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Abstract

In this paper, we establish fixed point results for semi o.-admissible multivalued mappings satisfying a contractive condition
of Reich type only for the elements in a sequence contained in closed ball in a complete dislocated metric space. As an
application, we derive some new fixed point theorems for ordered metric space and metric space endowed with a graph. An
example has been constructed to demonstrate the novelty of our results. Our results unify, extend, and generalize several
comparable results in the existing literature. (©2017 All rights reserved.
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1. Introduction and preliminaries

Let S : X — X be a mapping. A point x € X is called a fixed point of S if x = Sx. Many results
appeared in literature related to the fixed point of mappings which are contractive on the whole domain.
It is possible that S : X — X is not a contraction but S : Y — X is a contraction, where Y is a closed ball
in X. One can obtain fixed point results for such mapping by using suitable conditions. Recently, Hussain
et al. [14] proved a result concerning the existence of fixed points of a mapping satisfying a contractive
condition on closed ball (see also [3-6, 28-30]).

The notion of dislocated topologies have useful applications in the context of logic programming
semantics (see [12]). Dislocated metric space (metric-like space) (see [2, 17, 25]) is a generalization of
partial metric space (see [19, 26]). Karapmar et al. [17] noticed that the notions metric-like space [2] and
dislocated metric space [12] are exactly the same. They also discussed the existence and uniqueness of a
fixed point of a cyclic mapping in the context of metric-like spaces. Arshad et al. [5, 21, 22] noticed that
the closed ball, Cauchy sequence, and completeness defined on these spaces are different from each other.
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They remarked that it is better to find a fixed point in a closed ball in dislocated metric space. They also
gave an example of a space which was complete dislocated metric space but was not complete metric-like
space.

Nadler [20], introduced a study of fixed point theorems involving multivalued mappings (see also
[8, 9]). The existence of fixed points of x-admissible mappings in complete metric spaces has been studied
by several researchers (see [18, 23, 27]). Asl et al. [7] generalized these notions by introducing the concepts
of «,. contractive multifunctions, o,-admissible mapping and obtained some fixed point results for
these multifunctions (see also [1, 13, 15]). On the other hand, [24] established some results concerning
contraction mappings. In this paper we discuss some new fixed point results for Reich type multivalued
mappings in a closed ball in complete dislocated metric space.

The following definitions and results will be needed in the sequel.

Definition 1.1 ([5, 17]). Let X be a nonempty set and let d; : X x X — [0,00) be a function, called a
dislocated metric (or simply di-metric), if for any x,y, z € X, the following conditions hold:
(i) if di(x,y) =0, then x =y;

(11) dl(X/U) = dl(y/ X);
(iii) di(x,y) < dilx,z) + du(z,y).

The pair (X, dy) is called a dislocated metric space.

It is clear that if di(x,y) = 0, then from (i), x = y. But if x =y, di(x,y) may not be 0. For x € X and
e>0,B(x,e) ={y € X:di(x,y) < ¢}is a closed ball in (X, d;).

Example 1.2 ([5]). If X = R U{0}, then d;(x,y) = x +y defines a dislocated metric d; on X.
Definition 1.3 ([5]). Let (X, d;) be a dislocated metric space.

(i) A sequence {xn}in (X, d) is called Cauchy sequence if given ¢ > 0, there corresponds ng € N such
that for all n, m > ng we have d{(xy,xn) < € or lirg di(xn,xm) =0.
n, m—o0o
(ii) A sequence {xn} dislocated-converges (for short d;-converges) to x if li_r>n di(xn,x) = 0. In this case
n o0

x is called a d;-limit of {x}.

(iii) (X,dy) is called complete if every Cauchy sequence in X converges to a point x € X such that
di(x,x) =0.

Definition 1.4. Let K be a nonempty subset of dislocated metric space X and let x € X. An element yp € K
is called a best approximation in K if

dl(X/K) = dl(X/UO)/ where d[(X, K) = ln]f(dl(xly)
ye

If each x € X has at least one best approximation in K, then K is called a proximinal set.

We denote CP(X) be the set of all closed proximinal subsets of X. Let ¥ denote the family of all
nondecreasing functions 1 : [0, +00) — [0, +00) such that Z:Z’l P™(t) < +oo for all t > 0, where P™ is
the n'" iterate of V. If € ¥, then \(t) < t for all t > 0.

Definition 1.5. Let S : X — P(X) be a multivalued mapping and « : X x X — [0,400). Let A C X, we say
that S is semi «.-admissible on A, whenever x(x,y) > 1 implies that «.(Sx,Sy) > 1 for all x,y € A, where
o (Sx, Sy) =infle(a, b) : a € Sx, b € Sy}. If A =X, then we say that S is a,-admissible on X.

Definition 1.6. The function Hg, : P(X) x P(X) — X, defined by

Hg, (A, B) = max{sup d(a, B), sup di(A,b)}
acA beB

is called dislocated Hausdorff-Pompeiu metric on P(X). Also, (P(X), Ha ) is known as dislocated quasi
Hausdorff-Pompeiu metric space.
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Lemma 1.7. Let (X, dy) be a dislocated metric space. Let (P(X),Hgq,) is a dislocated Hausdorff-Pompeiu metric
space on P(X). Then for all A,B € CP(X) and for each a € A there exists b, € B satisfying di(a, B) = di(a, bq),
then Hdl(A,B) = dl(a,ba).

Proof. 1f Hq, (A, B) =sup . di(a, B), then Hq (A, B) > di(a, B) for each a € A. As B is a proximinal set,
so for each a € X, there exists at least one best approximation b, € B that satisfies di(a, B) = di(a, bq).
Now we have, Hq, (A, B) > di(a,bq). Now Hg, (A, B) = supy g di(A,b) > sup ., di(a, B), hence, the
lemma is proved. O

2. Main result

Let (X,d;) be a dislocated metric space, xp € X and S : X — P(X) be a multivalued mapping on
X. Then there exists x; € Sxg such that di(xg, Sxg) = di(xg,x1). Let xo € Sx; be such that d{(x1,Sx1) =
di(x1,x2). Continuing this process, we construct a sequence x,, of points in X such that x,, 1 € Sx, and
di(xn, Sxn) = di(xn, Xxn+1). We denote this iterative sequence {XS(xn )} and say that {XS(x)} is a sequence
in X generated by x.

Theorem 2.1. Let (X, dy) be a complete dislocated metric space, v > 0, xg € Bq,(xo,1) & : X x X — [0, +-00),
S : X = P(X) be a semi «.-admissible multifunction on Bq, (xo, 1) and {XS(xn)} be a sequence in X generated by
X0, &(xp,x1) = 1. Suppose that there exist a,b € [0,1) with a4+ 2b < 1 such that

o (Sx, SYy)Hq, (Sx, Sy) < ady(x,y) + b [di(x, Sx) + di(y, Sy)] (2.1)
forall x,y € Bq,(xo,7) N{XS(xn)}, and

di(xg,Sx0) < (1 —=A)r, where A = g. (2.2)
Then {XS(xn )} is a sequence in Bq,(xo, 1) and {XS(xn)} = x* € Bq,(x0, 1) and o(xn,Xn41) = 1 for X, xn41 €
{XS(xn)}, n € NU{0}. Also, if oc(xn,x*) = 1 or (x*,xn) > 1 for all n € IN U{0} and inequality (2.1) holds for

all x,y € (Bdl (xg,7) N {XS(xn)}> U{x*}, then S has a fixed point in Bg,(xo,T).

Proof. Asxg € Bq,(x0, 1), and S : X — P(X) is a multivalued mapping on X, then there exists x; € Sxy such
that dy(xo, Sxo) = di(xo,x1). If xo = x1, then xq is a fixed point in Bq, (xo, 1) of S. Let xo # x;. From (2.2),
we get,

dl(XO,X]) < (1 —7\) rrm.
It follows that x; € Bg,(xo, 7). As &(xo,%1) = 1 and S is semi o,.-admissible multifunction on B4, (xo, 1), so
o (Sxg,Sx1) = 1. As o (Sxg,Sx1) = 1, x1 € Sxg and x» € Sxq, so a(xq,x2) > 1. As S is semi o,-admissible

multifunction on By, (x, 1), thus, we have o, (Sx1, Sx2) > 1. As a.(Sx1, Sx2) > 1, we have x(x2,x3) > 1,
which further implies o, (Sx2, Sx3) > 1. Continuing this process, we have . (Sx;_1, Sx;) > 1. Now,

di(xj,%541) < Ha, (Sx5-1,5%j) < o (Sxj-1, Sxj)Ha, (Sxj-1, Sx;)
< adi(xj_1,%j) + b [di(xj_1,Sxj_1) + di(xj, Sx;)]
= adi(xj—1,%;) +bdi(xj_1,%j) + bdi(xj, Xj41)
< (a+b)di(xj—1,%5) +bdi(x,%541)
a+b

<
1-Db

di(xj-1,%;) = Adi(x-1,%;) < -+ < MNdilxo,x1),

which implies, '
di(x5,%541) < Ndi(xo,x1). (2.3)
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Now,

1xo,x1) + -+ -+ du(xg,%541)

1(x0,x1) + -+ + N dilxo,x1)

= (1+A+-+N)di(xo,x1)
1=N) (I+A+-+N)r<m

di(xo,xj41) < d
<d

N

Thus xj41 € Bg,(xo,1). Hence by induction, x, € Bq,(xo,7) and «(xn,xn41) > 1 foralln € N. As S is
semi «.-admissible multifunction on By, (xo,7), therefore &, (Sxn,Sxny1) > 1 for all n € INU{0}. Now
inequality (2.3) can be written as

di(Xn, Xni1) < A™dy(xo,x1) for all n € N. (2.4)

Now,

AT (1 — AL

T di(xg,x1) — 0asn — oco.

di(xn, Xn+i) < di(xn, Xn—!—l) + ...+ dl(xn+i—1/ Xn+i) <
Thus, we proved that {x,} is a Cauchy sequence in (Bg,(xp,1),d1). As every closed ball in a complete
dislocated metric space is complete, so there exists x* € Bg, (xo, ) such that x,, = x*, and
lim di(xn,x*) =0. (2.5)
n—,oo
Hence {XS(xn)} is a sequence in By, (xo, v) generated by xo and {XS(xn )} —=x*€Bgq, (x0, 1) and &(xn, Xn41) =
1 for xn, Xni1 € {XS(xn)}, n € NU{0}. As ot (Sxn, Sxni1) = 1 for all n € N U{0}, we have &(xn 11, Xni2) =

1 for all n € INU{0}. By assumption, we have a(xn,x*) > 1 for all n € N U{0}. Thus «.(Sxn,Sx*) > 1.
Now,

dy(x*, Sx™) (X", Xng1) + di(xng1, SX7)

(X", Xn41) + Ha (Sxn, SX¥)

(x*, Xn+1) + X (Sxp, SX*)Hqa, (Sxp, SX™)
( )

+ adl(xn/ X*) +b [dl(xnl SXTL) + dl(X*/ SX*)] .

—

*
11X s Xn+1

INCINCININ
ST S T S T o

Letting n — oo in the previous inequality, by using inequality (2.4) and (2.5), we get
(1—1b)dy(x*,Sx*) <0.

Similarly, if o(x*,xn) > 1 for all n € N U{0}, thus x.(Sx*, Sxn) > 1. Now,
(1—1b)dy(Sx*,x*) <0.

We obtain, di(Sx*,x*) = 0. Hence x* € Sx*. So S has a fixed point in By, (xo, 7).

Let X be a nonempty set. Then (X, <,d) is called a preordered dislocated metric space if d; is a
dislocated metric on X and is a preorder on X. Let (X, <, d;) be a preordered metric space and A, B C X.
We say that A < B whenever for each a € A there exists such that a < b. Also, we say that A <, B
whenever for each a € A and b € B, we have a < b. O

Corollary 2.2. Let (X, =<, dy) be a preordered complete dislocatedmetric space, v > 0, %o € Bq,(x0,1), S : X = P(X)
and {XS(xn )} be a sequence in X generated by xo with xo < x1. Suppose there exist a,b € [0,1) with a+2b < 1
such that

Ha, (Sx, Sy) < adi(x,y) + b ldi(x, Sx) + di(y, Sy)] (2.6)
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forall x,y in Bq, (xo, 7) N{XS(xn)} with x <y, and

a+b
1-b°

di(xg,Sx0) < (1 —A)r, where A =

If x =y implies Sx =<, Sy for all x,y € Bgq, (xo,1) N{XS(xn)}, then {XS(xn)} is a sequence in Bq,(xo,7),
Xn =X Xni1 and {XS(xn)} — x* € Bq,(x0, 7). Also if x* < xn 0r Xxn, 2 x* for all n € IN U{0} and inequality (2.6)

holds for all x,y € (B a, (xo, 1) N {XS(xn)}) U{x*}, then x* is a fixed point of S in Bq,(xo, T).

Let f : X — X be a self-mapping of a set X and « : X x X — [0, +00) be a mapping, then the mapping
f is called semi x-admissible if, A C X, x,y € A, «(x,y) > 1 implies « (fx,fy) > 1. If A = X, then the
mapping f is called x-admissible.

Corollary 2.3. Let (X, dy) be a complete dislocated metric space and S : X — X, v > 0 and xo be an arbitrary
point in Bq,(xo, 1) and {xn} be a Picard sequence in X with initial guess xo. Let & : X x X — [0, 4+-00) be a semi
o-admissible mapping on B g, (xo, ) with «(xg,x1) > 1. For a,b € [0,1) with a+2b < 1, assume that,

X, Y € Ba,(x0,7), alx,y) =1, implies di(Sx, Sy) < adi(x,y) +bldi(x, Sx) + di(y, Sy)], (2.7)

and

a+b

1-b’

Then {xn} is a sequence in Bq,(xo, ) and xn — x* € Bq, (xo, 1) and o(xn,Xn1) = 1 for all n € INU{0}. Also, if
&(xn,X") > 1 for all i€ NU{0}, and inequality (2.7) holds for all x,y € (Ba,(xo, 1) N {XS(xn)}) Ux"}, then x*

di(xg,Sx0) < (1 —=A)r, where A =

is a fixed point of S in Bg, (xo,T).

Recall that if (X, <) is a preordered set and T : X — X is such that for x,y € X, with x < y implies
Tx < Ty, then the mapping T is said to be non-decreasing.

Corollary 2.4. Let (X, dy) be a complete dislocatedmetric space, S : X — X be nondecreasing maping, v > 0 and
xo be an arbitrary point in Bq, (xo,1), {xn} be a Picard sequence in X with initial guess xo and xo = x;. For
a,be[0,1) with a+2b < 1 such that

ddl(sxl SU) < adl(X/U) +b [dl (Xz SX) + dl (y/ SU)] (28)
forall x,y in Bq, (xo, ) N{XS(xn)} with x <y, and

b
di(xo,Sxg) < (1 —A)r, where A = %.

Then {xn} is a sequence in Bq,(xo, 1), Xn = Xn41 and {xn} — x* € Bq, (%o, 7). Also if x* < xn 0r xnn < x* for all

n € IN U{0} and inequality (2.8) holds for all x,y € (Bdl (xg,T) N {XS(xn)}) U {x*}, then x* is a fixed point of S

in Ba (xo, 7).
Example 2.5. Let X = R" U{0} and let d; : X x X — X be the complete dislocated metric on X defined by,
di(x,y) =x+yforall x,y € X.

Define the multivalued mapping S : X — P(X) by

3V2

SX:{[Z L, ifxen),
[x,x+2], ifxe(l,00).
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A= Ba(xo 1) = 0,20/ and (1-A)r =2 > dalxo, Sx0) = 3
5, ...} in X generated by xo. Define the mapping,

1, ifx,yel0,1],
a(x,y)=1< 3

Consider xg =1, v =21, a =

So we obtain a sequence {XS(x )} =

o otherwise.
Now, ) .
o, (S4,S6)Hq, (S4,S6) = (2)12 > §d1(4,6) + 5 [di(4,S4) + dq(6,S6)] =9.

So the contractive condition does not hold on X. Clearly, the contractive condition does not hold for all
x,y € X and for all x,y € Bg,(xo, 7). Now for all x,y € Bq,(xo, ) N{XS(xn)}, we have

o, (Sx, SY)Hq, (Sx, Sy) =1 [max < sup di(a, Sy), sup di(Sx, b)
aeSx beSy

2y 3y] 2x 3x
=max < sup di(a, [ ), su d([,],b)
{aegx ' 3 4 bESIL 34

= max {dl(3x, [Zy, 31‘@ ), di( [ZX, 37(] , 3y)}

47134 374 4
- 3x 2y 2x 3y
—maX{d1(4, 3 ) d1(3/ 4 )}
B 3x 2y 2x 3y
—max{ . 373 + )}

5 1
6< T 5"
1 2x 3
2(x—|—y [ <x, EX
=a +d

di(x,y) + b [di(x, Sx)

gb;og ¢2)

So the contractive condition holds on By, (xo, ) N {XS(xr)}. Hence all the conditions of Theorem 2.1 are
satisfied. Now, we have {XS(xn)} is a sequence in Bq,(xo,T), ®(xn,Xn+1) = 1 and {XS(xn)} — 0 €
Bg, (x0, 7). Also, «(xn,0) > 1 or «(0,x) > 1 for all n € IN U{0}. Moreover, S has a fixed point 0.

3. Fixed point results for graphic contractions

Consistent with Jachymski [16], let (X, d) be a metric space and A denotes the diagonal of the Cartesian
product X x X. Consider a directed graph G such that the set V(G) of its vertices coincides with X, and
the set E(G) of its edges contains all loops, i.e., E(G) O A. We assume G has no parallel edges, so we
can identify G with the pair (V(G), E(G)). Moreover, we may treat G as a weighted graph (see [16]) by
assigning to each edge the distance between its vertices. If x and y are vertices in a graph G, then a path
in G from x to y of length N (N € IN) is a sequence {xi}{\’zo of N + 1 vertices such that xg = x, xn =y and
(xn—1,%n) € E(G) fori =1,...,,N. A graph G is connected if there is a path between any two vertices. G is
weakly connected if G is connected (see for details [10, 11, 16]).

Definition 3.1 ([31]). Let X be a nonempty set and G = (V(G), E(G)) be a graph such that V(G) = X, and
let T: X — CB(X). T is said to be graph preserving if it satisfies the following:

e if (x,y) € E(G), then (u,v) € E(G) forallu € Tx and v € Ty.

In this section, we give fixed point results on a dislocated metric space endowed with a graph.
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Theorem 3.2. Let (X, dy) be a complete dislocated metric space endowed with a graph G, v > 0, xg € Bq,(x0, 1),
S X = P(X) and {XS(xn)} be a sequence in X generated by xo with (xo,x1) € E(G). Assume the following
conditions hold:

(i) S is graph preserving for all x,y € Bq, (x0, 1),
(i) there exist a,b € [0,1) with a +2b < 1, such that

Hq, (Sx,Sy) < adi(x,y) + b [di(x, Sx) + di(y, Sy)] 3.1)
forall x,y € Bq, (x0, 1) N{XS(xn)}and (x,y) € E(G),
(iii) there exists xo € Bgq,(xo,T), such that di(xo, Sxo) < (1 —A) v, where A = g.

Then {XS(xn)} is a sequence in Bq, (xo,T1), (Xn,Xn+1) € E(G) and {XS(xn)} — x*. Also if (xn,x*) € E(G) or
(x*,xn) € E(G) for all n € IN U{0} and inequality (3.1) holds for all x,y € (Bdl(xo, ) ﬂ{XS(xn)}> U{x*}, then
x* is a fixed point of S in Bg, (xo, ).

Proof. Define « : X x X — [0, +00) by

[ 1, if (x,y) € E(G),
alxy) = { 0, otherwise.

As {XS(xn)} is a sequence in X generated by xo with (xg,x1) € E(G), we have «(xo,x1) > 1. Let, x(x,y) > 1,
then (x,y) € E(G). From (i), we have (u,v) € E(G) for all u € Sx and v € Sy. This implies that «(u,v) =1
for all u € Sx and v € Sy. This further implies that inf{la(u,v) : u € Sx, v € Sy} = 1. Thus S is a
semi «.-admissible multifunction on By, (xo, ). Also, if (x,y) € E(G), we have x(x,y) = 1 and hence,
o (Sx, Sy) = 1. Now, condition (ii) can be written as

o (Sx, SYy)Ha, (Sx, Sy) = Hgq,(Sx, Sy) < adi(x,y) + b [di(x, Sx) + di(y, Sy)]

for all x,y € Bq, (%0, 7) N{XS(xn)}. By including condition (iii) we obtain all the conditions of Theorem 2.1
are satisfied. Now, by Theorem 2.1, we have {XS(xn )} is a sequence in By, (xo, ), ot(Xn,Xn4+1) = 1, that is,
(xn,Xn+1) € E(G) and {XS(xn)} = x* € Bg,(xo,1). Also if (xn,x*) € E(G) or (x*,xn) € E(G) for all n €

IN U{0} and inequality (3.1) holds for all x,y € (B a,(xo, 1) N {XS(xn)}> U{x*}, then, we have o(xn,x*) > 1
or a(x*,xn) = 1 for all n € INU{0} and inequality (2.1) holds for all x,y € (Bdl (x0,T) ﬁ{XS(xn)}) U {x*}.
Again, by Theorem 2.1, S has a fixed point x* in Bg, (xo, 7). O

Corollary 3.3. Let (X, d{) be a complete dislocated metric space endowed with a graph G, v > 0, xo € Bq, (x0, 1),
S X = P(X) and {XS(xn)} be a sequence in X generated by xo with (xo,x1) € E(G). Assume the following
conditions hold:

(i) S is graph preserving forall x,y € Bq,(xo,7);
(ii) there exists b € [O ) such that
Ha, (Sx, Sy) < bldi(x, Sx) 4 di(y, Sy)] (3.2)

forall x,y € Bq,(xo,7) N{XS(xn)}and (x,y) € E(G);

(iii) there exists xo € Ba, (xo, 1), such that di(xo, Sxo) < (1 —A), where A = 1-b

Then {XS(xn)} is a sequence in Bq,(xo,1), (Xn,Xn+1) € E(G) and {XS(xn)} — x*. Also if (xn,x*) € E(G) or
(x*,xn) € E(G) for all n € IN U{0} and inequality (3.2) holds for all x,y € <Bdl (x0, 1) ﬁ{XS(xn)}> U{x*}, then
x* is a fixed point of S in Bq, (xo, 1).
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Proof. In Theorem 3.2, take a = 0 to get fixed point x* € B(xo, ) such that x* € Sx*. O

Corollary 3.4. Let (X, d() be a complete dislocated metric space endowed with a graph G, v > 0, xg € Bq,(xo,7),
S : X = P(X) and {XS(xn)} be a sequence in X generated by xo with (xo,x1) € E(G). Assume the following
conditions hold:

(i) S is graph preserving for all x,y € Bq,(xo, 1),
(ii) there exists a € [0,1), such that
Ha, (8%, Sy) < adi(x,y) (3.3)

forall x,y € Bq, (xo, 1) N{XS(xn)}and (x,y) € E(G),
(iii) there exists xo € Bq,(xo,T), such that di(xo, Sxo) < (1—a)r.

Then {XS(xn)} is a sequence in Bq, (xo,T1), (Xn,Xn+1) € E(G) and {XS(xn)} — x*. Also if (xn,x*) € E(G) or
(x*,xn) € E(G) for all n € IN U{0} and inequality (3.3) holds for all x,y € <Bdl(x0,r) ﬂ{XS(xn)}) U{x*}, then

x* is a fixed point of S in Bg, (%o, ).

Proof. In Theorem 3.2, take b = 0 to get fixed point x* € B(xo, 1) such that x* € Sx*. O

Remark 3.5. We can obtain the metric version of all the theorems which are still not presented in the
literature.
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