-algebra. By (ii), every element of X is minimal. By Theorem 2.5, X is a p-semi simplealgebra.

Corollary 3.2. Let X be a p-semi simple-algebra. Then the following hold:
(i) $(x * y) *(x * z)=z * y$,
(ii) $x *(x * y)=y$,
for all $x, y, z \in X$.

Proof. By Theorem 3.1 and definition of p-semi simple algebra the proof is clear.

Theorem3.3. X is a BP-algebra if and only if X is a p -semi simple-algebra.
Proof. Let X be a p-semi simple-algebra. By Theorem 3.2(i), (ii) and BCI-2, X is a BP-algebra.
Conversely, let X be a BP-algebra and $x^{*} y=0$, for some $x, y \in X$. Then by BP1 and Theorem 2.7 $x=x * 0=x *(x * y)=y$.
Thus by BP2, $x^{*} y=0$ if and only if $x=y$.
Let $x * y=z$, for some $x, y, z \in X$. Then by BP1, $x * z=x *\left(x^{*} y\right)=y$. Thus $x * y=z$ if and only if $x{ }^{*} z=y$.

Let $(x * y) * z=t$ and $x * y=a$. By (2), $x * a=y$. Thus by A2, $(x * z)^{*} y=(x * z) *(x * a)=a * z=(x * y) * z$.
By Theorem 3.1, X is a p -semi simple-algebra.
Theorem 3.4. X is a QS-algebra if and only if X is a p-semi simple-algebra.
Proof. Let X be a p-semi simple-algebra. Then by Theorem 3.2, X is a QS-algebra.
Conversely, let X be a QS-algebra. Then by A1 and A2,

$$
x *(x * y)=(x * 0) *(x * y)=y * 0=y .
$$

Thus X is a BP-algebra. By Theorem 3.3, X is a p -semi simple-algebra.
Corollary 3.5. BM-algebras, BP-algebras, BO-algebras, QS-algebras and p-semisimple algebra are equivalent and they are logically equivalent by abelian group.

Proof. By Theorems 3.3, 3.4 and Theorem 2.9 the proof is clear.

4. Conclusion.

The concept of a BP-algebra introduced by S. S. Ahn and J. S. Han [8], which is another generalization of B-algebra. In this paper we show that this algebraic structure is equivalent to p semisimple BCI -algebras.

Acknowledgments: The authors would like to express their thanks to referees for their comments and suggestions which improved the paper.

References

[1] S. S. Ahn and J. S. Han, On BP-algebras, Submitted.
[2] R. Ameri, H. Hedayati, and E. Ghasemian, Filteristic soft BCK-algebras, TJMCS Vol . 2 No. 1 (2011) 81-87
[3] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[4] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
[5] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 126.
[6] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347-354.
[8] C. B Kim and H. S. Kim, On BM-algebras, Math. Japonica, 211-215 (2006).
[9] C. B Kim and H. S. Kim, On BO-algebras, Mathematica Slovaca, 2012, Vol 62, No. 5, 855-864.
[10] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26, Vol. 4, 471-481, (2004).
[11] T. D. Lei, Structure of finite associative BCI-algebras\}, J. of Shaanxi Teachers Univ, 2(1982), 1720.
[12] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Int. J. of Mathematics and Mathematical Sciences 27(no. 12), (2001), 749-757.
[13] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
[14] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
[15] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 215-219.
[16] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56(2006) 3, 301-306.
[17] H. Yisheng, BCI-algebra, Science Press, (2006).

