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Abstract

In this paper, we associate finite hyperstructures with fuzzy sets endowed with n-ary
membership functions and analyze the properties of this new hyperstructures. We prove that the
new hyperstructure is a commutative hypergroup, but generally it is not a join space. We give some
conditions such that the hypergroup has this property. In particular, we investigate some natural
equivalence relations on the set of all intuitionistic fuzzy sub-hypergroups of a hypergroup.
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1. Introduction.

The theory of algebraic hyperstructures, which is a generalization of the theory of ordinary
algebraic structures, was first introduced by F. Marty, in [15]. Since then many researchers have
studied the theory of hyperstructures and developed the theory from the algebraic point of view.
This theory also has many applications in other are as such as in geometry, graphs and
hypergraphs, lattices, fuzzy and rough sets, automata, cryptography, codes, etc (see [1, 2, 3, 4, 5, 6,
7,9, 16]).
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L.A. Zadeh, in [19], introduced the notion of a fuzzy subset of a non-empty set X, as a function from
X to [0,1] . This notion has opened an important research field of mathematics in the past decades.
P. Corsini initiated an area of research by making a connection between hyperstructures and fuzzy
sets: he associated a join space with a fuzzy set, in [8], and then a fuzzy set with a hypergroupoid, in
[11].

Another topic in the relation between hypergroups and fuzzy sets was introduced by P. Corsini, in
[10]: he constructed a new finite hypergroupoid using two membership functions. He proved that,
in general, this hyperstructure is a hypergroup but not a join space. I. Cristea, in [13], introduced
conditions for the associated hypergroup to be a join space.

The notion of intuitionistic fuzzy sets was first introduced by Atanassov, in [4]. For details of
intuitionistic fuzzy sets, we refer the reader to [4, 5].

This paper is structured as follows. After the introduction, in Section 2, were call some basic notions
and results on hypergroups. In Section 3, we associate finite hyperstructures with fuzzy sets
endowed with n-ary membership functions. In Section 4, we study the associated hyperstructures
with hypergroups and join spaces. We prove that the new hyperstructure is a commutative
hypergroup but, in general, it is not a join space. We then give some conditions such that the
aforementioned commutative hypergroup also has this property. In Section 5, we study the set of
all intuitionistic fuzzy sub-hypergroups of a hypergroup and give several examples and establish
some characterization theorems.

It is worth mentioning that in this paper we deal only with finite hypergroupoids.

2. Preliminaries

We recall some definitions (see [7, 12]), needed in what follows.
Let H be a non-empty set and P*(H)be the family of all non-empty subsets of H. A
hyperoperation or join operation is a map o:H xH — P*(H). For each pair (a,b) e H x H, we
denote o (a,b) by a-b.
The join operation is extended to subsets of H in a natural way, namely
AoB:=J{acblae Abe B}

The notations a- Aand Ao a are used for {a}o A and A o {a} respectively. Generally, the singleton
{a} is identified by its element a .
A non-empty set H, endowed with a hyperoperation"o" is called a hypergroupoid and it is denoted
by (H o). If

Xo(yo z):(xo y)o Z, VX,y,zeH,
then (H ,0) is called a semihypergroup.
A hypergroupoid (H ,o) is called a quasihypergroup, if acH =H oca=H, forall ac H.

Definition 2.1. A hypergroup is a semihypergroup and a quasihypergroup.

Definition 2.2. Let K c H,K = ¢. We say that (K o) is a subhypergroup of (H o) if for any aeK,
we have ao K =K oa=K.
For a,beH, we denote: a/b={X|anOb} and b\a={x|aebox}.

Definition 2.3. A commutative hypergroup (H ,o) is called a join space if the following condition

holds:
albncldzg=a-dnboc=g¢g, Vahb,c,deH.

Join spaces were introduced by W. Prenowitz, in [16], and represent an important subclass of
hypergroups with many applications especially in geometry (see [17]).
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Corsini, in [8], showed that to any hypergroupoid H endowed with a fuzzy set, we can associate a
join space (H ,o,) as follows:

V(x,y)eH?, xopy=1izeH|u(x) A u(y) < u(2) < pu(x) v u(y)}
Recently, Corsini, in [10], has defined a new hypergroupoid associated with two membership
functions. Here we recall this construction. Let x#,4:H — R™ be two functions defined on a non-
empty set H. ForX,y € H, we define the hyperproduct of x,y with respectto u, A by

H(X) A p1(y) A AX) A ACY) < 1(2) A 1(2)}
H() v u(y) v Ax) v A(Y) 2 u(z) v A(2) |

The obtained hyperstructure (H ’OM) is a commutative hypergroup, but generally it is not a join

V(x,y)eH?, xo,, y:{ZEH

space.

3. n—ary membership functions

A fuzzy set (of type 1) on a non-empty set H is a function x:H —>[0,11 The complement of u

denoted by x°, is the fuzzy set of H given by u° (X) =1- ,u(x) forall xeH.
Let wy, pty i pty ' H — [0,1], be n-ary fuzzy sets defined on a non-empty set H.For any x,yeH, we
can define a hyperstructure on H by

Xop y:{ZGH

wheren is an element of the set N of all non-zero natural numbers. For aeH, we shall use the

AL (00 A g (V) S AL (z)}_
VI (00 v (V) 2 VI 14 (2)

symbol A}, z(a) by m(a) and v, 4 (a) by M (a), for the sake of simplicity. Thus, we have

‘o, y={ZeH m(x) A m(y) <m(z) }
M(xX)v M(y)>M(z)

we have{x,y}c xo, V.

"
n !

By the definition of "o

Proof of the following proposition, which is omitted, is easy.

Proposition 3.1. Suppose x,y € H, we define
/\in:n—j+1 (i (X) A () < /\in:n—j+l/ui (2)

xoly=qzeH| ) :
Vien-js1 (1 OV 24 (Y)) 2 Vil 44 (2)

This implies
(Xon—j y)(.\(xOJ y)gXOn Y,
wherel< j<n.

Remark. The set (xo, ; y) U (X ol y)is not always a subset of X o, y, as we can noticein the following

example:

Example 3.2. Let H ={a,b,c,d} and
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1(@)=015  u,(a)=040  uy(a)=0.25,
u(0)=045  4,(b)=050  u,(b)=0.70,
4,(c)=0.45 1,(c)=0.60 H5(c)=0.90,
#(d)=020  ,(d)=035  1,;(d)=0.20.

Then, we have

ac,b={a,b,d}, ac,b=H, ao’b={ab}
This implies that

(a0, b) N (ao?b)={a,b}cao-,b=1{ab,d}
but(ao, b) U(ac’h)=H >ao-;b={ab,d}.

Proposition 3.3. Forall X,y € H, we have

(Xon ) U (Yo, Y) S Xop Y.
Proof. Suppose z € xo, X, we have m(x) <m(z) and M (x) > M (z). Forall y e H, itimplies that
m(x) Am(y) <m(x) <m(z) and M(x) v M(y)2M(X)>M(z), sozeXo, Y,ie,Xo, XS Xo, V.
Similarly, one can deduce that yo, y< Xo, y.Thus(Xe, X) U(ye, Y) < Xo, V.

Theorem 3.4. Let
Xy Y= {z e Hm(x) < m(z)},
Xe, y:{ZE HM(x)>M (z)}.
Then
Xop y=((Xn )N (X0 XN U((Yn Y)O (Yo Y)U(Xn X) (Yo, Y)Y Y) N (Xe, X))
Proof. If we let m(a)=u(a) Av(a) and M(a)=u(a)vv(a),for acH, then the proof will follow
from Theorem 2 of [9].

4, The relationship of hyperstructure (H ,o,) and hypergroups and join spaces

When n =1 and n =2 hypergroup (H o) has been studied by Corsini.
Let n =1. Then m(a) = (a) =M (a), for any a € H, which means

Xoy y={zeH [ u(X) A u(y) < u(z) < u(x) v u(Y)},
where z,(a) = u(a), forall aeH.

Theorem 4.1. (See Corsini [9]). The hyperstructure (H ,o,) is a join space.

Theorem 4.2. (See Corsini [10]). The hyperstructure (H o, = OM) is a commutative hypergroup.

From now, we assume n > 3.

Theorem 4.3. The hyperstructure (H ,o ,) is a commutative hypergroup.
Proof. The hyperstructure (H ,o,) is a quasihypergroup, because we have {x,y}c xo,y for all
X, ¥ € H. On the other hand, suppose

P(x,y,w) ={z eH

m(x) A m(y) A m(w) <m(z) }
M(x) v M(y)vMW)>M(2)|
We prove that (Xo, y)o, w=P(X,y,w). We have
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Tt {m(x) Am(y)<m(t), m(t) Am(w)<m(z) }}

(xe, y)onw={zeH
M (t) v M (W) =M (2), M(x)vM(y)=M(t)

Let ze(Xo, y)o, W. Then we get
m(x) A m(y) A m(w) <m(t) A m(w) <m(z),
M(X)vM(y)vMWw)=>M(t)v M((w)=>M(z).
This implies that z € P(x,y,w), and so
(Xon ¥)op WS P(X,y,W).
Conversely, suppose z € P(X,y,w), we have
Ze(Xo, Y)o,We3t: texo, Yy, zeto W

Set
m=m(x) A m(y) A m(w),

M=M(X)vM(y)v M(w).
Assume m=m(x), M =M (w) and t =X, then
m=m(x) =m(t) A m(w) <m(z),
M =M(w)=M(t) v M(w)=>M(z2).
Itimplies zeto, w. Since t =X, we have
m(x) A m(y) <m(t),
M (x) v M (y) =M (t).
Thus X=texo,y, which meansze(Xo, y)o, W. One can deal with other cases by similar

arguments. Hence
(Xen y) oy W2 P(X,y,W).

It follows that (Xo, y)e, W=P(x,y,w). Similarly, one gets Xo, (yo, w)="P(X,y,w). It implies that
(H ,o,) is a semihypergroup. Which means (H ,0) is a hypergroup.

Generally, Xo, y is not a join space. Here, we give some examples of fuzzy sets 4, i,,..., 4, such
that the associated hypergroup (H ,o,) is ajoin space.

Example 4.4. Let H ={a,b,c,d,e} and

1(@)=015  u,(a)=045  u,(a)=0.35,

u(0)=045  4,(b)=055  u,(b)=0.45,

14,(€)=0.25 1,(c)=0.60 1(c) =0.55,

14(d)=020  ,(d)=030  u,(d)=0.40,

1(€)=0.05  u,(e)=0.60  xy(e)=0.50.
Then, we have m(a) =0.15, M (a) = 0.45, m(b) =0.45, M (b)=0.55, m(c) =0.25, M (c) = 0.60,
m(d)=0.20, M(d)=0.40, and m(e) =0.05, M ()= 0.60.

Consequently,
m(z) A 0.45<0.15

M(z) v 0.55>0.45
and similarly c¢/d ={c,e}. On the other hand, we obtain

m(z) >0.15
dogd=4zeH ={a,d}, besc=5zeH
M (z) £0.45

a/lb={xeH|aexo, b}={ZeH

} ={a,e},

m(z) >0.25
M (z) £0.60

}:{b,c}.
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It implies that eca/bnc/d # ¢, but (ac; d) N (bo, c)=¢. Hence (H ,o;) is nota join space.
For any ae H, we denote:

m; (@) = (@) A A i1 (B) A iy (@) Ao A 11, (3),

Mi(a) = @) v..v g (@) v (@) V.. v 1, (a).

Theorem 4.5. Forany a € H, let there exist i, j € N*, such that

m; () > x;(a) , M(a) < u;(a) and p; = .
Then the hypergroup (H ,,,) is a join space.
Proof. By our assumptions, the hyperoperation'o " is given by

{ /M@AﬂKWSM@)}
Xo, y=49z€eH [
We used here the fact that

i () v ui(y) = p;(z
w1 () A g (Y) < () < (X) v g (Y) 2 w4 (2), (1)

forany x,y,ze H.
For Condition (1II), suppose £ (X) = 24(X) A 24 (Y) < £4(2), then we have g;(X) < 4 (z) if and only if
w4 (X) > i (2). Since g = p5, wehave i () > 44 (2) if and only if 4 (xX) > u; (2).
On the other hand, we have
1 (X) =, (X) A i (Y) < 25, (X) v 5 (Y) = g (Y),

S uf () v a7 () = 45 (X),

< u () v g (y) = ().
This implies g;(x) = ;(z) if and only if z;(X) v u;(y) = 1;(2).
Thus, we conclude that

xey ¥ =z Hlu (0 A 1 (Y) < 1 (2)}

Now, by Theorem 4 in [9], the hypergroup (H ,o,) is ajoin space.

Example 4.6. Let H ={a,b,c,d,e} and
#(@)=015  u,(a)=045  p,(@)=035  u,(a)=0.85,
w([0)=045  4,(0)=055  py(0)=045  14(b)=0.55,
#(€)=025  1,(c)=0.60  u3(c)=055  u;(c)=0.75,

4,(d)=0.20 4(d)=0.30  p4(d)=0.40 15(d) =0.80,
14, (e)=0.05 1,(e)=0.60 1,(e) =0.50 1(e) =0.95.
In Example 4.4, we showed that H ={a,b,c,d,e} with 24, ,, 145 is not a join space. But since
m,(a) > 4 (a)and M ,(a) < u,(a)

forall ae H and g, = 4, by Theorem 4.5, we have H ={a,b,c,d,e} with 4,1, 13, 4, is a join
space.

Theorem 4.7. For any a € H, let there exist i, j € N*, such that

m;(a) > g;(a), M(a) < pj(a)and g = p;.
Then the hypergroup (H ,,,) is a join space.
Proof. By our assumptions, we have
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Xon Y ={ze Hl () A 1,(9) < 14,(2) < 11,00 v 21,(¥)}
Thus, the commutative hypergroup (H ,o,) is ajoin space.

Theorem 4.8. For any a € H, let there exist i, j € N*, such that
m;(a) > g;(a) and M ;(a) < u;(a) = constant,
m; (@) > y;(a) = constant and M ;(a) < u;(a).
Then the hypergroup (H , ) is a join space.
Proof. By our assumptions imply that the hyperoperation"o ,"is given by
xon ¥ ={ze Hlw () A 145 (¥) < 4 (2)}
or
Xen ¥ =z el (9 A 1, ()> 1, 2)}
Thus, by Theorem 4 in [9], the hypergroup (H ,o,) is ajoin space.

Theorem 4.9. (see Cristea [13]). Let u, A be two fuzzy sets in H such that A = u°,for any x e H.
Then the commutative hypergroup (H ’O;WC) is a join space.

Lemma 4.10. Let 4, 1ty ,..., 4, be N—ary fuzzy sets in H such that y; = u; ., foralli, 1<i<n. Then,
fora,b,c,d € H, the following statements hold:
i) (@e, b)n(co,d)=4¢,
i) b/cnald =g
Proof.
i) Let a,b,c,d e H. Since 4, 14,,..., 44, are fuzzy sets in H, there exists an element x € H such that
m(x) = sup ., m(h), which implies that M (x) = inf,_,, M (h). Since we have x; = u ;.;, we get
m(a) A m(b) < m(x),
M (a) v M (b) > M (x).
Therefore x eac, b. Similarly, we can obtain x eco, d. This implies that (ac, b)n(co, d) = ¢.
i) Similarly, there exists an element ye H such that m(y) =inf,_, m(h), which implies

M (y) =sup .4 M (h). Thus, we have
m(d) Am(y) <m(z
yodLzepP@ammsm@ |,
M(d)vM(y)>M(2)
Which implies y € a/d. Similarly, we have y e b/c,and so b/c~a/d = ¢.

The following theorems are the main results of this section:

Theorem 4.11. By the same assumptions of Lemma 4.10, the commutative hypergroup (H o) is a
Jjoin space.
Proof. By Lemma 4.10 (i), for any a,b,c,d € H, we have

b/cnald=¢ = (a0, b)n(co, d) =g,

which means that (H ,o,) is ajoin space.

Example 4.12. Back to Example 4.4, suppose u, = uz, is = fy, fg = i1, then by Theorem 4.11,
the set H ={a,b,c,d,e} with 4, 1, 145, 14, 15, 145 is a join space.
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Theorem 4.13. Let [4= f4, [y, fhy 5, ity = A be N—ary fuzzy setsin H. Let (H o ;) be a join space
such that forall X H,
) A A S AT (), 100V AX) = VI 4(0).
Then the hypergroup (H ,c,) is ajoin space.
Proof. It is enough to show that Xo,, y=Xo,y for all X,y e H. By our assumptions, we get
“(X) A A(X)=m(x) and p(x) v A(x) =M (x), forall x e H. Thus, we haveze X , y if and only if
m(x) Am(y) = u(x) A A(X) A u(y) A A(Y) < 1(2) A A(2) = m(2),

M(X) v M(y) = u(x) v A(X) v u(y) v AY) 2 u(2) v A(2) =M (2),
ifand only if z € x o, y. This completes the proof.

By Theorem 4.13 and Theorem 4.9 we have the following results:

Corollary 4.14. Let = 4, ly,.... 4y 1, th, =A be N—ary fuzzy sets in H such that u=X", and
assume

1) A A S AT (), 100V AX) = VI 4,00,
forall x e H. Then the hypergroup (H ,°,) is a join space.

Corollary 4.15. Let =g <p, <..<u, =24 be N—ary fuzzy sets in H such that p=/°. Then the
hypergroup (H o) is a join space. Here 1 < uj, means 44(2) < u;(@), forall x e H.

5. Intuitionistic fuzzy sets of the hypergroup (H o)

The notion of intuitionistic fuzzy sets was first introduced by Atanassov in [4]. For details of
intuitionistic fuzzy sets, we refer the reader to [4, 5]. In [6], Biswas applied the concept of
intuitionistic fuzzy sets to the theory of groups and studied intuitionistic fuzzy subgroups of a
group. Dudek et al, in [14], considered the intuitionistic fuzzification of the concept of sub-
hyperquasigroups in a hyperquasigroup and investigated some properties of such
hyperquasigroups.

In this section, we apply the concept of intuitionistic fuzzy sets to the hypergroup (H o) and we
investigate some related properties.

Definition 5.1. An intuitionistic fuzzy set A in a non-empty set X is an object having the form
A={(% sa(x), Aa (X)) | x € X},

where the functions u,:X —[01] and 4,:X —[01] denote the degree of membership (namely

(X)) and the degree of nonmembership (namely 1,(x)) of each element x e X with respect to

the set A, respectively, and 0< u,(X)+A,(x) <1 forall xe X .

For the sake of simplicity, we shall use the symbol A=(u,,A4,) for the intuitionistic fuzzy set

A={(X, s (X),2,(X))| x € X}. Denote by IF(X) the set of all intuitionistic fuzzy sets in X .

Definition 5.2. Let (H ,o) be a hypergroup (resp. hyperquasigroup). An intuitionistic fuzzy set
A=(uu,A,y)in H is called an intuitionistic fuzzy sub-hypergroup (resp. sub-hyperquasigroup) of
(H ,o) if the following axioms hold:
(1) ua() A pp(y) <inf oy 14 (2) forall X,y e H;
(2) forall x,a e H there exist y,Z € H such that xe(a- y)n(z-a) and
1a@) A pa(X) < pa(Y) A 1 (2);
122



M. Asghari-Larimi, P. Corsini, E. Ranjbar-Yanehsari / TIMCS Vol .5 No. 2 (2012) 115-125

(3) Aa(X) v Ap(Y) ZSUP,(y.y An(2) forall X,y € H;
(4) for all x,a € H thereexist Y,z e H suchthat xe(a-y)n(z-a)and
An(Y)V 25 (2) < 25 (8) v A4 (X).

For the sake of simplicity, we shall use the symbol IFSH for the intuitionistic fuzzy sub-hypergroup.
Here we suppose A = H and denote Ay =4,y = and also, let g4, t4,,..., 1, be N—ary fuzzy sets
in H.

Corollary 5.3. Forall x € H,let 0< Al 14(X) + Vil 14 (X) <1. Then

(AL 4 (X), Vil (X))
is always a IFSH of (H ,0 ).
Proof. Since the hyperstructure (H,c,)is a commutative hypergroup such that{x,y}< xo, y, for
any X, Y € H, thus, the conditions (2) and (4) of Definition 5.2, are verified. On the other hand, for
all X,y,z e H suchthat ze xoy, by definitions we have

(ALt () A (A (D)) S Al (2) and (Vi 26 (X)) v (Vilg 4 (Y)) 2 Vil 14(2).
Hence, the conditions (1) and (3) of Definition 5.2 are satisfied.

Remark. (Vi i Al ), (Vi g, vi ) and (A 14,A1 1) are not always a IFSH of (H ,0,,), as we
can notice below.

Example 5.4. In Example 4.4, we have aceo, b. On the other hand, we have V3, z(e)=0.60 and
v2, 14,(b)=0.55. Thus
(V344 () A (v 14 (0)) = 055> 0.45 =2, 4 (2.

This means the condition (1) of Definition 5.2 is not satisfied.
Similarly, we have ceeo, d, but

(A2 44, (@) v (A2 24(d)) =020 > 0.25= A2, 14 ©).
This means the condition (3) of Definition 5.2 is not satisfied.
Lemma 5.5. (V{24 (X))° = Al 14 (X) forall xe H.
Proof. For all x e H there exists s € {l,..., n} such thatv{, z (X) = z (X). Hence, for all i e{L,..., n}
we have £ (X) < £,(X). This implies that £°(X) > xS (X). Thus Al 24 (X) > w8 (X).
On the other hand, obvious that A, z°(X) < uS(X). This implies Al 22°(X) = & (X) = (Vi 4 (X))°.

Lemma 5.6. (A, 14 (X)) = Vi 15 (X) forall x e H.

1
Theorem 5.7. For all x € H,let Vi 1(X) =5 Then (Vi 4,V ) is a IFSH of (H ,0,) if and only if

(AL AL ) is a IFSH of (H e ,).
Proof.
1 1
=) Since Vi, 4 (X):E for all x e H, then we have Al s (x):E, thus (A, 45 A 447 ) is a IF of
(H,o,). Let (Vi 4,viy 1) bealFSH of (H o). Then forall x,y € H, we have

(Vi () A (Vi () <inf o Vi 44 (2)}
and so
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L= (Vi O AL = (Vi s (V)] inf e 1= (Vil 4 (2))°D,
which implies

[1= (Vi O TA L= (vilg 4 (V) T < 1= sup oy {(Vi 44 (2))° )
thus

SUP oy (Vi 4 (2)) 31— (L= (Vi s () TA L= (Vi 1 (YD),
Therefore
SUP, ey LVt (D)3 (Vilep, ()" v (Vil e, (Y)),
By lemma 5.5, we have
supzexoy{/\inzlluic (2)}< (/\inzlﬂic(x)) v (/\inzlﬂic()’)),
hence the third condition of Definition 5.2 is verified. Now, let X,a € H. Then thereexist y,ze H
such that xe(aoy)n(z-a) and
(Vita 4 (@) A (Vil 45 (X)) < (Vi 4 (V) A (Vi 14(2)),
This implies
- (Vi @) TARL= (Vit g () T L= (Vi s (D) T AL = (vil 24 (2))°],

Hence

(Vi (@)° v (Vi 4 (X)) = (Vi 4 (0)° v (Vi 4 (2))°,
by lemma 5.5, we have
(Apl @) v (AL () =2 (Al (D) v (AL ] (2)),
and the fourth condition of Definition 5.2 is satisfied. Similarly, the conditions (1) and (2) of

Definition 5.2 are verified.
<) The proofis similar to that of above.

1
Theorem 5.8. For all x € H , let Al 14(X) = Then (AL t4,A 44) is a IFSH of (H ,0,,) if and only if

(Vi Vi pf) is a IFSH of (H o).
Proof. The proof is similar to that of Theorem 5.7.

Corollary 5.9. Forany a € H, let thereexist i, j € N*, such that
m; (@) > #;(a) , M(a) < u;(a) and p; = .

Then (u; , 1) is a IFSH of (H ,,).

Proof. The statement of this Theorem follows immediately from Theorem 4.5 and the proof of
Theorem 5.7.

Corollary 5.10. For any a € H, let thereexist i, j € N*, such that
m;(a) 2 y;(a), M j(a)S ﬂj(a)and Hi = Hj.
Then (1 , 1) and (uf, 1 ) are a IFSH of (H o).
Proof. The latter proof would be implied by Theorem 4.7 and the proof of Theorem 5.7.

Corollary 5.11. Forany a € H, let there exist i, j € N*, such that
m;(a) > y;(a) and M;(a) < y;(a) = constant.
Then (u;,u5) isalFSHof (H ).

Proof. The statement of this Theorem follows immediately from Theorem 4.8 and the proof of
Theorem 5.7.

Similarly, by Theorem 4.8 and the proof of Theorem 5.7, we find the next result:
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Corollary 5.12. Forany a € H, let thereexist i, j € N*, such that
m; (a) = u;(a) = constant and M ;(a) < y;(a).
Then (u5, ;) isalFSHof (H ).

Acknowledgement. The author is highly grateful to the referees for their constructive
suggestions for improving the paper.

References.

[1] M. Asghari-Larimi, Some properties of intuitionistic nil radicals of intuitionistic fuzzy ideals,
International Mathematical Forum, 5 (2010), 1551 - 1558.

[2] M. Asghari-Larimi and B. Davvaz, Hyperstructures associated to arithmetic functions, Ars
Combitoria, 97 (2010), 51-63.

[3] M. Asghari-Larimi and V. Leoreanu-Fotea, A connection between hypergroupoids and L-Fuzzy
Sets of Type 2, [talian ]. of Pure and Appl. Math., 26 (2009), 207-216.

[4] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.

[5] K.T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets Syst., 61
(1994), 137-142.

[6] R. Biswas, Intuitionistic fuzzy subgroups, Math. Forum, 10 (1989), 37-46.

[7] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993.

[8] P. Corsini, Join Spaces, Power Sets, Fuzzy Sets, Proceedings of the 5th A.H.A. Congress, 1993, lasi
(Romania) Hadronic Press, (1994), 45-52.

[9] P. Corsini, Hyperstructures associated with ordered sets, Bull. Greek Math. Soc., 48 (2003), 7-18.
[10] P. Corsini, Hyperstructures associated with fuzzy sets endowed with two membership
functions, j. of combin. infor. system sci., 1-4 (2006), 247-254.

[11] P. Corsini, A new connection between hypergroups and fuzzy sets, Southeast Asian Bull. Math,,
27 (2003), 221-229.

[12] P. Corsini and V. Leoreanu-Fotea, Applications of Hyperstructure Theory, Kluwer Academic
Publications, Dordrecht, Advances in Mathematics, 2003.

[13] . Cristea, Hyperstructures and fuzzy sets endowed with two membership functions, Fuzzy sets
and Systems, 160 (2009), 1114-1124.

[14] W.A. Dudek, B. Davvaz and Y.B. Jun, On intuitionistic fuzzy sub-quasihypergroups of
quasihypergroups, Information Sciences, 170 (2005), 251-262.

[15] F. Marty, Sur une generalisation de la notion de groupe, 8th course Math. Scandinaves
Stockholm, (1934), 45-49.

[16] W. Prenowitz, Projectives Geometries as Multigroups, Amer. J. Math., 65 (1943), 235-256.

[17] W. Prenowitz and ]. Jantosciak, Join geometries, Springer-Verlag, UTM, 1979.

[18] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc, 115,
PalmHarber, USA, 1994.

[19] L.A. Zadeh, Fuzzy Sets, Inform and Control, 8 (1965), 338-353.

125



