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Abstract 
    In this paper, reduced differential transform method (RDTM) is used to solve two different 
seventh-order nonlinear partial differential KdV equations. Seventh-order Sawada–Kotera (for 
short, sSK) and a Lax’s seventh-order KdV (for short, LsKdV) equations are well known and 
considered for solve. reduced differential transform method can be used as an alternative to obtain 
analytic and approximate solutions of different types of differential equations applied in 
engineering mathematics. Ultimately this method is implemented to solve these equations so 
convenient and effective solutions can be obtained.  
 
Keywords:  Sawada–Kotera Equations; Reduced differential transform method; Initial value 
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   1.   Introduction. 
 In the present paper we employ RDTM method for solving following equations. 
 

    (1)                  4 2 2 2(63 63(2 ) 21( ) ) 0,t xx x xxxx xx x xxx xxxxxx xu u u u uu uu u u u u+ + + + + + + = 

    

4 2 2 2(35 70(2 ) 7(2 3 4 ) ) 0t xx x xxxx xx x xxx xxxxxx xu u u u uu uu u u u u+ + + + + + + =
            

(2) 
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Eq. (1) is known as the seventh order Sawada–Kotera equation [2, 4] and Eq. (2) is known as the 
Laxs seventh-order KdV equation [2, 12] respectively. Some implementation of DTM and RDTM can 
be found in [1 ,6 ,9 ,10,11]. In this paper, we will apply the Reduced differential transform method 
for solving seventh order Sawada–Kotera equation and Laxs seventh-order KdV equation. Unlike 
the existing analytical methods such as the Adomian decomposition method [2], the homotopy 
perturbation method [3], and the variational iteration method (VIM) [3, 5], the RDTM can give exact 
solution for the Seventh Order Sawada–Kotera Equations and provide converged approximate 
solutions for the noteworthy equation without linearization, discretization, perturbation, or the 
calculation of the complicated Adomian polynomials. Due to the above advantages and the simple 
implementation of the RDTM, we obtain approximate solutions to the Seventh Order Sawada–
Kotera Equations of high accuracy. Numerical experiments associated with two initial value 
problems are shown to verify the efficiency of the RDTM. The paper is organized as follows. In 
Section 2, theoretical aspects of the method are discussed. In Section 3, several examples with 
analytical solutions in two dimensional cases will be given to show the effectiveness of the 
proposed method. Conclusions are given in Section 4. 
 
2. Basic idea of RDTM 
 
The basic definitions of RDTM are defined as follows. 
  Definition 2.1.  If  function  u(x, t) is analytic and differentiated continuously with respect to time t 
and space x in the domain of interest, then let 
 

                                                0

1( ) ( , ) ,
!

k

k k
t

U x u x t
k t

=

 ∂
=  ∂                                                      

(3) 

where the t-dimensional spectrum function  kU ( x ) is the transformed function. In this paper, the 

lowercase ( , )u x t represents the original function while the uppercase kU ( x ) stands for the 

transformed function. 
 

Definition 2.2 The differential inverse transforms of  kU ( x )  is defined as follows 

                                                0
( , ) ( ) ,k
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(4) 

Then combining equation (3) and (4) we can write 
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= =
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(5) 

From the above definitions, it is easily possible to verify that the concept of the RDTM is obtained 
from the power series expansion. For illustration of the proposed method, we write the sSK 
equation (1) in the standard operator form 
 

                                                
( ( , )) ( ( , )) ( ( , )) ( , ),L u x t R u x t N u x t g x t+ + =

                    
(6) 

with initial condition 

                                                
( ,0) ( ),u x f x=

                                                                                  
(7) 

where  
7

7L ,R
t x
∂ ∂

= =
∂ ∂

 is a linear operator which has partial derivatives, N(u(x, t)) is the remaining 

sentences, which is a nonlinear term and g(x, t) is an inhomogeneous term which is equal zero. 
According to the RDTM and Table 1, we can construct the following iteration formula: 
 

                                                
1( 1) ( ) ( ) ( ( )),k k kk U x N u R U x∗
++ = − −

                                   
(8) 
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Table 1: Reduced differential transformation. 

 

Where k kR (U ( x )),N ( u )∗ are the transformations of the functions R(u(x, t)), N(u(x, t)) , 
respectively and ku is a vector of   0 1 k{ U ( x ),U ( x ),...,U ( x )} .  
From initial condition (7), we have 
 

                                                
0 ( ) ( ),U x f x=

                                                                                   
(9) 

Substituting (9) into (8) and by a straight forward iterative calculations, we get the following kU ( x )
 values. Then the inverse transformation of the set of values gives  n

k k 0{ U ( x )} =

 
approximation 

solution in the following form 
 

                                                0
( , ) ( ) ,

n
k

n k
k

u x t U x t
=

= ∑
                                                                 

(10) 

where n is order of approximation solution. Therefore, the exact solution of problem is given by 
 

                                                
( , ) lim ( , ).nn

u x t u x t
→∞

= 
                                                                    

(11) 

 
3. Illustrative Examples 
To demonstrate the effectiveness of the method we consider here equations (1) and (2) with given 
initial condition. 
Example 3.1. Consider the  sSK equation (1) with the initial condition. 

                                                

2
24( ,0) (2 3tanh ( )),

3
u x xµ µ= −

                                               
(12) 

As a starting point for the solution procedure, we first take the RDTM of (1) by using Table 1, and 
obtain the following equation 
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(13) 

From the initial condition (12) we write 

                                                

2
2

0
4( ) (2 3tanh ( )),

3
U x xµ µ= −

                                                
(14) 

Substituting Eq. (14) into Eq. (13), we successively achieve values kU ( x ) as follows 
 

9 2
1

16 4
2

23 5
3

2084( ) sec ( ) tanh( ),
3

262144( ) ( 2 cosh(2 ))sec ( ) ,
9

67108864( ) sec ( ) ( 11sinh( ) sinh(3 )),...
81

= −

= − +

= − − +

U x h x x

U x x h x

U x h x x x

µ µ µ

µ µ µ

µ µ µ µ

 

Finally the differential inverse transform of kU ( x )  gives 

                                                0
( , ) ( ) ,k

k
k

u x t U x t
∞

=

= ∑
                                                                  

(15) 

We, therefore, obtain 

                                 

2 6
24 256( , ) (2 3tanh ( ( ))),

3 3
u x t x tµ µµ= − +

                                     
(16) 

which is the exact solution [1] of this problem.  
The graphs of the analytic and approximate solutions are depicted in Figure. 1 and 2, for 0.1µ =

  
and 

[ ]x 100 ,100∈ −  , respectively. Table 2 shows the difference of the analytical solution and numerical 
solution of the absolute errors. 
 
Table 2: The numerical results for kU ( x )

 
in comparison with the analytical solution u(x, t), when 0.1µ = , for 

the solution of Eq. (1) 

i it / x  0.1 0.2 0.3 0.4 0.5 

0.1 0 0 0 3.46945×10-18 
 

0 

0.2 0 0 3.46945×10-18 
 

3.46945×10-18 
 

3.46945×10-18 
 

0.3 3.46945×10-18 
 

0 3.46945×10-18 
 

0 0 

0.4 0 3.46945×10-18 
 

0 0 0 

0.5 3.46945×10-18 
 

3.46945×10-18 
 

0 3.46945×10-18 
 

3.46945×10-18 
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     Figure 1: Exact Solution u(x, t)                                           Figure 2: Approximate Solution 3U (x)  

 

Example 3.2. Consider the LsKdV equation with given initial condition, 

                                                

2 2( ,0) 2 sech ( )),u x xµ µ=
                                                         

(17) 

As a starting point for the solution procedure, we first take the RDTM of (1) by using Table 1, and 
obtain the following equation 
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(18) 

From the initial condition (17) we write 
 

                                                

2 2
0 ( ) 2 sech ( )),U x xµ µ=

                                                            
(19) 

Substituting Eq. (19) into Eq. (18), we successively achieve values kU ( x ) as follows 
 

9 2
1

16 4
2

23 5
3

( ) 256 sec ( ) tanh( ),

( ) 8192 ( 2 cosh(2 ))sec ( ) ,
524288( ) sec ( ) ( 11sinh( ) sinh(3 )),...

3

=

= − +

= − +

U x h x x

U x x h x

U x h x x x

µ µ µ

µ µ µ

µ µ µ µ

 

Finally the differential inverse transform of kU ( x )  gives 

                                                0
( , ) ( ) ,k

k
k

u x t U x t
∞

=

= ∑
                                                                  

(20) 
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We, therefore, obtain 
 

                                  

2 2 6 2( , ) 2 (sech ( ( 64 )) ).u x t x tµ µ µ= −
                                                 

(21) 

which is the exact solution [1] of this problem.  
The graphs of the analytic and approximate solutions are depicted in Figure. 3 and 4, for 0.1µ =

  
and 

[ ]x 100 ,100∈ −  , respectively.  Table 3 shows the difference of the analytical solution and numerical 
solution of the absolute errors. 
 
Table 3: The numerical results for kU ( x )

 
in comparison with the analytical solution u(x, t), when 0.1µ =  for 

the solution of Eq. (2) 
 

i it / x  0.1 0.2 0.3 0.4 0.5 

0.1 0 3.46945×10-18 
 

3.46945×10-18 
 

3.46945×10-18 
 

3.46945×10-18 

0.2 0 3.46945×10-18 
 

3.46945×10-18 
 

0 
 

0 
 

0.3 3.46945×10-18 
 

3.46945×10-18 
 

0 
 

3.46945×10-18 
 

3.46945×10-18 
 

0.4 3.46945×10-18 
 

0 
 

0 3.46945×10-18 
 

0 

0.5 3.46945×10-18 
 

0 
 

0 3.46945×10-18 
 

3.46945×10-18 
 

 
 

       
     Figure 3: Exact Solution u(x, t)                                              Figure 4: Approximate Solution 3U (x)

  

4. Conclusion 
    In this paper, the numerical results showed that the RDTM performed well for the problems 
considered. The Reduced differential transform method needs less work in comparison with the 
traditional methods. Therefore, this method can be applied to many complicated linear and non-
linear problems and does not require linearization, discretization or perturbation. 
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