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Abstract   In this paper, the Differential Transformation Method (DTM) is suggested to solve a class of nonlinear optimal control problems. By applying the DTM, nonlinear two-point boundary value problem (TPBVP) which is derived from the Pontryagin’s maximum principle, will be transformed to a sequence of linear time-invariant TPBVP’s. Comparing the DTM to optimal homotopy perturbation method shows the efficiency and advantages of this method. In this method, a few iterations are required to find a suboptimal trajectory and control pair. 
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   1.   Introduction. Application of optimal control theory and its modification have appeared in different fields such as economy, engineering, medicine, physics, aircraft systems, etc. (Bryson, 1986). Methods of solving nonlinear optimal control problems (OCPs) contains direct methods which converts the problem into a nonlinear programming one by using of the discretization or parameterization techniques, such as AVK and Tao methods, and indirect methods such as the use of Hamilton-Jacobi-Bellman (HJB) equation, dynamic programming, nonlinear two-point boundary value problem (TPBVP), or the Pontryagin’s maximum principle ( Kirk, 2004; Jajrmi, 2010). The aim of this paper is to employ the DTM for solving a class of nonlinear OCPs. The results show that after only a few iterations it can be converged to the exact solution of the OCP, which proves that the suggested approach is very efficient in practice. The article is organized as follows. Section 2 describes the problem statement and definitions. The basic idea of DTM is explained in Section 3. In the following section, the DTM is employed to propose a new optimal control design strategy. Finally, in section 5, effectiveness of the proposed approach is verified by solving a numerical example. 
2. Basic definitions and theorems.    Definition 2.1. If ( )u x  is expressed as a Taylor series about a fixed point 0x , then it can be 
represented as: 
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where ( )nu x is called the n  th Taylor polynomial of ( )u x about 0x and ( )nR x is the remainder term. If 
( )U k is defined as:  
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where 0,1,2...k   then (1) is reduced to: 
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Moreover, the n   partial sums of  Taylor series (2) are also reduced to:  
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where ( )U k  is called the differential transformation of function ( ).u x If 0 0,x   then it can be found 
that the concept of the one-dimensional differential transformation is derived from the Taylor series 
expansion. 
Theorem 2.1. Suppose that ( ), ( )W x U k and ( )V k  are differential transformation of the functions 

( ), ( )w x u x and ( ),v x respectively; then 
a) If ( ) ( ) ( ),w x u x v x  then ( ) ( ) ( ).W k U k V k   
b) If ( ) ( ),w x u x then ( ) ( )W k U k for each .     
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   For more details and proofs, one can see (Abazari, 2010 ) and its references. 
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Definition 2.2. Consider a function of two variables ( , ),w x y and suppose that it can be represented as 
a product of two single-variable function, i.e., ( , ) ( ) ( ).w x y f x g y  On the basis of the one-dimensional 
differential transform, this function can be represented as: 
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where ( , ) ( ) ( )W i j F i G j is called spectrum of ( , ).w x y  Now, if ( , )w x t  is an analytic and continuously 
differentiable function, then we have: 
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where spectrum function ( , )W k h is the transformed function, which is also called T-function in brief. 
The differential inverse transform of  ( , )W k h  is defined as:  
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By combining the relations (7) and (8), result in:  
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When 0 0x and y are taken in (0,0),  the relation (8) can be expressed as: 
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From these definitions, it can be found that the concept of two-dimensional differential transform is 
derived by two-dimensional Taylor series expansion. 
 
Theorem 2.2. Assume that ( , ), ( , )W k h U k h and ( , )V k h are differential transforms of the functions 

( , ), ( , )w x y u x y and ( , )v x y respectively; then: 
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For more details and proofs see ( Abazari, 2010) and its references. 
3. Introducing the problem. Consider a nonlinear control system described by:   

,)(,)(],,[);())(()( 000 fff xtxxtxttttButxftx  (11)
where nx  and mu  are the state and control vectors respectively. ft  is finite, : n nf R R   
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is a nonlinear vector field, B is a constant matrix of appropriate dimension, and 0 , n
fx x R   are the  initial and final state vectors, respectively. The aim is to find the optimal control law * ( )u t which  minimizes the following quadratic performance index subject to the described system (11): 
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Moreover, the co-state equations are, 
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Thus, by substituting *u  in matrix form of (15), i.e. 0TRu B   , the optimal control low that minimizes H is given by * 1 .Tu R B   In summary, the optimality conditions for problem (11) and (12) will be obtained as the following nonlinear TPVBP: 
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4. Optimal control design strategy via DTM. In this section, we apply the DTM for solving the nonlinear TPBVP (16). In this method system (16) will be transformed to: 
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 Also, for solving this system, we need (0),x (0) . But (0)x is known since 0(0) ( )x x t and for determining (0)u we must firstly solve the following system: 
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5. Numerical examples. In this section, we solve the Euler’s equations for the angular velocities associated with the optimal maneuvers of a rigid symmetric spacecraft with DTM. This problem has been solved by optimal homotopy perturbation method in (Jajarmi, 2011). This equation is given by: 
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Where 1 2,x x  and 3x  are angular velocities of spacecraft, 1 2,u u and 3u are control torques, 
2 286.24 , 85.071 2kgm kgm   and 2113.593 kgm  are spacecraft principle inertia. Also, 0 0,t 

3 1 2100, 0, , (0) 0.01, (0) 0.005ft Q R I x x      3 1 1, (0) 0.001, (100) (100)x x x   1(100) 0.x   According to the Pontryagin’s maximum principle, the following nonlinear TPBVP system is obtained: 
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By solving this system with DTM one obtain: 
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   (22)    Simulation curves of the state trajectories and control laws, computed by the suggested DTM, have been shown in figure1. It shows that the obtained solutions by DTM are closely with those of collocation methods and we estimate these without any high computations. 
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Figure1: Simulation curves of 1 2 3 1 2 3( ), ( ), ( ), ( ), ( ), ( )x t x t x t u t u t u t computed by DTM  
6. Conclusions. 
    In this paper, we introduced ADM for solving the nonlinear optimal control problems. This method has some advantages over the OHPM that was presented in (Jajarmi,2011). Firstly it doesn’t need high computations, secondly in OHPM auxiliary function depends on several unknown constants, but this method has a fixed process. Also, the required time to gain the acceptable solution in this method is less than that of others. 
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