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ABSTRACT 
In this paper, we focus on solving linear system of equations with fuzzy parameters. We employ Dubois 
and Prades approximate arithmetic operators on LR fuzzy numbers to find a positive fuzzy vector  which 
satisfies     , where  and  are the fuzzy matrix and vector, respectively. We shall illustrate our 
method by solving some numerical examples. 
 
Keywords: Fully fuzzy linear system, Fuzzy number, QR-decomposition, Gram-Schmidt method.  
 
1. Introduction  
  The term of fuzzy matrix, which is the most important concept in this paper, has various meanings. For definition of a 
fuzzy matrix we follow the definition of Dubois and Prade, i.e. a matrix with fuzzy numbers as its elements [5]. These 
classes of fuzzy matrices consist of applicable matrices, which can model uncertain aspects and the works on them are 
too limited. Some of the most interesting works on these matrices can be seen in [2, 3, 4, 5]. A general model for 
solving a fuzzy linear system whose coefficient matrix is crisp and the right-hand side column is an arbitrary fuzzy vector, 
first proposed by Friedman et al. [6]. Friedman and his colleagues used the embedding method and replaced the original 
fuzzy linear system by a crisp linear system and then they solved it. A review of some methods for solving these systems 
can be found in [7, 8]. In addition, another important kind of fuzzy linear systems are including fuzzy numbers in whose 
all parameters and is named fully fuzzy linear systems (see in [3, 4, 7]). Dehghan et.al in [3] and [4] proposed two 
numerical methods for solving these systems. In [7], authors used a new method for solving these systems based on QR 
decomposition. Here, based on Gram-Schmidt approach we intend to solve , where  is the fuzzy matrix and  
and   are fuzzy  vectors with appropriate sizes. This paper is organized in 5 sections: 
   In next section, we give some preliminaries and definition concerning to the fuzzy sets theory and in particular fuzzy 
arithmetic. In Section 3, we describe Gram- Schmidt process to obtain a QR-decomposition coefficient of the matrix of 
the linear systems. In Section 4, we first define the linear system of equations with fuzzy numbers in all parameters. 
Numerical examples are given in Section 5 to illustrate our method. 
 
2. Preliminaries 
 In this section, we review some necessary backgrounds and notions of fuzzy sets theory (taken from [5, 7]). 
Definition 2.1. A fuzzy subset of R is defined by its membership function  

]1,0[:~ →R
A

μ  

which assigns a real number ~
A

μ  in the interval [0, 1], to each element Rx∈ , where the value of ~
A

μ at  shows the 

grade of membership of  in 
~
A . Indeed, a fuzzy subset 

~
A  can be characterized as a set of ordered pairs of element x 

and grade ~
A

μ  and is often written 
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A
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Definition 2.2. The α-level set of a fuzzy set 
~
A  is defined as an ordinary set [

~
A ] α for which the degree of its 

membership function exceeds the level α: 

]}1,0[,)(|{][ ~

~
∈≥= ααμα xxA

A
. 

Definition 2.3. A fuzzy number M is called positive (negative), denoted by M > 0 (M < 0), if its membership function 

)(xMμ satisfies )0(00)( >∀≤∀= xxxMμ . 

Definition 2.4. A fuzzy number M is said to be an LR fuzzy number, if 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

>≤⎟
⎠
⎞

⎜
⎝
⎛ −

=
,0,,

,0,,
)(

β
β

α
α

μ
mxmxR

mxxmL
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where  is the mean value of M and α  and β  are left and right spreads, respectively, and a function L(·) the left 

shape function satisfying: 
, 

0 1 and 1 0, 
 is non-increasing on 0,∞ . 

Naturally, a right shape function R(·) is similarly defined as . 
Using its mean value and left and right spreads, and shape functions, such an LR fuzzy number M is symbolically written

LRmM ),,( βα= , that, LRmM ),,( βα= is positive, if and only if .0≥−αm  

Remark 2.1. We consider )0,0,0(0
~
=  as the zero fuzzy number. 

Remark 2.2. We show the set of all fuzzy numbers by F(R). 

Definition 2.5 (Equality in fuzzy numbers). Two LR fuzzy numbers LRmM ),,( βα=  and LRnN ),,( δγ= are said 

to be equal, if and only if   , δβγα == , . 

Definition 2.6. For two LR fuzzy numbers LRmM ),,( βα=  and LRnN ),,( δγ= , therefore: 

LRRLLR

RLLR

LRLRLR

nmnmNM
mmM

nmnmNM

),,(),,(),,(
),,(),,(

),,(),,(),,(

γβδαδγβα
αββα

δβγαδγβα

++−=−=−
−=−=−

+++=⊕=⊕
 

If M > 0 and N > 0, then 
 

LRLRLR mnmnmnnmNM ),,(),,(),,( δβγαδγβα ++≅⊗=⊗  

Definition 2.7. A matrix )(
~~

ijaA = is called a fuzzy matrix, if each element of 
~
A is a fuzzy number. 

A fuzzy matrix 
~
A  will be positive and denoted by 

~~
0>A , if each element of 

~
A  be positive. We may represent the 

fuzzy matrix nnijaA ×= )(
~~

, such that ),,(
~

ijijijij aa βα= , with the new notation ),,(
~

NMAA = , where 

nnijaA ×= )( , )( ijM α=  and )( ijN β=  are three    crisp matrices, that, the matrix A is a center matrix, and 

M and N are the right and left spread matrices. 
 
3. QR-decomposition 
   In the following theorem we first give the main condition about QR-decomposition. 
Theorem 3.1. If  is an    matrix with full column rank, then  can be factored as 

                                        (3.1) 
where  is an  matrix whose column vectors form an orthonormal basis for the column space of  and  is a 

   invertible upper triangular matrix . 
Proof: see [1]. 
 



S.H.Nasseri , M.Sohrabi / TJMCS   Vol .1  No.2 (2010) 80-89 

82 
 

This theorem guarantees that every matrix  with full column rank has a QR-decomposition, in particular, if  is 

invertible. The fact that  has orthonormal column implies that IQQT = , so multiplying both sides of (3.1) by on the 

left side 

AQR T= . 
Thus, one method for finding a QR-decomposition of a matrix A with full rank is to apply the Householder process to the 
column vectors of , then form the matrix  from the resulting orthonormal basis vectors, and then find . 
 
3.1. Gram-Schmidt method for QR-decomposition.  

Theorem 3.2. Every nonzero subspace of nR  has an orthonormal basis. 
Proof: see [1]. 

Let W be a nonzero subspace of nR and  nwww ,...,, 21  be a basis for W. The following sequence of steps will produce 

an orthogonal basis nvvv ,...,, 21 for W: 

Step 1: let 11 wv = . 

Step 2: let ..
||||

.
12

1

12
22 v

v
vwwv −=  

Step 3: let ..
||||

.
.

||||
.

22
2

23
12

1

13
33 v

v
vw

v
v

vw
wv −−=  

Step 4: let ..
||||

..
||||

..
||||

.
32

3

34
22

2

24
12

1

14
44 v

v
vwv

v
vwv

v
vwwv −−−=  

Step 5 to k: continuing in this way produces an orthogonal set nvvv ,..., 21 after  step. 

 
If the resulting orthogonal vectors are normalized to produce an orthonormal basis for subspace, then the algorithm is 
called the Gram-Schmidt process [1]. 
 

Example 3.1. Find orthonormal basis for 3R . 

),1,1,1(1 =W       ),1,1,0(2 =W      )1,0,0(3 =W . 

Step 1: let )1,1,1(11 == wv . 

Step 2: let ⎟
⎠
⎞

⎜
⎝
⎛ −=−=−=

3
1,

3
1,

3
2)1,1,1(

3
2)1,1,1(.

||||
.

12
1

12
22 v

v
vwwv . 

Step 3: let .
2
1,

2
1,0)

3
1,

3
1,

3
2(

2
1)1,1,1(

3
1)1,1,1(

3
1)1,1,0(.

||||
.

.
||||

.
22

2

23
12

1

13
33 ⎟

⎠
⎞

⎜
⎝
⎛ −

=−−−=−−= v
v

vw
v

v
vw

wv  

Thus, the vectors 

),1,1,1(1 =v    ),
3
1,

3
1,

3
2(2

−
=v    )

2
1,

2
1,0(3

−
=v . 

are orthogonal basis for 3R . The norms of these vectors are 

,3|||| 1 =v      
3
6|||| 2 =v ,        .

2
1|||| 3 =v  

So, an orthonormal basis for 3R  is given by 
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⎠
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⎛ −
==⎟⎟
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3
1
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3
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2
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1

1
1 v

v
q

v
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v
vq  

 
Example 3.2. Find QR-decomposition of 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

111
011
001

A  
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The matrix A has full column rank, so it is guaranteed to have QR-decomposition. 
Applying Gram-Schmidt process to 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠
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⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1
0
0

,
1
1
0

,
1
1
1

321 www  

And forming the matrix Q that has resulting orthonormal basis vectors as column yields 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
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−

−

−

=
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3
1

0
6
2

3
1

q . 

It follows that 
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⎟
⎟
⎟
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1

2
1

3
1

2
1

6
1

3
1

0
6
2

3
1

AQR T . 

Thus, we obtain the QR-decomposition as follows: 

.

2
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6
1

6
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3
1

3
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⎟
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⎜
⎜
⎜
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⎟
⎟
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4. A new method for solving FFLS 
 
In this section, we first give the definition of fuzzy linear system of equations and then deal with on solving theses 
systems. 
 
  Definition 4.1. Consider the    fuzzy linear system of equations [3, 7]: 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=⊗⊕⊕⊗⊕⊗

=⊗⊕⊕⊗⊕⊗

=⊗⊕⊕⊗⊕⊗
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~

2

~

1

~

1

~

2
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2

~

2

~

22

~

1

~

21

~

1

~~

1

~

2

~

12

~

1

~

11

)(...)()(

.

.

.
)(...)()(

)(...)()(

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

 

The matrix form of the above equations is 
~~~
bxA =⊗ , where the coefficient matrix njiaA ij ≤≤⎟

⎠
⎞

⎜
⎝
⎛= ,1

~~
, is an 

   fuzzy matrix and )(,
~~

RFbx jj ∈ . This system is called the fully fuzzy linear system (FFLS). 

Theorem 4.1. The unique solution X is a fuzzy vector for arbitrary Y, if 1−S is nonnegative 
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njiS ij 2,1,0)( 1 ≤≤≥− . 

Proof: see[6]. 

Here, we are going to obtain a positive solution of FFLS 
~~~
bxA =⊗ , where 

~~~~~~
0),,(0),,(,0),,( >=>=>= zyxxandghbbNMAA . So we have 

),,(),,(),,( ghbzyxNMA =⊗  
Then by using Eq.(2.5) we have 

),,(),,( ghbNxAzMxAyAx =++  
Therefore, Definition 2.5 concludes that 

⎪
⎩

⎪
⎨

⎧

=+
=+

=

.
,

,

gNxAz
hMxAy

bAx
 

Thus, we easily have 

,1bAxbAx −=⇒=  
and then by this representation in the second and the third equations, we have 

,11 MxAhAy −− −=  
and 

,11 NxAgAz −− −=  
We use QR-decomposition for matrix , and so, we have 

⎪
⎩

⎪
⎨

⎧

−=⇒=+

−=⇒=+

=⇒=

−

−

−

)(,
)(,

,

1

1

1

NxgQRzgNxAz
MxhQRyhMxAy

bQRxbAx

T

T

T

 

 
5.   Numerical examples 
 
In this section, we examine the proposed method in the last section. 
  
   Example 5.1. Consider the following FFSL: 

( ) ( )
( ) ( )

( )
( )⎟⎟⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
40,30,20
25,15,10

4,3,256,5,10
9,2,54,1,15

~

~

y
x  

First we obtain QR-decomposition for matrix A as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

027756.180
027756.18027756.18

832050.0554700.0
554700.0832050.0

2510
515

QRA
 

So, we have 

).494674.0,009467.1()(
),783461.0,626035.0()(

),615384.0,461538.0(

1

1

1

=−=

=−=

==

−

−

−

NxgQRz
MxhQRy

bQRx

T

T

T

 

Therefore, the solution is achieved as follows 

)494674.0,783461.0,615384.0(,)009467.1,626035.0,461538.0(
~~
== yx  
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Example 5.2. Consider the following FFSL (taken from [3]): 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

514,297,316
257,139,142
60,30,58

24,19,2030,30,3234,10,24
10,8,815,12,1420,8,12
1,2,32,2,54,1,6

~

~

~

z

y
x

 

First we obtain QR-decomposition for matrix  as follows: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−−−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−−−
==

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

5345.000
4494.22659.30

6035.211330.354954.27

2672.04082.08728.0
8017.04082.04364.0
5345.08164.02182.0

203224
81412
356

QRA  

So, we can calculate: 

).000.1,999.1,000.3()(
),5000.0,4999.0,000.1()(

),000.3,000.5,000.4(

1

1

1

=−=

=−=

==

−

−

−

NxgQRz
MxhQRy

bQRx

T

T

T

 

Therefore, 

)00.1,50.0,00.3(,)99.1,49.0,00.5(,)00.3,00.1,00.4(
~~~
=== zyx  

 
6.   Conclusion 
   In this paper, we used a certain decomposition of the coefficient matrix of the fully fuzzy linear system of equations to 
construct a new algorithm for solving fully fuzzy linear systems. 
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In this paper first a series of basic transformation such integral, Rising and Falling has been 
defined. then the integrals have been proved. So falling and rising planes have been studied and a theorem about it has 
been proved. At the end, operations fuzzy time planes is shown and related proposition to it is proved.  
 
Keywords: fuzzy plane, Y-function, operations fuzzy time planes, Extend, Shift, Exp, Integrate. 
 
Introduction 
[1] Basic transformation about fuzzy interval time has been studied. First, basic concepts in fuzzy plane time have been 
studied and we argue a series of operations on fuzzy time planes by using [1], [20], [4, 7 and 18].we define summary of 
formula of basic unary transformation such as integral, Rising and Falling. Then we continue to argue about integrals 
and we prove some theorems. Time planes usually don't appear from nowhere, but they are constructed from other time 
planes. Plane operators are more general construction functions. They take one or more fuzzy time planes and construct 
a new one out of them.  
We distinguish two ways of constructing new fuzzy time planes, first by means of Y-functions and then by means of 
plane operators. Y-functions map fuzzy values to fuzzy values. They can therefore be used to construct a new plane 
from a given one by applying the y-function point by point to the membership function values. Plane operators are more 
general construction functions. 
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 In fact, our gold for presenting of this paper is that there are fuzzy planes which can be defined 2-dimension basic 
transformation for them, be defined some theorems for them. 
 
1Corresponding author Tel/Fax: +98-112-5342460 
 
Basic Unary Transformations 
Definition (Basic Unary Transformations) 
Let p FR  be a fuzzy plane. We define the following (parameterized) plane operators: 

Ŝ sup ,  [1] 
 
f first maximom [1] 
 
l last maximom [1] 
 
identity p p 

 

integrate p f x                    lim
∞

lim
∞

p f y , y  dy dy

p f y , y  dy dy
 

integrate p f x                    lim
∞

lim
∞

p f y , y  dy dy

p f y , y  dy dy
 

Integrate 
This operator integrates over the membership function and normalizes the integral to values 1. The two integration 
operators integrate  and integrate  can be simplified for finite fuzzy time planes. 
Proposition (Integration for Finite planes) 
If the fuzzy plane p is finite then 

integrate p f x
,  

| |  And          

integrate p f x  
,  

| |   

The proofs are straightforward [1]. 
Proposition (Integration for planes with Finite Kernel) 
If the infinite fuzzy plane p has a finite kernel with p p ∞, ∞  and p p ∞, ∞  then integrate p f x

  and  integrate p f x  . 

Proof: by using [2] 

lim
∞

lim
∞

,  

,  
 

                              lim
∞

lim
∞

| | | | | | | |

| | | | | | | | | | | |
 

                              lim
∞

lim
∞

| | | |
| | | | | | | |

 

                         lim
∞

lim
∞

. .
. . . .                                             

                               lim
∞

lim
∞

. .
. . . .  

                                lim
∞

lim
∞

lim
∞

lim
∞

 

 

lim
∞

lim
∞

,  

,  
 

                                           lim
∞

lim
∞

| | | | | | | |

| | | | | | | | | | | |
 

                                          lim
∞

lim
∞

| | | |

| | | | | | | |
 

                                          lim
∞

lim
∞

. .
. . . .
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                                          lim
∞

lim
∞

. .
. . . .  

                                          lim
∞

lim
∞

lim
∞

lim
∞

 

. 
Rising and Falling Fuzzy planes 
Definition (Rising and Falling Fuzzy planes and plane Operators) 
A fuzzy set p is rising  for its membership function , 1,1  for all  

, . P is falling  for its membership function , 1,1  for all , . 
Proposition 
The basic unary transformations  and are rising plane operators and the unary transformations  and 

 are falling plane operators. 
Proof: Any composition …  where f is a rising (falling) plane operator is again a Rising (falling) plane operator. 
The proofs are straightforward [1]. 
Linear Y-Functions 
A small, but important class of y-functions are linear y-functions. They are important firstly because very natural 
operators, like standard complement, intersection and union of fuzzy time planes can be described with linear y-
functions. Secondly they are important because they allow us to transform planes represented by polygons in a very 
efficient way: only the vertices of the polygons need to be transformed. 
The main characterization of linear y-functions is therefore that they map non intersecting straight plane segments to 
straight plane segments. 
Definition (Y-Functions) 
 : 0,0 , 1,1 0,0 , 1,1  Is the set of n-place y-functions. 
They map fuzzy values to fuzzy values. 
  . 
Definition (plane Operators) 

µ : Is the set of n-place plane operators. 
They map fuzzy planes to fuzzy planes. 

µ µ  . 
Every y-function can be used to construct a new fuzzy time plane from given ones by applying the y-function to the 
fuzzy values. 
Definition (Associated plane Operators)  
If is a y-function then  µ  defined , , … , , , , … , , is the 
associated plane operator. 
Definition (Linear Y-Function) 
A y-function   is linear if the mapping 

  ′ , , , … , , , , , , … , ,  
Maps non-intersecting plane segments  

, , , , , … , , , , ,  
To a line segment 

, , , … , , , , , … , , . 
One-place linear y-functions can be characterized in the following way 
Proposition (Characterization of One-Place Linear y-Functions) 
A one-place y-function f is linear if and only if , 0,0 1,1 0,0 . ,   holds. 
Proof: Suppose f is linear. We take the straight plane segment between 0,0 , 0,0  and 1,1 , 1,1 . The mapping  
f ′ z, x, y z, f x, y  maps this plane segment to a plane segment between 0,0 , 0,0  and 1,1 , 1,1  . 
Therefore 

, 0,0 , ,
, ,

. , 0,0    (Line equation) 

              0,0 1,1 0,0 . ,  
Other direction: clearly. 
An example for a one-place linear y-function is the standard negation   

, 1 , . 
The characterization of two-place linear y-functions 
Proposition (Characterization of Two-Place Linear y-Functions) 
A two-place y-function f is linear if and only if the following condition holds: 

, , , = 
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0,0 , 0,0
,
, , 1,1 0,0 , 0,0 . ,                                         , ,

0,0 ,
, ,

1,1 , 1,1 0,0 ,
, ,

1,1 , . ,                                   otherwise

 

 
Proof: Suppose f is linear. We consider the case , ,  first. To this end we take the straight plane segment 
between 0,0 , 0,0  and 1,1 , 1,1 . The line equation for this curve is just y x . Now take an arbitrary x , y

0,0 , 1,1  and an arbitrary x , y x , y . The line equation for the plane segment starting 

At 0,0 , 0,0  and crossing x , y , x , y  is x, y , ,
, ,

. w , w   . For  

w , w 1,1  We get , ,
,

. 

Since f is linear we have 

, , , 0,0 , 0,0
, , 1,1 0,0 , 0,0

0,0 1,1 . ,  

                                      0,0 , 0,0 ,
,

, 1,1 0,0 , 0,0 . ,  

Now consider the case , , . 
  The plane starting at 1,1 , 1,1   and crossing x , y , x , y   crosses the y-axis 

At , , ,
, ,

 . 

   Since f is linear we have 

, , , 0,0 , ,
1,1 , 1,1 0,0 , ,

1,1 0,0 . ,  

                                     0,0 , , ,
, ,

1,1 , 1,1 0,0 , , ,
, ,

. ,  

The other direction, showing that the two conditions imply linearity, is again straightforward. 
  Simple examples for linear two-place y-functions are the minimum and maximum function. The minimum function is 
used to realize standard intersection of two fuzzy time planes, and the maximum function is used to realize standard 
union of two fuzzy time planes. 
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