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Abstract 
    In this paper, we obtain the analytical solutions of linear and non-linear space-time fractional 
reaction-diffusion equations on a finite domain by the application of homotopy perturbation 
transform method (HPTM). The HPTM is a combined form of the Laplace transform method with 
the homotopy perturbation method. Some examples are also given. Numerical results show that the 
HPTM is easy to implement and accurate when applied to linear and non-linear space-time 
fractional reaction-diffusion equations.  
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   1.  Introduction 
 In recent years, it has turned out that many phenomena in engineering, physics, chemistry and 
other sciences can be described very successfully by models using mathematical tools from 
fractional calculus. For example, the nonlinear oscillation of earthquake can be modeled with 
fractional derivatives and the fluid-dynamic traffic model with fractional derivatives can eliminate 
the deficiency arising from the assumption of continuum traffic flow. Fractional derivatives are also 
used in modeling of many chemical processes, mathematical biology and many other problems in 
physics and engineering. These findings invoked the growing interest of studies of the fractional 
calculus in various fields such as physics, chemistry and engineering. 
Fractional differential equations have gained importance and popularity during the past three 
decades or so, mainly due to exact description of nonlinear phenomena, especially in fluid 
mechanics, e.g. nano-hydrodynamics, where continuum assumption does not well, and fractional 
model can be considered to be a best candidate. Hence, great attention has been given to finding 
solutions of fractional differential equations. Most fractional differential equations do not have 
exact analytical solutions, therefore approximate and numerical techniques must be used. 
Variational iteration method (VIM) [16] was first proposed to solve fractional differential equations 
with greatest success. Many authors found VIM as an effective way to solving linear and non-linear 
fractional differential equations [7,33]. The VIM was also used by many authors to study the 
various physical problems [23,26,36]. The homotopy perturbation method (HPM) was first 
introduced by J.H. He [17]. The HPM was applied to solve the 12th order boundary value problems 
[35]. In recent years Momani and Odibat [29], Ganji et al. [9], Yildirim [42-44], Yildirim and Sezer 
[45] and Jafari and Momani [20] applied the HPM to fractional differential equations and revealed 
that HPM is an alternative analytical method for solving fractional differential equations.  Momani 
et al. [30] and Odibat and Momani [34] compared solutions procedure between VIM and HPM. 
In this paper, we use the homotopy perturbation transform method (HPTM) [22] for solving linear 
and non-linear space-time fractional reaction-diffusion equations on a finite domain. It is worth 
mentioning that this method is an elegant combination of the Laplace transformation, the HPM and 
He’s polynomials and is mainly due to Ghorbani [10,11]. The use of He’s polynomials in the 
nonlinear term was first introduced by Ghorbani [10,11]. This algorithm provides the solution in a 
rapid convergent series which may lead to the solution in a closed form. The advantage of this 
method is its capability of combining two powerful methods for obtaining exact solutions for 
nonlinear equations.  
In recent years, fractional reaction-diffusion models are studied due to their usefulness and 
importance in many areas of science and engineering. The reaction-diffusion equations arise 
naturally as description models of many evolution problems in the real world, as in chemistry 
[39,40], biology [32], etc. As is well known, complex behavior is peculiarity of systems modeled by 
reaction diffusion equations and the Belousov-Zhabotinskii reaction [31,41] provides a classic 
example. The reaction-diffusion equations describe a population of diploid individuals (i.e., the ones 
that carry two genes) distributed in a two-dimensional habitat. Assuming that a gene occurs in two 
forms a and A, called alleles, one can divide the population into three genotypes aa, aA and AA. The 
reaction-diffusion equations are employed to describe the co-oxidation on Pt (110) [2], the study of 
temporal and spatial patterns of cytoplasmic Ca+2 dynamics under the effects of Ca+2-release 
activated Ca+2 (CRAC) channels in T cells [6], problems in finance [12,25,37] and hydrology [3]. 
Burke et al. [4] obtained solutions for an enzyme-suicide substrate reaction with an instantaneous 
point source of substrate. In 1993, Grimson and Barker [15] introduced a continuum model for the 
spatio-temporal growth of bacterial colonies on the surface of a solid substrate which utilizes a 
reaction-diffusion equation for growth. Many cellular and sub-cellular biological processes [8] can 
be described in terms of diffusing and chemically reacting species (e.g. enzymes). A traditional 
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approach to the mathematical modeling of such reaction-diffusion processes is to describe each 
biochemical species by its (spatially dependent) concentration. In recent time, interest in fractional 
reaction-diffusion equations [1,13,14,18,21,38,45] has increased because the equation exhibits self-
organization phenomena and introduces a new parameter, the fractional index, into the equation. 
Additionally, the analysis of fractional reaction-diffusion equations is of great importance from the 
analytical and numerical point of view. 
The Riemann-Liouville fractional integration of order α is defined as [27] 
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                                                                              (1) 

The following fractional derivative of order α > 0 is introduced by Caputo [5]; see also Kilbas et al. 
[24] in the form 
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∂
∂  is the m-th partial derivative of f(x,t) with respect to t. 

The Laplace transform of the Caputo derivative is given by Caputo [5]; see also Kilbas et al. [24] in 
the form 
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The Liouville fractional derivative of order α is defined in [24, Section 24.2] in the form  
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where [α] is the integral part of α, α > 0.  
 
2.  HPTM solutions of linear space-time fractional reaction-diffusion equation 
 
In this paper, we first consider the linear space-time fractional reaction-diffusion equation of the 
form:     

,21,10,0,0),,(),()(),()(),( ≤<≤<><<+−= βαβα tLxtxftxuxctxuDxbtxuD xt                 (5) 
),()0,( xpxu =                                                                                                                                    (6) 
),(),0( 1 tqtu =                                                                                                                                    (7) 

).(),0( 2 tqtux =                                                                                                                                  (8) 
Taking the Laplace transform on both sides of Eq. (5) and using (6), we get 
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Applying the inverse Laplace transform on both sides of Eq. (9), we get 
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Now, we apply the homotopy perturbation method 
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Substituting Eq. (11) in Eq. (10), we get 
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Comparing the coefficients of the like terms of p, we have 
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Proceeding in a similar manner, we get 
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and so on; in this manner, the rest of components of the homotopy perturbation series can be 
obtained. Thus, we have the solution in series form is given by 
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3.  HPTM solutions of non-linear space-time fractional reaction-diffusion equation 
 
Now, we consider the non-linear space-time fractional reaction-diffusion equation of the form:     

,21,10,0,0),,()),((),(),( ≤<≤<><<++= βαβα tLxtxgtxuftxubDtxuD xt                         (19) 

 ).()0,( xpxu =                                                                                                                                 (20) 
Taking the Laplace transform on both sides of Eq. (19) and using (20), we get 
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Applying the inverse Laplace transform on both sides of Eq. (21), we get 
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Now, we apply the homotopy perturbation method 
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and the nonlinear term can be decomposed as  
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for some He's polynomials )(uH n   [11,28]  that are given by 
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Substituting Eqs. (23) and (24) in Eq. (22), we get 
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Comparing the coefficients of the like terms of p, we have 
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Proceeding in a similar manner, we get 
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and so on; in this manner, the rest of the components of the homotopy perturbation series can be 
obtained. Therefore, the solution in series form is given by 
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4.  Numerical examples 
 
Example 1  
Consider the following linear space-time fractional reaction-diffusion equation with boundary and 
initial conditions [46]:  
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where the source function  
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3
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π

 

the coefficients of the diffusion and reaction terms are ,)2.1()( 8.1xxb Γ= c(x) = 2. If α = 0.5, β = 1.8, 

the exact solution of this problem is ),)(14( 322 xxt −+  which can be verified by direct fractional 
differentiation of the given solution, and substituting in the fractional differential equation. The 
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initial and boundary conditions are clearly satisfied. If α = 0.5, β = 1.8, according to homotopy 
perturbation transform procedures Eqs. (9)-(18), we can successively obtain 
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and so on; in this manner, the rest of the components of the homotopy perturbation series can be 
obtained. Thus, we have the solution in series form is given by 

.),(),(),(),(),( 3210 ++++= txutxutxutxutxu                                                                          (36) 
When α = 0.5, β = 1.8, Figs. (1-2-3-4-5) show the different approximate solutions obtained by 
applying the HPTM and the exact solutions of space-time fractional reaction-diffusion equation.  

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10 11

Exact solution
HPTM solution

 
Fig. 1 Comparison of the exact solution and approximate solution at time t = 0.4 for α = 0.5 and β = 
1.8. 

 
Fig. 2 Exact solution graph of Example 1 at 5.0=α  and 8.1=β  at 0t = to 2t = . 
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Fig. 3 Approximate solution graph of Example 1 at 5.0=α  and 8.1=β   up to fourth approximation 
at 0=t  to 5=t  by HPTM. 

 
Fig. 4 Exact solution graph of Example 1 at 5.0=α  and 8.1=β  at 0=t  to .5=t  

 
Fig. 5 Approximate solution graph of Example 1 at 5.0=α  and 8.1=β  up to fourth approximation 
at 0=t to 10=t  by HPTM. 
 
Example 2  
Consider the following non-linear space-time fractional reaction-diffusion equation with boundary 
and initial conditions [46]: 
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,10,0)0,( ≤≤= xxu                                                                                                                       (38) 
where  the non-linear reaction terms in Fisher’s growth equation: 
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If α = 0.9, β = 1.1, the exact solution of this problem is ,01.0 9.01.1 tx  which can be verified by direct 
fractional differentiation of the given solution, and substituting in fractional differential equation. 
The initial and boundary conditions are clearly satisfied. Using Eqs. (22), (24) and (25), the first few 
components of He’s polynomials nH  that represent the non-linear term 0.25u(x, t)(1-u(x, t)) are 
obtained as 
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If α = 0.9, β = 1.1, using (37), according to homotopy perturbation transform procedures Eqs. (21)-
(32) we now successively obtain 
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and so on; in this manner, the rest of components of the homotopy perturbation series can be 
obtained. Thus, we have the solution in series form is given by  

.),(),(),(),(),( 3210 ++++= txutxutxutxutxu                                                                          (40) 
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When α = 0.9, β = 1.1, Figs. (6-7-8) show the different approximate solutions obtained by applying 
the HPTM and the exact solutions of space-time fractional reaction-diffusion equation. From Fig. 6, 
it can be seen that the approximate solution is in excellent agreement with the exact solution. 
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Fig. 6 Comparison of the exact solution and approximate solution at time t = 0.4  for  α = 0.9 and β = 
1.1. 

 
Fig. 7 Exact solution graph of Example 2 at 9.0=α  and 8.1=β  at 0=t  to .1=t  

 
Fig. 8 Approximate solution graph of Example 2 at α = 0.9 and β = 1.1 at t  = 0 to t = 5 up to fourth 
approximation by HPTM. 
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5.  Conclusions 
 
In this paper, we have used HPTM for solving the linear and non-linear space–time fractional 
diffusion equations. The HPTM is clearly a very efficient technique for finding the solutions of the 
proposed equations. It is interesting to note that HPTM is an elegant combination of the Laplace 
transformation and the homotopy perturbation method. The mathematical technique employed in 
the present article   is significant in studying some other problems of engineering and physics. 
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